1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
SUBROUTINE SLAED6( KNITER, ORGATI, RHO, D, Z, FINIT, TAU, INFO )
*
* -- LAPACK routine (version 3.0) --
* Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,
* Courant Institute, NAG Ltd., and Rice University
* June 30, 1999
*
* .. Scalar Arguments ..
LOGICAL ORGATI
INTEGER INFO, KNITER
REAL FINIT, RHO, TAU
* ..
* .. Array Arguments ..
REAL D( 3 ), Z( 3 )
* ..
*
* Purpose
* =======
*
* SLAED6 computes the positive or negative root (closest to the origin)
* of
* z(1) z(2) z(3)
* f(x) = rho + --------- + ---------- + ---------
* d(1)-x d(2)-x d(3)-x
*
* It is assumed that
*
* if ORGATI = .true. the root is between d(2) and d(3);
* otherwise it is between d(1) and d(2)
*
* This routine will be called by SLAED4 when necessary. In most cases,
* the root sought is the smallest in magnitude, though it might not be
* in some extremely rare situations.
*
* Arguments
* =========
*
* KNITER (input) INTEGER
* Refer to SLAED4 for its significance.
*
* ORGATI (input) LOGICAL
* If ORGATI is true, the needed root is between d(2) and
* d(3); otherwise it is between d(1) and d(2). See
* SLAED4 for further details.
*
* RHO (input) REAL
* Refer to the equation f(x) above.
*
* D (input) REAL array, dimension (3)
* D satisfies d(1) < d(2) < d(3).
*
* Z (input) REAL array, dimension (3)
* Each of the elements in z must be positive.
*
* FINIT (input) REAL
* The value of f at 0. It is more accurate than the one
* evaluated inside this routine (if someone wants to do
* so).
*
* TAU (output) REAL
* The root of the equation f(x).
*
* INFO (output) INTEGER
* = 0: successful exit
* > 0: if INFO = 1, failure to converge
*
* Further Details
* ===============
*
* Based on contributions by
* Ren-Cang Li, Computer Science Division, University of California
* at Berkeley, USA
*
* =====================================================================
*
* .. Parameters ..
INTEGER MAXIT
PARAMETER ( MAXIT = 20 )
REAL ZERO, ONE, TWO, THREE, FOUR, EIGHT
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0,
$ THREE = 3.0E0, FOUR = 4.0E0, EIGHT = 8.0E0 )
* ..
* .. External Functions ..
REAL SLAMCH
EXTERNAL SLAMCH
* ..
* .. Local Arrays ..
REAL DSCALE( 3 ), ZSCALE( 3 )
* ..
* .. Local Scalars ..
LOGICAL FIRST, SCALE
INTEGER I, ITER, NITER
REAL A, B, BASE, C, DDF, DF, EPS, ERRETM, ETA, F,
$ FC, SCLFAC, SCLINV, SMALL1, SMALL2, SMINV1,
$ SMINV2, TEMP, TEMP1, TEMP2, TEMP3, TEMP4
* ..
* .. Save statement ..
SAVE FIRST, SMALL1, SMINV1, SMALL2, SMINV2, EPS
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, INT, LOG, MAX, MIN, SQRT
* ..
* .. Data statements ..
DATA FIRST / .TRUE. /
* ..
* .. Executable Statements ..
*
INFO = 0
*
NITER = 1
TAU = ZERO
IF( KNITER.EQ.2 ) THEN
IF( ORGATI ) THEN
TEMP = ( D( 3 )-D( 2 ) ) / TWO
C = RHO + Z( 1 ) / ( ( D( 1 )-D( 2 ) )-TEMP )
A = C*( D( 2 )+D( 3 ) ) + Z( 2 ) + Z( 3 )
B = C*D( 2 )*D( 3 ) + Z( 2 )*D( 3 ) + Z( 3 )*D( 2 )
ELSE
TEMP = ( D( 1 )-D( 2 ) ) / TWO
C = RHO + Z( 3 ) / ( ( D( 3 )-D( 2 ) )-TEMP )
A = C*( D( 1 )+D( 2 ) ) + Z( 1 ) + Z( 2 )
B = C*D( 1 )*D( 2 ) + Z( 1 )*D( 2 ) + Z( 2 )*D( 1 )
END IF
TEMP = MAX( ABS( A ), ABS( B ), ABS( C ) )
A = A / TEMP
B = B / TEMP
C = C / TEMP
IF( C.EQ.ZERO ) THEN
TAU = B / A
ELSE IF( A.LE.ZERO ) THEN
TAU = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
ELSE
TAU = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
END IF
TEMP = RHO + Z( 1 ) / ( D( 1 )-TAU ) +
$ Z( 2 ) / ( D( 2 )-TAU ) + Z( 3 ) / ( D( 3 )-TAU )
IF( ABS( FINIT ).LE.ABS( TEMP ) )
$ TAU = ZERO
END IF
*
* On first call to routine, get machine parameters for
* possible scaling to avoid overflow
*
IF( FIRST ) THEN
EPS = SLAMCH( 'Epsilon' )
BASE = SLAMCH( 'Base' )
SMALL1 = BASE**( INT( LOG( SLAMCH( 'SafMin' ) ) / LOG( BASE ) /
$ THREE ) )
SMINV1 = ONE / SMALL1
SMALL2 = SMALL1*SMALL1
SMINV2 = SMINV1*SMINV1
FIRST = .FALSE.
