File: slaed6.f

package info (click to toggle)
scalapack 1.7.4-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 34,004 kB
  • ctags: 30,444
  • sloc: fortran: 310,201; ansic: 64,027; makefile: 1,838; sh: 4
file content (299 lines) | stat: -rw-r--r-- 8,805 bytes parent folder | download | duplicates (22)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
      SUBROUTINE SLAED6( KNITER, ORGATI, RHO, D, Z, FINIT, TAU, INFO )
*
*  -- LAPACK routine (version 3.0) --
*     Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,
*     Courant Institute, NAG Ltd., and Rice University
*     June 30, 1999
*
*     .. Scalar Arguments ..
      LOGICAL            ORGATI
      INTEGER            INFO, KNITER
      REAL               FINIT, RHO, TAU
*     ..
*     .. Array Arguments ..
      REAL               D( 3 ), Z( 3 )
*     ..
*
*  Purpose
*  =======
*
*  SLAED6 computes the positive or negative root (closest to the origin)
*  of
*                   z(1)        z(2)        z(3)
*  f(x) =   rho + --------- + ---------- + ---------
*                  d(1)-x      d(2)-x      d(3)-x
*
*  It is assumed that
*
*        if ORGATI = .true. the root is between d(2) and d(3);
*        otherwise it is between d(1) and d(2)
*
*  This routine will be called by SLAED4 when necessary. In most cases,
*  the root sought is the smallest in magnitude, though it might not be
*  in some extremely rare situations.
*
*  Arguments
*  =========
*
*  KNITER       (input) INTEGER
*               Refer to SLAED4 for its significance.
*
*  ORGATI       (input) LOGICAL
*               If ORGATI is true, the needed root is between d(2) and
*               d(3); otherwise it is between d(1) and d(2).  See
*               SLAED4 for further details.
*
*  RHO          (input) REAL
*               Refer to the equation f(x) above.
*
*  D            (input) REAL array, dimension (3)
*               D satisfies d(1) < d(2) < d(3).
*
*  Z            (input) REAL array, dimension (3)
*               Each of the elements in z must be positive.
*
*  FINIT        (input) REAL
*               The value of f at 0. It is more accurate than the one
*               evaluated inside this routine (if someone wants to do
*               so).
*
*  TAU          (output) REAL
*               The root of the equation f(x).
*
*  INFO         (output) INTEGER
*               = 0: successful exit
*               > 0: if INFO = 1, failure to converge
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Ren-Cang Li, Computer Science Division, University of California
*     at Berkeley, USA
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            MAXIT
      PARAMETER          ( MAXIT = 20 )
      REAL               ZERO, ONE, TWO, THREE, FOUR, EIGHT
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0,
     $                   THREE = 3.0E0, FOUR = 4.0E0, EIGHT = 8.0E0 )
*     ..
*     .. External Functions ..
      REAL               SLAMCH
      EXTERNAL           SLAMCH
*     ..
*     .. Local Arrays ..
      REAL               DSCALE( 3 ), ZSCALE( 3 )
*     ..
*     .. Local Scalars ..
      LOGICAL            FIRST, SCALE
      INTEGER            I, ITER, NITER
      REAL               A, B, BASE, C, DDF, DF, EPS, ERRETM, ETA, F,
     $                   FC, SCLFAC, SCLINV, SMALL1, SMALL2, SMINV1,
     $                   SMINV2, TEMP, TEMP1, TEMP2, TEMP3, TEMP4
*     ..
*     .. Save statement ..
      SAVE               FIRST, SMALL1, SMINV1, SMALL2, SMINV2, EPS
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, INT, LOG, MAX, MIN, SQRT
*     ..
*     .. Data statements ..
      DATA               FIRST / .TRUE. /
*     ..
*     .. Executable Statements ..
*
      INFO = 0
*
      NITER = 1
      TAU = ZERO
      IF( KNITER.EQ.2 ) THEN
         IF( ORGATI ) THEN
            TEMP = ( D( 3 )-D( 2 ) ) / TWO
            C = RHO + Z( 1 ) / ( ( D( 1 )-D( 2 ) )-TEMP )
            A = C*( D( 2 )+D( 3 ) ) + Z( 2 ) + Z( 3 )
            B = C*D( 2 )*D( 3 ) + Z( 2 )*D( 3 ) + Z( 3 )*D( 2 )
         ELSE
            TEMP = ( D( 1 )-D( 2 ) ) / TWO
            C = RHO + Z( 3 ) / ( ( D( 3 )-D( 2 ) )-TEMP )
            A = C*( D( 1 )+D( 2 ) ) + Z( 1 ) + Z( 2 )
            B = C*D( 1 )*D( 2 ) + Z( 1 )*D( 2 ) + Z( 2 )*D( 1 )
         END IF
         TEMP = MAX( ABS( A ), ABS( B ), ABS( C ) )
         A = A / TEMP
         B = B / TEMP
         C = C / TEMP
         IF( C.EQ.ZERO ) THEN
            TAU = B / A
         ELSE IF( A.LE.ZERO ) THEN
            TAU = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
         ELSE
            TAU = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
         END IF
         TEMP = RHO + Z( 1 ) / ( D( 1 )-TAU ) +
     $          Z( 2 ) / ( D( 2 )-TAU ) + Z( 3 ) / ( D( 3 )-TAU )
         IF( ABS( FINIT ).LE.ABS( TEMP ) )
     $      TAU = ZERO
      END IF
*
*     On first call to routine, get machine parameters for
*     possible scaling to avoid overflow
*
      IF( FIRST ) THEN
         EPS = SLAMCH( 'Epsilon' )
         BASE = SLAMCH( 'Base' )
         SMALL1 = BASE**( INT( LOG( SLAMCH( 'SafMin' ) ) / LOG( BASE ) /
     $            THREE ) )
         SMINV1 = ONE / SMALL1
         SMALL2 = SMALL1*SMALL1
         SMINV2 = SMINV1*SMINV1
         FIRST = .FALSE.
