1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
|
/* ---------------------------------------------------------------------
*
* -- PBLAS auxiliary routine (version 2.0) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* April 1, 1998
*
* ---------------------------------------------------------------------
*/
/*
* Include files
*/
#include "../pblas.h"
#include "../PBpblas.h"
#include "../PBtools.h"
#include "../PBblacs.h"
#include "../PBblas.h"
#ifdef __STDC__
void PB_COutV( PBTYP_T * TYPE, char * ROWCOL, char * ZEROIT, int M,
int N, int * DESCA, int K, char * * YAPTR, int * DYA,
int * YAFREE, int * YASUM )
#else
void PB_COutV( TYPE, ROWCOL, ZEROIT, M, N, DESCA, K, YAPTR, DYA,
YAFREE, YASUM )
/*
* .. Scalar Arguments ..
*/
char * ROWCOL, * ZEROIT;
int * YAFREE, K, M, N, * YASUM;
PBTYP_T * TYPE;
/*
* .. Array Arguments ..
*/
int * DESCA, * DYA;
char * * YAPTR;
#endif
{
/*
* Purpose
* =======
*
* PB_COutV returns a pointer to an array that contains a one-dimensio-
* nal ouput zero subvector which is replicated over the rows or columns
* of a submatrix described by DESCA. On return, the subvector is speci-
* fied by a pointer to some data, a descriptor array describing its
* layout, a logical value indicating if this local piece of data has
* been dynamically allocated by this function, a logical value speci-
* fying if sum reduction should occur. This routine is specifically
* designed for traditional Level 2 and 3 PBLAS operations using an out-
* put only vector such as PxTRMV, or PxTRMM.
*
* Notes
* =====
*
* A description vector is associated with each 2D block-cyclicly dis-
* tributed matrix. This vector stores the information required to
* establish the mapping between a matrix entry and its corresponding
* process and memory location.
*
* In the following comments, the character _ should be read as
* "of the distributed matrix". Let A be a generic term for any 2D
* block cyclicly distributed matrix. Its description vector is DESC_A:
*
* NOTATION STORED IN EXPLANATION
* ---------------- --------------- ------------------------------------
* DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type.
* CTXT_A (global) DESCA[ CTXT_ ] The BLACS context handle, indicating
* the NPROW x NPCOL BLACS process grid
* A is distributed over. The context
* itself is global, but the handle
* (the integer value) may vary.
* M_A (global) DESCA[ M_ ] The number of rows in the distribu-
* ted matrix A, M_A >= 0.
* N_A (global) DESCA[ N_ ] The number of columns in the distri-
* buted matrix A, N_A >= 0.
* IMB_A (global) DESCA[ IMB_ ] The number of rows of the upper left
* block of the matrix A, IMB_A > 0.
* INB_A (global) DESCA[ INB_ ] The number of columns of the upper
* left block of the matrix A,
* INB_A > 0.
* MB_A (global) DESCA[ MB_ ] The blocking factor used to distri-
* bute the last M_A-IMB_A rows of A,
* MB_A > 0.
* NB_A (global) DESCA[ NB_ ] The blocking factor used to distri-
* bute the last N_A-INB_A columns of
* A, NB_A > 0.
* RSRC_A (global) DESCA[ RSRC_ ] The process row over which the first
* row of the matrix A is distributed,
* NPROW > RSRC_A >= 0.
* CSRC_A (global) DESCA[ CSRC_ ] The process column over which the
* first column of A is distributed.
* NPCOL > CSRC_A >= 0.
* LLD_A (local) DESCA[ LLD_ ] The leading dimension of the local
* array storing the local blocks of
* the distributed matrix A,
* IF( Lc( 1, N_A ) > 0 )
* LLD_A >= MAX( 1, Lr( 1, M_A ) )
* ELSE
* LLD_A >= 1.
*
* Let K be the number of rows of a matrix A starting at the global in-
* dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
* that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
* receive if these K rows were distributed over NPROW processes. If K
* is the number of columns of a matrix A starting at the global index
* JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co-
* lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if
* these K columns were distributed over NPCOL processes.
