1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
/* ---------------------------------------------------------------------
*
* -- PBLAS auxiliary routine (version 2.0) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* April 1, 1998
*
* ---------------------------------------------------------------------
*/
/*
* Include files
*/
#include "../pblas.h"
#include "../PBpblas.h"
#include "../PBtools.h"
#include "../PBblacs.h"
#include "../PBblas.h"
#ifdef __STDC__
void PB_CVMinit( PB_VM_T * VM, int OFFD, int M, int N, int IMB1, int INB1,
int MB, int NB, int MRROW, int MRCOL, int NPROW,
int NPCOL, int LCMB )
#else
void PB_CVMinit( VM, OFFD, M, N, IMB1, INB1, MB, NB, MRROW, MRCOL, NPROW,
NPCOL, LCMB )
/*
* .. Scalar Arguments ..
*/
int IMB1, INB1, LCMB, M, MB, MRCOL, MRROW, N, NB, NPCOL,
NPROW, OFFD;
/*
* .. Array Arguments ..
*/
PB_VM_T * VM;
#endif
{
/*
* Purpose
* =======
*
* PB_CVMinit initializes a virtual matrix with the information of an m
* by n local array owned by the process of relative coordinates
* ( MRROW, MRCOL ).
*
* Arguments
* =========
*
* VM (local output) pointer to a PB_VM_T structure
* On entry, VM is a pointer to a structure of type PB_VM_T.
* On exit, VM points to the initialized structure containing
* the virtual matrix information (see pblas.h).
*
* OFFD (global input) INTEGER
* On entry, OFFD specifies the off-diagonal of the underlying
* matrix of interest as follows:
* OFFD = 0 specifies the main diagonal,
* OFFD > 0 specifies lower subdiagonals, and
* OFFD < 0 specifies upper superdiagonals.
*
* M (local input) INTEGER
* On entry, M specifies the local number of rows of the under-
* lying matrix owned by the process of relative coordinates
* ( MRROW, MRCOL ). M must be at least zero.
*
* N (local input) INTEGER
* On entry, N specifies the local number of columns of the un-
* derlying matrix owned by the process of relative coordinates
* ( MRROW, MRCOL ). N must be at least zero.
*
* IMB1 (global input) INTEGER
* On input, IMB1 specifies the global true size of the first
* block of rows of the underlying global submatrix. IMB1 must
* be at least MIN( 1, M ).
*
* INB1 (global input) INTEGER
* On input, INB1 specifies the global true size of the first
* block of columns of the underlying global submatrix. INB1
* must be at least MIN( 1, N ).
*
* MB (global input) INTEGER
* On entry, MB specifies the blocking factor used to partition
* the rows of the matrix. MB must be at least one.
*
* NB (global input) INTEGER
* On entry, NB specifies the blocking factor used to partition
* the the columns of the matrix. NB must be at least one.
*
* MRROW (local input) INTEGER
* On entry, MRROW specifies the relative row coordinate of the
* process that possesses these M rows. MRROW must be least zero
* and strictly less than NPROW.
*
* MRCOL (local input) INTEGER
* On entry, MRCOL specifies the relative column coordinate of
* the process that possesses these N columns. MRCOL must be
* least zero and strictly less than NPCOL.
*
* NPROW (global input) INTEGER
* On entry, NPROW specifies the total number of process rows
* over which the matrix is distributed. NPROW must be at least
* one.
*
* NPCOL (global input) INTEGER
* On entry, NPCOL specifies the total number of process col-
* umns over which the matrix is distributed. NPCOL must be at
* least one.
*
* LCMB (global input) INTEGER
* On entry, LCMB specifies the least common multiple of
* NPROW * MB and NPCOL * NB.
*
* -- Written on April 1, 1998 by
* Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
*
* ---------------------------------------------------------------------
*/
/*
* .. Local Scalars ..
*/
int tmp1;
/* ..
* .. Executable Statements ..
*
*/
/*
* Initialize the fields of the VM structure
*/
VM->offd = OFFD;
VM->lcmt00 = OFFD;
VM->mp = M; VM->imb1 = IMB1; VM->mb = MB; VM->upp = MB - 1;
VM->prow = MRROW; VM->nprow = NPROW;
VM->nq = N; VM->inb1 = INB1; VM->nb = NB; VM->low = 1 - NB;
VM->pcol = MRCOL; VM->npcol = NPCOL;
VM->lcmb = LCMB;
if( ( M <= 0 ) || ( N <= 0 ) )
{
/*
* If the local virtual array is empty, then simplify the remaining of the
* initialization.