      END IF
*
*     Determine if scaling of inputs necessary to avoid overflow
*     when computing 1/TEMP**3
*
      IF( ORGATI ) THEN
         TEMP = MIN( ABS( D( 2 )-TAU ), ABS( D( 3 )-TAU ) )
      ELSE
         TEMP = MIN( ABS( D( 1 )-TAU ), ABS( D( 2 )-TAU ) )
      END IF
      SCALE = .FALSE.
      IF( TEMP.LE.SMALL1 ) THEN
         SCALE = .TRUE.
         IF( TEMP.LE.SMALL2 ) THEN
*
*        Scale up by power of radix nearest 1/SAFMIN**(2/3)
*
            SCLFAC = SMINV2
            SCLINV = SMALL2
         ELSE
*
*        Scale up by power of radix nearest 1/SAFMIN**(1/3)
*
            SCLFAC = SMINV1
            SCLINV = SMALL1
         END IF
*
*        Scaling up safe because D, Z, TAU scaled elsewhere to be O(1)
*
         DO 10 I = 1, 3
            DSCALE( I ) = D( I )*SCLFAC
            ZSCALE( I ) = Z( I )*SCLFAC
   10    CONTINUE
         TAU = TAU*SCLFAC
      ELSE
*
*        Copy D and Z to DSCALE and ZSCALE
*
         DO 20 I = 1, 3
            DSCALE( I ) = D( I )
            ZSCALE( I ) = Z( I )
   20    CONTINUE
      END IF
*
      FC = ZERO
      DF = ZERO
      DDF = ZERO
      DO 30 I = 1, 3
         TEMP = ONE / ( DSCALE( I )-TAU )
         TEMP1 = ZSCALE( I )*TEMP
         TEMP2 = TEMP1*TEMP
         TEMP3 = TEMP2*TEMP
         FC = FC + TEMP1 / DSCALE( I )
         DF = DF + TEMP2
         DDF = DDF + TEMP3
   30 CONTINUE
      F = FINIT + TAU*FC
*
      IF( ABS( F ).LE.ZERO )
     $   GO TO 60
*
*        Iteration begins
*
*     It is not hard to see that
*
*           1) Iterations will go up monotonically
*              if FINIT < 0;
*
*           2) Iterations will go down monotonically
*              if FINIT > 0.
*
      ITER = NITER + 1
*
      DO 50 NITER = ITER, MAXIT
*
         IF( ORGATI ) THEN
            TEMP1 = DSCALE( 2 ) - TAU
            TEMP2 = DSCALE( 3 ) - TAU
         ELSE
            TEMP1 = DSCALE( 1 ) - TAU
            TEMP2 = DSCALE( 2 ) - TAU
         END IF
         A = ( TEMP1+TEMP2 )*F - TEMP1*TEMP2*DF
         B = TEMP1*TEMP2*F
         C = F - ( TEMP1+TEMP2 )*DF + TEMP1*TEMP2*DDF
         TEMP = MAX( ABS( A ), ABS( B ), ABS( C ) )
         A = A / TEMP
         B = B / TEMP
         C = C / TEMP
         IF( C.EQ.ZERO ) THEN
            ETA = B / A
         ELSE IF( A.LE.ZERO ) THEN
            ETA = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
         ELSE
            ETA = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
         END IF
         IF( F*ETA.GE.ZERO ) THEN
            ETA = -F / DF
         END IF
*
         TEMP = ETA + TAU
         IF( ORGATI ) THEN
            IF( ETA.GT.ZERO .AND. TEMP.GE.DSCALE( 3 ) )
     $         ETA = ( DSCALE( 3 )-TAU ) / TWO
            IF( ETA.LT.ZERO .AND. TEMP.LE.DSCALE( 2 ) )
     $         ETA = ( DSCALE( 2 )-TAU ) / TWO
         ELSE
            IF( ETA.GT.ZERO .AND. TEMP.GE.DSCALE( 2 ) )
     $         ETA = ( DSCALE( 2 )-TAU ) / TWO
            IF( ETA.LT.ZERO .AND. TEMP.LE.DSCALE( 1 ) )
     $         ETA = ( DSCALE( 1 )-TAU ) / TWO
         END IF
         TAU = TAU + ETA
*
         FC = ZERO
         ERRETM = ZERO
         DF = ZERO
         DDF = ZERO
         DO 40 I = 1, 3
            TEMP = ONE / ( DSCALE( I )-TAU )
            TEMP1 = ZSCALE( I )*TEMP
            TEMP2 = TEMP1*TEMP
            TEMP3 = TEMP2*TEMP
            TEMP4 = TEMP1 / DSCALE( I )
            FC = FC + TEMP4
            ERRETM = ERRETM + ABS( TEMP4 )
            DF = DF + TEMP2
            DDF = DDF + TEMP3
   40    CONTINUE
         F = FINIT + TAU*FC
         ERRETM = EIGHT*( ABS( FINIT )+ABS( TAU )*ERRETM ) +
     $            ABS( TAU )*DF
         IF( ABS( F ).LE.EPS*ERRETM )
     $      GO TO 60
   50 CONTINUE
      INFO = 1
   60 CONTINUE
*
*     Undo scaling
*
      IF( SCALE )
     $   TAU = TAU*SCLINV
      RETURN
*
*     End of SLAED6
*
      END