END IF
*
* Determine if scaling of inputs necessary to avoid overflow
* when computing 1/TEMP**3
*
IF( ORGATI ) THEN
TEMP = MIN( ABS( D( 2 )-TAU ), ABS( D( 3 )-TAU ) )
ELSE
TEMP = MIN( ABS( D( 1 )-TAU ), ABS( D( 2 )-TAU ) )
END IF
SCALE = .FALSE.
IF( TEMP.LE.SMALL1 ) THEN
SCALE = .TRUE.
IF( TEMP.LE.SMALL2 ) THEN
*
* Scale up by power of radix nearest 1/SAFMIN**(2/3)
*
SCLFAC = SMINV2
SCLINV = SMALL2
ELSE
*
* Scale up by power of radix nearest 1/SAFMIN**(1/3)
*
SCLFAC = SMINV1
SCLINV = SMALL1
END IF
*
* Scaling up safe because D, Z, TAU scaled elsewhere to be O(1)
*
DO 10 I = 1, 3
DSCALE( I ) = D( I )*SCLFAC
ZSCALE( I ) = Z( I )*SCLFAC
10 CONTINUE
TAU = TAU*SCLFAC
ELSE
*
* Copy D and Z to DSCALE and ZSCALE
*
DO 20 I = 1, 3
DSCALE( I ) = D( I )
ZSCALE( I ) = Z( I )
20 CONTINUE
END IF
*
FC = ZERO
DF = ZERO
DDF = ZERO
DO 30 I = 1, 3
TEMP = ONE / ( DSCALE( I )-TAU )
TEMP1 = ZSCALE( I )*TEMP
TEMP2 = TEMP1*TEMP
TEMP3 = TEMP2*TEMP
FC = FC + TEMP1 / DSCALE( I )
DF = DF + TEMP2
DDF = DDF + TEMP3
30 CONTINUE
F = FINIT + TAU*FC
*
IF( ABS( F ).LE.ZERO )
$ GO TO 60
*
* Iteration begins
*
* It is not hard to see that
*
* 1) Iterations will go up monotonically
* if FINIT < 0;
*
* 2) Iterations will go down monotonically
* if FINIT > 0.
*
ITER = NITER + 1
*
DO 50 NITER = ITER, MAXIT
*
IF( ORGATI ) THEN
TEMP1 = DSCALE( 2 ) - TAU
TEMP2 = DSCALE( 3 ) - TAU
ELSE
TEMP1 = DSCALE( 1 ) - TAU
TEMP2 = DSCALE( 2 ) - TAU
END IF
A = ( TEMP1+TEMP2 )*F - TEMP1*TEMP2*DF
B = TEMP1*TEMP2*F
C = F - ( TEMP1+TEMP2 )*DF + TEMP1*TEMP2*DDF
TEMP = MAX( ABS( A ), ABS( B ), ABS( C ) )
A = A / TEMP
B = B / TEMP
C = C / TEMP
IF( C.EQ.ZERO ) THEN
ETA = B / A
ELSE IF( A.LE.ZERO ) THEN
ETA = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
ELSE
ETA = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
END IF
IF( F*ETA.GE.ZERO ) THEN
ETA = -F / DF
END IF
*
TEMP = ETA + TAU
IF( ORGATI ) THEN
IF( ETA.GT.ZERO .AND. TEMP.GE.DSCALE( 3 ) )
$ ETA = ( DSCALE( 3 )-TAU ) / TWO
IF( ETA.LT.ZERO .AND. TEMP.LE.DSCALE( 2 ) )
$ ETA = ( DSCALE( 2 )-TAU ) / TWO
ELSE
IF( ETA.GT.ZERO .AND. TEMP.GE.DSCALE( 2 ) )
$ ETA = ( DSCALE( 2 )-TAU ) / TWO
IF( ETA.LT.ZERO .AND. TEMP.LE.DSCALE( 1 ) )
$ ETA = ( DSCALE( 1 )-TAU ) / TWO
END IF
TAU = TAU + ETA
*
FC = ZERO
ERRETM = ZERO
DF = ZERO
DDF = ZERO
DO 40 I = 1, 3
TEMP = ONE / ( DSCALE( I )-TAU )
TEMP1 = ZSCALE( I )*TEMP
TEMP2 = TEMP1*TEMP
TEMP3 = TEMP2*TEMP
TEMP4 = TEMP1 / DSCALE( I )
FC = FC + TEMP4
ERRETM = ERRETM + ABS( TEMP4 )
DF = DF + TEMP2
DDF = DDF + TEMP3
40 CONTINUE
F = FINIT + TAU*FC
ERRETM = EIGHT*( ABS( FINIT )+ABS( TAU )*ERRETM ) +
$ ABS( TAU )*DF
IF( ABS( F ).LE.EPS*ERRETM )
$ GO TO 60
50 CONTINUE
INFO = 1
60 CONTINUE
*
* Undo scaling
*
IF( SCALE )
$ TAU = TAU*SCLINV
RETURN
*
* End of SLAED6
*
END
|