*
* The values of Lr() and Lc() may be determined via a call to the func-
* tion PB_Cnumroc:
* Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
* Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
*
* Arguments
* =========
*
* TYPE (local input) pointer to a PBTYP_T structure
* On entry, TYPE is a pointer to a structure of type PBTYP_T,
* that contains type information (See pblas.h).
*
* ROWCOL (global input) pointer to CHAR
* On entry, ROWCOL specifies if this routine should return a
* row or column subvector replicated over the underlying subma-
* trix as follows:
* = 'R' or 'r': A row subvector is returned,
* = 'C' or 'c': A column subvector is returned.
*
* M (global input) INTEGER
* On entry, M specifies the number of rows of the underlying
* submatrix described by DESCA. M must be at least zero.
*
* N (global input) INTEGER
* On entry, N specifies the number of columns of the underlying
* submatrix described by DESCA. N must be at least zero.
*
* DESCA (global and local input) INTEGER array
* On entry, DESCA is an integer array of dimension DLEN_. This
* is the array descriptor for the matrix A.
*
* K (global input) INTEGER
* On entry, K specifies the length of the non-distributed di-
* mension of the subvector sub( Y ). K must be at least zero.
*
* YAPTR (local output) pointer to pointer to CHAR
* On exit, * YAPTR is an array containing the same data as the
* subvector sub( Y ) which is replicated over the rows or co-
* lumns of the underlying matrix as specified by ROWCOL and
* DESCA.
*
* DYA (global and local output) INTEGER array
* On exit, DYA is a descriptor array of dimension DLEN_ descri-
* bing the data layout of the data pointed to by * YAPTR.
*
* YAFREE (local output) INTEGER
* On exit, YAFREE specifies if it was possible to reuse the
* subvector sub( Y ), i.e., if some dynamic memory was alloca-
* ted for the data pointed to by * YAPTR or not. When YAFREE is
* zero, no dynamic memory was allocated. Otherwise, some dyna-
* mic memory was allocated by this function that one MUST re-
* lease as soon as possible.
*
* YASUM (global output) INTEGER
* On exit, YASUM specifies if a global sum reduction should be
* performed to obtain the correct sub( Y ). When YASUM is zero,
* no reduction is to be performed, otherwise reduction should
* occur.
*
* -- Written on April 1, 1998 by
* Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
*
* ---------------------------------------------------------------------
*/
/*
* .. Local Scalars ..
*/
int Acol, Aimb, Ainb, Amb, Amp, Anb, Anq, Arow, Yld, ctxt,
izero=0, nprow, myrow, npcol, mycol;
char * zero;
/* ..
* .. Executable Statements ..
*
*/
/*
* Initialize the output parameters to a default value
*/
*YAFREE = 0;
*YASUM = 0;
*YAPTR = NULL;
/*
* Quick return if possible
*/
if( ( M <= 0 ) || ( N <= 0 ) || ( K <= 0 ) )
{
if( Mupcase( ROWCOL[0] ) == CROW )
{
PB_Cdescset( DYA, K, N, 1, DESCA[INB_], 1, DESCA[NB_], DESCA[RSRC_],
DESCA[CSRC_], DESCA[CTXT_], 1 );
}
else
{
PB_Cdescset( DYA, M, K, DESCA[IMB_], 1, DESCA[MB_], 1, DESCA[RSRC_],
DESCA[CSRC_], DESCA[CTXT_], DESCA[LLD_] );
}
return;
}
/*
* Retrieve process grid information
*/
Cblacs_gridinfo( ( ctxt = DESCA[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
Arow = DESCA[RSRC_]; Acol = DESCA[CSRC_];
if( Mupcase( ROWCOL[0] ) == CROW )
{
/*
* Want a row vector
*/
Ainb = DESCA[INB_]; Anb = DESCA[NB_];
Anq = PB_Cnumroc( N, 0, Ainb, Anb, mycol, Acol, npcol );
Yld = MAX( 1, K );
if( ( Arow < 0 ) || ( nprow == 1 ) ||
( PB_Cspan( M, 0, DESCA[IMB_], DESCA[MB_], Arow, nprow ) ) )
{
/*
* A spans all process rows. Y should be reduced iff A is not replicated and
* there is more than just one process row in the process grid.
