File: PB_Cplascal.c

package info (click to toggle)
scalapack 1.8.0-12
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 32,712 kB
  • ctags: 29,423
  • sloc: fortran: 288,069; ansic: 64,035; makefile: 1,966
file content (380 lines) | stat: -rw-r--r-- 14,673 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
/* ---------------------------------------------------------------------
*
*  -- PBLAS auxiliary routine (version 2.0) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     April 1, 1998
*
*  ---------------------------------------------------------------------
*/
/*
*  Include files
*/
#include "../pblas.h"
#include "../PBpblas.h"
#include "../PBtools.h"
#include "../PBblacs.h"
#include "../PBblas.h"

#ifdef __STDC__
void PB_Cplascal( PBTYP_T * TYPE, char * UPLO, char * CONJUG, int M,
                  int N, char * ALPHA, char * A, int IA, int JA,
                  int * DESCA )
#else
void PB_Cplascal( TYPE, UPLO, CONJUG, M, N, ALPHA, A, IA, JA, DESCA )
/*
*  .. Scalar Arguments ..
*/
   char           * CONJUG, * UPLO;
   int            IA, JA, M, N;
   char           * ALPHA;
   PBTYP_T        * TYPE;
/*
*  .. Array Arguments ..
*/
   int            * DESCA;
   char           * A;
#endif
{
/*
*  Purpose
*  =======
*
*  PB_Cplascal scales by alpha an  m by n  submatrix  sub( A )  denoting
*  A(IA:IA+M-1,JA:JA+N-1).
*
*  Notes
*  =====
*
*  A description  vector  is associated with each 2D block-cyclicly dis-
*  tributed matrix.  This  vector  stores  the  information  required to
*  establish the  mapping  between a  matrix entry and its corresponding
*  process and memory location.
*
*  In  the  following  comments,   the character _  should  be  read  as
*  "of  the  distributed  matrix".  Let  A  be a generic term for any 2D
*  block cyclicly distributed matrix.  Its description vector is DESC_A:
*
*  NOTATION         STORED IN       EXPLANATION
*  ---------------- --------------- ------------------------------------
*  DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type.
*  CTXT_A  (global) DESCA[ CTXT_  ] The BLACS context handle, indicating
*                                   the NPROW x NPCOL BLACS process grid
*                                   A  is  distributed over. The context
*                                   itself  is  global,  but  the handle
*                                   (the integer value) may vary.
*  M_A     (global) DESCA[ M_     ] The  number of rows in the distribu-
*                                   ted matrix A, M_A >= 0.
*  N_A     (global) DESCA[ N_     ] The number of columns in the distri-
*                                   buted matrix A, N_A >= 0.
*  IMB_A   (global) DESCA[ IMB_   ] The number of rows of the upper left
*                                   block of the matrix A, IMB_A > 0.
*  INB_A   (global) DESCA[ INB_   ] The  number  of columns of the upper
*                                   left   block   of   the  matrix   A,
*                                   INB_A > 0.
*  MB_A    (global) DESCA[ MB_    ] The blocking factor used to  distri-
*                                   bute the last  M_A-IMB_A  rows of A,
*                                   MB_A > 0.
*  NB_A    (global) DESCA[ NB_    ] The blocking factor used to  distri-
*                                   bute the last  N_A-INB_A  columns of
*                                   A, NB_A > 0.
*  RSRC_A  (global) DESCA[ RSRC_  ] The process row over which the first
*                                   row of the matrix  A is distributed,
*                                   NPROW > RSRC_A >= 0.
*  CSRC_A  (global) DESCA[ CSRC_  ] The  process column  over  which the
*                                   first column of  A  is  distributed.
*                                   NPCOL > CSRC_A >= 0.
*  LLD_A   (local)  DESCA[ LLD_   ] The  leading dimension  of the local
*                                   array  storing  the  local blocks of
*                                   the distributed matrix A,
*                                   IF( Lc( 1, N_A ) > 0 )
*                                      LLD_A >= MAX( 1, Lr( 1, M_A ) )
*                                   ELSE
*                                      LLD_A >= 1.
*
*  Let K be the number of  rows of a matrix A starting at the global in-
*  dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
*  that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
*  receive if these K rows were distributed over NPROW processes.  If  K
*  is the number of columns of a matrix  A  starting at the global index
*  JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number  of co-
*  lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would  receive if
*  these K columns were distributed over NPCOL processes.
*
*  The values of Lr() and Lc() may be determined via a call to the func-
*  tion PB_Cnumroc:
*  Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
*  Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
*
*  Arguments
*  =========
*
*  TYPE    (local input) pointer to a PBTYP_T structure
*          On entry,  TYPE  is a pointer to a structure of type PBTYP_T,
*          that contains type information (See pblas.h).
*
*  UPLO    (global input) pointer to CHAR
*          On entry, UPLO specifies the part  of  the submatrix sub( A )
*          to be scaled as follows:
*             = 'L' or 'l':         Lower triangular part is scaled; the
*             strictly upper triangular part of sub( A ) is not changed;
*             = 'U' or 'u':         Upper triangular part is scaled; the
*             strictly lower triangular part of sub( A ) is not changed;
*             Otherwise:  All of the submatrix sub( A ) is scaled.
*
*  CONJUG  (global input) pointer to CHAR
*          On entry,  CONJUG  specifies  what  kind of scaling should be
*          done as follows: when UPLO is 'L', 'l', 'U' or 'u' and CONJUG
*          is 'Z' or 'z', alpha is assumed to be real and the  imaginary
*          part of the diagonals are set to zero. Otherwise, alpha is of
*          the same type as the entries of sub( A ) and nothing particu-
*          lar is done to the diagonals of sub( A ).
*
*  M       (global input) INTEGER
*          On entry,  M  specifies the number of rows of  the  submatrix
*          sub( A ). M  must be at least zero.
*
*  N       (global input) INTEGER
*          On entry, N  specifies the number of columns of the submatrix
*          sub( A ). N must be at least zero.
*
*  ALPHA   (global input) pointer to CHAR
*          On entry,  ALPHA  specifies the scalar alpha, i.e., the cons-
*          tant with which the matrix elements are to be scaled.
*
*  A       (local input/local output) pointer to CHAR
*          On entry, A is an array of dimension (LLD_A, Ka), where Ka is
*          at least Lc( 1, JA+N-1 ).  Before  entry, this array contains
*          the local entries of the matrix A to be scaled.  On exit, the
*          local  entries  of this array corresponding to the to the en-
*          tries of the submatrix sub( A ) are  overwritten by the local
*          entries of the m by n scaled submatrix.
*
*  IA      (global input) INTEGER
*          On entry, IA  specifies A's global row index, which points to
*          the beginning of the submatrix sub( A ).
*
*  JA      (global input) INTEGER
*          On entry, JA  specifies A's global column index, which points
*          to the beginning of the submatrix sub( A ).
*
*  DESCA   (global and local input) INTEGER array
*          On entry, DESCA  is an integer array of dimension DLEN_. This
*          is the array descriptor for the matrix A.
*
*  -- Written on April 1, 1998 by
*     Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
*
*  ---------------------------------------------------------------------
*/
/*
*  .. Local Scalars ..
*/
   char           UploA, herm, type;
   int            Acol, Arow, Aii, Aimb1, Ainb1, Ajj, Akp, Akq, Ald, Amb, Amp,
                  Amp0, Anb, Anq, Anq0, ctxt, izero=0, k, kb, ktmp, mn, mycol,
                  myrow, nb, npcol, nprow, size;
   TZSCAL_T       scal;
/*
*  .. Local Arrays ..
*/
   int            Ad0[DLEN_];
   char           * Aptr = NULL;
/* ..
*  .. Executable Statements ..
*
*/
/*
*  Quick return if possible
*/
   if( ( M <= 0 ) || ( N <= 0 ) ) return;
/*
*  If alpha is zero, then call PB_Cplapad instead.
*/
   type  = TYPE->type;
   UploA = Mupcase( UPLO[0] );
   herm  = ( UploA == CALL ? CNOCONJG : Mupcase( CONJUG[0] ) );

