File: slaev2.f

package info (click to toggle)
scalapack 1.7.4-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 34,004 kB
  • ctags: 30,444
  • sloc: fortran: 310,201; ansic: 64,027; makefile: 1,838; sh: 4
file content (170 lines) | stat: -rw-r--r-- 4,505 bytes parent folder | download | duplicates (16)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
      SUBROUTINE SLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
*
*  -- LAPACK auxiliary routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     October 31, 1992
*
*     .. Scalar Arguments ..
      REAL               A, B, C, CS1, RT1, RT2, SN1
*     ..
*
*  Purpose
*  =======
*
*  SLAEV2 computes the eigendecomposition of a 2-by-2 symmetric matrix
*     [  A   B  ]
*     [  B   C  ].
*  On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
*  eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
*  eigenvector for RT1, giving the decomposition
*
*     [ CS1  SN1 ] [  A   B  ] [ CS1 -SN1 ]  =  [ RT1  0  ]
*     [-SN1  CS1 ] [  B   C  ] [ SN1  CS1 ]     [  0  RT2 ].
*
*  Arguments
*  =========
*
*  A       (input) REAL
*          The (1,1) element of the 2-by-2 matrix.
*
*  B       (input) REAL
*          The (1,2) element and the conjugate of the (2,1) element of
*          the 2-by-2 matrix.
*
*  C       (input) REAL
*          The (2,2) element of the 2-by-2 matrix.
*
*  RT1     (output) REAL
*          The eigenvalue of larger absolute value.
*
*  RT2     (output) REAL
*          The eigenvalue of smaller absolute value.
*
*  CS1     (output) REAL
*  SN1     (output) REAL
*          The vector (CS1, SN1) is a unit right eigenvector for RT1.
*
*  Further Details
*  ===============
*
*  RT1 is accurate to a few ulps barring over/underflow.
*
*  RT2 may be inaccurate if there is massive cancellation in the
*  determinant A*C-B*B; higher precision or correctly rounded or
*  correctly truncated arithmetic would be needed to compute RT2
*  accurately in all cases.
*
*  CS1 and SN1 are accurate to a few ulps barring over/underflow.
*
*  Overflow is possible only if RT1 is within a factor of 5 of overflow.
*  Underflow is harmless if the input data is 0 or exceeds
*     underflow_threshold / macheps.
*
* =====================================================================
*
*     .. Parameters ..
      REAL               ONE
      PARAMETER          ( ONE = 1.0E0 )
      REAL               TWO
      PARAMETER          ( TWO = 2.0E0 )
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0E0 )
      REAL               HALF
      PARAMETER          ( HALF = 0.5E0 )
*     ..
*     .. Local Scalars ..
      INTEGER            SGN1, SGN2
      REAL               AB, ACMN, ACMX, ACS, ADF, CS, CT, DF, RT, SM,
     $                   TB, TN
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, SQRT
*     ..
*     .. Executable Statements ..
*
*     Compute the eigenvalues
*
      SM = A + C
      DF = A - C
      ADF = ABS( DF )
      TB = B + B
      AB = ABS( TB )
      IF( ABS( A ).GT.ABS( C ) ) THEN
         ACMX = A
         ACMN = C
      ELSE
         ACMX = C
         ACMN = A
      END IF
      IF( ADF.GT.AB ) THEN
         RT = ADF*SQRT( ONE+( AB / ADF )**2 )
      ELSE IF( ADF.LT.AB ) THEN
         RT = AB*SQRT( ONE+( ADF / AB )**2 )
      ELSE
*
*        Includes case AB=ADF=0
*
         RT = AB*SQRT( TWO )
      END IF
      IF( SM.LT.ZERO ) THEN
         RT1 = HALF*( SM-RT )
         SGN1 = -1
*
*        Order of execution important.
*        To get fully accurate smaller eigenvalue,
*        next line needs to be executed in higher precision.
*
         RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
      ELSE IF( SM.GT.ZERO ) THEN
         RT1 = HALF*( SM+RT )
         SGN1 = 1
*
*        Order of execution important.
*        To get fully accurate smaller eigenvalue,
*        next line needs to be executed in higher precision.
*
         RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
      ELSE
*
*        Includes case RT1 = RT2 = 0
*
         RT1 = HALF*RT
         RT2 = -HALF*RT
         SGN1 = 1
      END IF
*
*     Compute the eigenvector
*
      IF( DF.GE.ZERO ) THEN
         CS = DF + RT
         SGN2 = 1
      ELSE
         CS = DF - RT
         SGN2 = -1
      END IF
      ACS = ABS( CS )
      IF( ACS.GT.AB ) THEN
         CT = -TB / CS
         SN1 = ONE / SQRT( ONE+CT*CT )
         CS1 = CT*SN1
      ELSE
         IF( AB.EQ.ZERO ) THEN
            CS1 = ONE
            SN1 = ZERO
         ELSE
            TN = -CS / TB
            CS1 = ONE / SQRT( ONE+TN*TN )
            SN1 = TN*CS1
         END IF
      END IF
      IF( SGN1.EQ.SGN2 ) THEN
         TN = CS1
         CS1 = -SN1
         SN1 = TN
      END IF
      RETURN
*
*     End of SLAEV2
*
      END