File: zlaev2.f

package info (click to toggle)
scalapack 1.7.4-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 34,004 kB
  • ctags: 30,444
  • sloc: fortran: 310,201; ansic: 64,027; makefile: 1,838; sh: 4
file content (96 lines) | stat: -rw-r--r-- 2,842 bytes parent folder | download | duplicates (16)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
      SUBROUTINE ZLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
*
*  -- LAPACK auxiliary routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     October 31, 1992
*
*     .. Scalar Arguments ..
      DOUBLE PRECISION   CS1, RT1, RT2
      COMPLEX*16         A, B, C, SN1
*     ..
*
*  Purpose
*  =======
*
*  ZLAEV2 computes the eigendecomposition of a 2-by-2 Hermitian matrix
*     [  A         B  ]
*     [  CONJG(B)  C  ].
*  On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
*  eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
*  eigenvector for RT1, giving the decomposition
*
*  [ CS1  CONJG(SN1) ] [    A     B ] [ CS1 -CONJG(SN1) ] = [ RT1  0  ]
*  [-SN1     CS1     ] [ CONJG(B) C ] [ SN1     CS1     ]   [  0  RT2 ].
*
*  Arguments
*  =========
*
*  A      (input) COMPLEX*16
*         The (1,1) element of the 2-by-2 matrix.
*
*  B      (input) COMPLEX*16
*         The (1,2) element and the conjugate of the (2,1) element of
*         the 2-by-2 matrix.
*
*  C      (input) COMPLEX*16
*         The (2,2) element of the 2-by-2 matrix.
*
*  RT1    (output) DOUBLE PRECISION
*         The eigenvalue of larger absolute value.
*
*  RT2    (output) DOUBLE PRECISION
*         The eigenvalue of smaller absolute value.
*
*  CS1    (output) DOUBLE PRECISION
*  SN1    (output) COMPLEX*16
*         The vector (CS1, SN1) is a unit right eigenvector for RT1.
*
*  Further Details
*  ===============
*
*  RT1 is accurate to a few ulps barring over/underflow.
*
*  RT2 may be inaccurate if there is massive cancellation in the
*  determinant A*C-B*B; higher precision or correctly rounded or
*  correctly truncated arithmetic would be needed to compute RT2
*  accurately in all cases.
*
*  CS1 and SN1 are accurate to a few ulps barring over/underflow.
*
*  Overflow is possible only if RT1 is within a factor of 5 of overflow.
*  Underflow is harmless if the input data is 0 or exceeds
*     underflow_threshold / macheps.
*
* =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0D0 )
      DOUBLE PRECISION   ONE
      PARAMETER          ( ONE = 1.0D0 )
*     ..
*     .. Local Scalars ..
      DOUBLE PRECISION   T
      COMPLEX*16         W
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLAEV2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, DCONJG
*     ..
*     .. Executable Statements ..
*
      IF( ABS( B ).EQ.ZERO ) THEN
         W = ONE
      ELSE
         W = DCONJG( B ) / ABS( B )
      END IF
      CALL DLAEV2( DBLE( A ), ABS( B ), DBLE( C ), RT1, RT2, CS1, T )
      SN1 = W*T
      RETURN
*
*     End of ZLAEV2
*
      END