*/
VM->imbloc = 0; VM->lmbloc = 0; VM->mblks = 0;
VM->iupp = ( MRROW ? MB - 1 : ( IMB1 > 0 ? IMB1 - 1 : 0 ) );
VM->inbloc = 0; VM->lnbloc = 0; VM->nblks = 0;
VM->ilow = ( MRCOL ? 1 - NB : ( INB1 > 0 ? 1 - INB1 : 0 ) );
VM->lcmt00 += ( VM->low - VM->ilow + MRCOL * NB ) -
( VM->iupp - VM->upp + MRROW * MB );
return;
}
if( MRROW )
{
/*
* I am not in the first relative process row. Use the first local row block
* size MB to initialize the VM structure.
*/
VM->lcmt00 -= IMB1 - MB + MRROW * MB;
VM->imbloc = MIN( M, MB );
VM->mblks = ( M - 1 ) / MB + 1;
VM->iupp = MB - 1;
VM->lmbloc = M - ( M / MB ) * MB;
if( !( VM->lmbloc ) ) VM->lmbloc = MB;
if( MRCOL )
{
/*
* I am not in the first relative process column. Use the first local column
* block size NB to initialize the VM structure.
*/
VM->inbloc = MIN( N, NB );
VM->ilow = 1 - NB;
VM->lcmt00 += INB1 - NB + MRCOL * NB;
VM->nblks = ( N - 1 ) / NB + 1;
VM->lnbloc = N - ( N / NB ) * NB;
if( !( VM->lnbloc ) ) VM->lnbloc = NB;
}
else
{
/*
* I am in the first relative process column. Use the first column block size
* INB1 to initialize the VM structure.
*/
VM->inbloc = INB1;
VM->ilow = 1 - INB1;
tmp1 = N - INB1;
if( tmp1 )
{
/*
* There is more than one column block. Compute the number of local column
* blocks and the size of the last one.
*/
VM->nblks = ( tmp1 - 1 ) / NB + 2;
VM->lnbloc = tmp1 - ( tmp1 / NB ) * NB;
if( !( VM->lnbloc ) ) VM->lnbloc = NB;
}
else
{
/*
* There is only one column block.
*/
VM->nblks = 1;
VM->lnbloc = INB1;
}
}
}
else
{
/*
* I am in the first relative process row. Use the first row block size IMB1 to
* initialize the VM structure.
*/
VM->imbloc = IMB1;
VM->iupp = IMB1 - 1;
tmp1 = M - IMB1;
if( tmp1 )
{
/*
* There is more than one row block. Compute the number of local row blocks and
* the size of the last one.
*/
VM->mblks = ( tmp1 - 1 ) / MB + 2;
VM->lmbloc = tmp1 - ( tmp1 / MB ) * MB;
if( !( VM->lmbloc ) ) VM->lmbloc = MB;
}
else
{
/*
* There is only one row block.
*/
VM->mblks = 1;
VM->lmbloc = IMB1;
}
if( MRCOL )
{
/*
* I am not in the first relative process column. Use the first local column
* block size NB to initialize the VM structure.
*/
VM->inbloc = MIN( N, NB );
VM->ilow = 1 - NB;
VM->lcmt00 += INB1 - NB + MRCOL * NB;
VM->nblks = ( N - 1 ) / NB + 1;
VM->lnbloc = N - ( N / NB ) * NB;
if( !( VM->lnbloc ) ) VM->lnbloc = NB;
}
else
{
/*
* I am in the first relative process column. Use the first column block size
* INB1 to initialize the VM structure.
*/
VM->inbloc = INB1;
VM->ilow = 1 - INB1;
tmp1 = N - INB1;
if( tmp1 )
{
/*
* There is more than one column block. Compute the number of local column
* blocks and the size of the last one.
*/
VM->nblks = ( tmp1 - 1 ) / NB + 2;
VM->lnbloc = tmp1 - ( tmp1 / NB ) * NB;
if( !( VM->lnbloc ) ) VM->lnbloc = NB;
}
else
{
/*
* There is only one column block.
*/
VM->nblks = 1;
VM->lnbloc = INB1;
}
}
}
/*
* End of PB_CVMinit
*/
}
|