   if( type == SREAL )
   {
      if( ((float*)(ALPHA))[REAL_PART] == ZERO )
      {
         PB_Cplapad( TYPE, UPLO, NOCONJG, M, N, TYPE->zero, TYPE->zero, A, IA,
                     JA, DESCA );
         return;
      }
      else if( ((float*)(ALPHA))[REAL_PART] == ONE ) return;
   }
   else if( type == DREAL )
   {
      if( ((double*)(ALPHA))[REAL_PART] == ZERO )
      {
         PB_Cplapad( TYPE, UPLO, NOCONJG, M, N, TYPE->zero, TYPE->zero, A, IA,
                     JA, DESCA );
         return;
      }
      else if( ((double*)(ALPHA))[REAL_PART] == ONE ) return;
   }
   else if( type == SCPLX )
   {
      if( herm == CCONJG )
      {
         if( ((float*)(ALPHA))[REAL_PART] == ZERO )
         {
            PB_Cplapad( TYPE, UPLO, NOCONJG, M, N, TYPE->zero, TYPE->zero, A,
                        IA, JA, DESCA );
            return;
         }
      }
      else
      {
         if( ((float*)(ALPHA))[IMAG_PART] == ZERO )
         {
            if( ((float*)(ALPHA))[REAL_PART] == ZERO )
            {
               PB_Cplapad( TYPE, UPLO, NOCONJG, M, N, TYPE->zero, TYPE->zero, A,
                           IA, JA, DESCA );
               return;
            }
            else if( ((float*)(ALPHA))[REAL_PART] == ONE ) return;
         }
      }
   }
   else if( type == DCPLX )
   {
      if( herm == CCONJG )
      {
         if( ((double*)(ALPHA))[REAL_PART] == ZERO )
         {
            PB_Cplapad( TYPE, UPLO, NOCONJG, M, N, TYPE->zero, TYPE->zero, A,
                        IA, JA, DESCA );
            return;
         }
      }
      else
      {
         if( ((double*)(ALPHA))[IMAG_PART] == ZERO )
         {
            if( ((double*)(ALPHA))[REAL_PART] == ZERO )
            {
               PB_Cplapad( TYPE, UPLO, NOCONJG, M, N, TYPE->zero, TYPE->zero, A,
                           IA, JA, DESCA );
               return;
            }
            else if( ((double*)(ALPHA))[REAL_PART] == ONE ) return;
         }
      }
   }
/*
*  Retrieve process grid information
*/
   Cblacs_gridinfo( ( ctxt = DESCA[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
/*
*  Compute descriptor Ad0 for sub( A )
*/
   PB_Cdescribe( M, N, IA, JA, DESCA, nprow, npcol, myrow, mycol, &Aii, &Ajj,
                 &Ald, &Aimb1, &Ainb1, &Amb, &Anb, &Arow, &Acol, Ad0 );
/*
*  Quick return if I don't own any of sub( A ).
*/
   Amp  = PB_Cnumroc( M, 0, Aimb1, Amb, myrow, Arow, nprow );
   Anq  = PB_Cnumroc( N, 0, Ainb1, Anb, mycol, Acol, npcol );
   if( ( Amp <= 0 ) || ( Anq <= 0 ) ) return;

