File: slarnv.f

package info (click to toggle)
scalapack 1.7.4-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 34,004 kB
  • ctags: 30,444
  • sloc: fortran: 310,201; ansic: 64,027; makefile: 1,838; sh: 4
file content (116 lines) | stat: -rw-r--r-- 3,229 bytes parent folder | download | duplicates (22)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
      SUBROUTINE SLARNV( IDIST, ISEED, N, X )
*
*  -- LAPACK auxiliary routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      INTEGER            IDIST, N
*     ..
*     .. Array Arguments ..
      INTEGER            ISEED( 4 )
      REAL               X( * )
*     ..
*
*  Purpose
*  =======
*
*  SLARNV returns a vector of n random real numbers from a uniform or
*  normal distribution.
*
*  Arguments
*  =========
*
*  IDIST   (input) INTEGER
*          Specifies the distribution of the random numbers:
*          = 1:  uniform (0,1)
*          = 2:  uniform (-1,1)
*          = 3:  normal (0,1)
*
*  ISEED   (input/output) INTEGER array, dimension (4)
*          On entry, the seed of the random number generator; the array
*          elements must be between 0 and 4095, and ISEED(4) must be
*          odd.
*          On exit, the seed is updated.
*
*  N       (input) INTEGER
*          The number of random numbers to be generated.
*
*  X       (output) REAL array, dimension (N)
*          The generated random numbers.
*
*  Further Details
*  ===============
*
*  This routine calls the auxiliary routine SLARUV to generate random
*  real numbers from a uniform (0,1) distribution, in batches of up to
*  128 using vectorisable code. The Box-Muller method is used to
*  transform numbers from a uniform to a normal distribution.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, TWO
      PARAMETER          ( ONE = 1.0E+0, TWO = 2.0E+0 )
      INTEGER            LV
      PARAMETER          ( LV = 128 )
      REAL               TWOPI
      PARAMETER          ( TWOPI = 6.2831853071795864769252867663E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, IL, IL2, IV
*     ..
*     .. Local Arrays ..
      REAL               U( LV )
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          COS, LOG, MIN, SQRT
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLARUV
*     ..
*     .. Executable Statements ..
*
      DO 40 IV = 1, N, LV / 2
         IL = MIN( LV / 2, N-IV+1 )
         IF( IDIST.EQ.3 ) THEN
            IL2 = 2*IL
         ELSE
            IL2 = IL
         END IF
*
*        Call SLARUV to generate IL2 numbers from a uniform (0,1)
*        distribution (IL2 <= LV)
*
         CALL SLARUV( ISEED, IL2, U )
*
         IF( IDIST.EQ.1 ) THEN
*
*           Copy generated numbers
*
            DO 10 I = 1, IL
               X( IV+I-1 ) = U( I )
   10       CONTINUE
         ELSE IF( IDIST.EQ.2 ) THEN
*
*           Convert generated numbers to uniform (-1,1) distribution
*
            DO 20 I = 1, IL
               X( IV+I-1 ) = TWO*U( I ) - ONE
   20       CONTINUE
         ELSE IF( IDIST.EQ.3 ) THEN
*
*           Convert generated numbers to normal (0,1) distribution
*
            DO 30 I = 1, IL
               X( IV+I-1 ) = SQRT( -TWO*LOG( U( 2*I-1 ) ) )*
     $                       COS( TWOPI*U( 2*I ) )
   30       CONTINUE
         END IF
   40 CONTINUE
      RETURN
*
*     End of SLARNV
*
      END