*/
*YASUM = ( ( Arow >= 0 ) && ( nprow > 1 ) );
/*
* Allocate the space for Y in the processes owning at least one column of A,
* and initialize it to zero if requested.
*/
if( Anq > 0 )
{
*YAPTR = PB_Cmalloc( K * Anq * TYPE->size );
*YAFREE = 1;
if( Mupcase( ZEROIT[0] ) == CINIT )
{
zero = TYPE->zero;
TYPE->Ftzpad( C2F_CHAR( ALL ), C2F_CHAR( NOCONJG ), &K, &Anq,
&izero, zero, zero, *YAPTR, &Yld );
}
}
/*
* Describe the newly created operand
*/
PB_Cdescset( DYA, K, N, K, Ainb, 1, Anb, -1, Acol, ctxt, Yld );
}
else
{
/*
* A spans only one process row. There is no need to reduce Y or even to
* allocate some space for it outside this process row.
*/
*YASUM = 0;
if( ( myrow == Arow ) && ( Anq > 0 ) )
{
*YAPTR = PB_Cmalloc( K * Anq * TYPE->size );
*YAFREE = 1;
if( Mupcase( ZEROIT[0] ) == CINIT )
{
zero = TYPE->zero;
TYPE->Ftzpad( C2F_CHAR( ALL ), C2F_CHAR( NOCONJG ), &K, &Anq,
&izero, zero, zero, *YAPTR, &Yld );
}
}
/*
* Describe the newly created operand
*/
PB_Cdescset( DYA, K, N, K, Ainb, 1, Anb, Arow, Acol, ctxt, Yld );
}
}
else
{
/*
* Want a column vector
*/
Aimb = DESCA[ IMB_ ]; Amb = DESCA[ MB_ ];
Amp = PB_Cnumroc( M, 0, Aimb, Amb, myrow, Arow, nprow );
Yld = MAX( 1, Amp );
if( ( Acol < 0 ) || ( npcol == 1 ) ||
( PB_Cspan( N, 0, DESCA[INB_], DESCA[NB_], Acol, npcol ) ) )
{
/*
* A spans all process columns. Y should be reduced iff A is not replicated and
* there is more than just one process column in the process grid.
*/
*YASUM = ( ( Acol >= 0 ) && ( npcol > 1 ) );
/*
* Allocate the space for Y in the processes owning at least one row of A, and
* initialize it to zero if requested.
*/
if( Amp > 0 )
{
*YAPTR = PB_Cmalloc( Amp * K * TYPE->size );
*YAFREE = 1;
if( Mupcase( ZEROIT[0] ) == CINIT )
{
zero = TYPE->zero;
TYPE->Ftzpad( C2F_CHAR( ALL ), C2F_CHAR( NOCONJG ), &Amp, &K,
&izero, zero, zero, *YAPTR, &Yld );
}
}
/*
* Describe the newly created operand
*/
PB_Cdescset( DYA, M, K, Aimb, K, Amb, 1, Arow, -1, ctxt, Yld );
}
else
{
/*
* A spans only one process column. There is no need to reduce Y or even to
* allocate some space for it outside this process column.
*/
*YASUM = 0;
if( ( mycol == Acol ) && ( Amp > 0 ) )
{
*YAPTR = PB_Cmalloc( Amp * K * TYPE->size );
*YAFREE = 1;
if( Mupcase( ZEROIT[0] ) == CINIT )
{
zero = TYPE->zero;
TYPE->Ftzpad( C2F_CHAR( ALL ), C2F_CHAR( NOCONJG ), &Amp, &K,
&izero, zero, zero, *YAPTR, &Yld );
}
}
/*
* Describe the newly created operand
*/
PB_Cdescset( DYA, M, K, Aimb, K, Amb, 1, Arow, Acol, ctxt, Yld );
}
}
/*
* End of PB_COutV
*/
}
|