1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
SUBROUTINE ZLAGHE( N, K, D, A, LDA, ISEED, WORK, INFO )
*
* -- LAPACK auxiliary test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
INTEGER INFO, K, LDA, N
* ..
* .. Array Arguments ..
INTEGER ISEED( 4 )
DOUBLE PRECISION D( * )
COMPLEX*16 A( LDA, * ), WORK( * )
* ..
*
* Purpose
* =======
*
* ZLAGHE generates a complex hermitian matrix A, by pre- and post-
* multiplying a real diagonal matrix D with a random unitary matrix:
* A = U*D*U'. The semi-bandwidth may then be reduced to k by additional
* unitary transformations.
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* K (input) INTEGER
* The number of nonzero subdiagonals within the band of A.
* 0 <= K <= N-1.
*
* D (input) DOUBLE PRECISION array, dimension (N)
* The diagonal elements of the diagonal matrix D.
*
* A (output) COMPLEX*16 array, dimension (LDA,N)
* The generated n by n hermitian matrix A (the full matrix is
* stored).
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= N.
*
* ISEED (input/output) INTEGER array, dimension (4)
* On entry, the seed of the random number generator; the array
* elements must be between 0 and 4095, and ISEED(4) must be
* odd.
* On exit, the seed is updated.
*
* WORK (workspace) COMPLEX*16 array, dimension (2*N)
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Parameters ..
COMPLEX*16 ZERO, ONE, HALF
PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ),
$ ONE = ( 1.0D+0, 0.0D+0 ),
$ HALF = ( 0.5D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, J
DOUBLE PRECISION WN
COMPLEX*16 ALPHA, TAU, WA, WB
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZAXPY, ZGEMV, ZGERC, ZHEMV, ZHER2,
$ ZLARNV, ZSCAL
* ..
* .. External Functions ..
DOUBLE PRECISION DZNRM2
COMPLEX*16 ZDOTC
EXTERNAL DZNRM2, ZDOTC
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DCONJG, MAX
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( K.LT.0 .OR. K.GT.N-1 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
END IF
IF( INFO.LT.0 ) THEN
CALL XERBLA( 'ZLAGHE', -INFO )
RETURN
END IF
*
* initialize lower triangle of A to diagonal matrix
*
DO 20 J = 1, N
DO 10 I = J + 1, N
A( I, J ) = ZERO
10 CONTINUE
20 CONTINUE
DO 30 I = 1, N
A( I, I ) = D( I )
30 CONTINUE
*
* Generate lower triangle of hermitian matrix
*
DO 40 I = N - 1, 1, -1
*
* generate random reflection
*
CALL ZLARNV( 3, ISEED, N-I+1, WORK )
WN = DZNRM2( N-I+1, WORK, 1 )
WA = ( WN / ABS( WORK( 1 ) ) )*WORK( 1 )
IF( WN.EQ.ZERO ) THEN
TAU = ZERO
ELSE
WB = WORK( 1 ) + WA
CALL ZSCAL( N-I, ONE / WB, WORK( 2 ), 1 )
WORK( 1 ) = ONE
TAU = DBLE( WB / WA )
END IF
*
* apply random reflection to A(i:n,i:n) from the left
* and the right
*
* compute y := tau * A * u
*
CALL ZHEMV( 'Lower', N-I+1, TAU, A( I, I ), LDA, WORK, 1, ZERO,
$ WORK( N+1 ), 1 )
*
* compute v := y - 1/2 * tau * ( y, u ) * u
*
ALPHA = -HALF*TAU*ZDOTC( N-I+1, WORK( N+1 ), 1, WORK, 1 )
CALL ZAXPY( N-I+1, ALPHA, WORK, 1, WORK( N+1 ), 1 )
*
* apply the transformation as a rank-2 update to A(i:n,i:n)
*
CALL ZHER2( 'Lower', N-I+1, -ONE, WORK, 1, WORK( N+1 ), 1,
$ A( I, I ), LDA )
40 CONTINUE
*
* Reduce number of subdiagonals to K
*
DO 60 I = 1, N - 1 - K
*
* generate reflection to annihilate A(k+i+1:n,i)
*
WN = DZNRM2( N-K-I+1, A( K+I, I ), 1 )
WA = ( WN / ABS( A( K+I, I ) ) )*A( K+I, I )
IF( WN.EQ.ZERO ) THEN
TAU = ZERO
ELSE
WB = A( K+I, I ) + WA
CALL ZSCAL( N-K-I, ONE / WB, A( K+I+1, I ), 1 )
A( K+I, I ) = ONE
TAU = DBLE( WB / WA )
END IF
*
* apply reflection to A(k+i:n,i+1:k+i-1) from the left
*
CALL ZGEMV( 'Conjugate transpose', N-K-I+1, K-1, ONE,
$ A( K+I, I+1 ), LDA, A( K+I, I ), 1, ZERO, WORK, 1 )
CALL ZGERC( N-K-I+1, K-1, -TAU, A( K+I, I ), 1, WORK, 1,
$ A( K+I, I+1 ), LDA )
*
* apply reflection to A(k+i:n,k+i:n) from the left and the right
*
* compute y := tau * A * u
*
CALL ZHEMV( 'Lower', N-K-I+1, TAU, A( K+I, K+I ), LDA,
$ A( K+I, I ), 1, ZERO, WORK, 1 )
*
* compute v := y - 1/2 * tau * ( y, u ) * u
*
ALPHA = -HALF*TAU*ZDOTC( N-K-I+1, WORK, 1, A( K+I, I ), 1 )
CALL ZAXPY( N-K-I+1, ALPHA, A( K+I, I ), 1, WORK, 1 )
*
* apply hermitian rank-2 update to A(k+i:n,k+i:n)
*
CALL ZHER2( 'Lower', N-K-I+1, -ONE, A( K+I, I ), 1, WORK, 1,
$ A( K+I, K+I ), LDA )
*
A( K+I, I ) = -WA
DO 50 J = K + I + 1, N
A( J, I ) = ZERO
50 CONTINUE
60 CONTINUE
*
* Store full hermitian matrix
*
DO 80 J = 1, N
DO 70 I = J + 1, N
A( J, I ) = DCONJG( A( I, J ) )
70 CONTINUE
80 CONTINUE
RETURN
*
* End of ZLAGHE
*
END
|