   size = TYPE->size;
   scal = ( herm == CCONJG ? TYPE->Fhescal : TYPE->Ftzscal );
   Aptr = Mptr( A, Aii, Ajj, Ald, size );
/*
*  When the entire sub( A ) needs to be scaled or when sub( A ) is replicated in
*  all processes, just call the local routine.
*/
   if( ( Mupcase( UPLO[0] ) == CALL ) ||
       ( ( ( Arow < 0 ) || ( nprow == 1 ) ) &&
         ( ( Acol < 0 ) || ( npcol == 1 ) ) ) )
   {
      scal( C2F_CHAR( UPLO ), &Amp, &Anq, &izero, ALPHA, Aptr, &Ald );
      return;
   }
/*
*  Computational partitioning size is computed as the product of the logical
*  value returned by pilaenv_ and two times the least common multiple of nprow
*  and npcol.
*/
   nb = 2 * pilaenv_( &ctxt, C2F_CHAR( &type ) ) *
        PB_Clcm( ( Arow >= 0 ? nprow : 1 ), ( Acol >= 0 ? npcol : 1 ) );

   mn = MIN( M, N );

   if( Mupcase( UPLO[0] ) == CLOWER )
   {
/*
*  Lower triangle of sub( A ): proceed by block of columns. For each block of
*  columns, operate on the logical diagonal block first and then the remaining
*  rows of that block of columns.
*/
      for( k = 0; k < mn; k += nb )
      {
         kb   = mn - k; ktmp = k + ( kb = MIN( kb, nb ) );
         PB_Cplasca2( TYPE, UPLO, CONJUG, kb, kb, ALPHA, Aptr, k, k, Ad0 );
         Akp  = PB_Cnumroc( ktmp, 0, Aimb1, Amb, myrow, Arow, nprow );
         Akq  = PB_Cnumroc( k,    0, Ainb1, Anb, mycol, Acol, npcol );
         Anq0 = PB_Cnumroc( kb,   k, Ainb1, Anb, mycol, Acol, npcol );
         if( ( Amp0 = Amp - Akp ) > 0 )
            scal( C2F_CHAR( ALL ), &Amp0, &Anq0, &izero, ALPHA, Mptr( Aptr,
                  Akp, Akq, Ald, size ), &Ald );
      }
   }
   else if( Mupcase( UPLO[0] ) == CUPPER )
   {
/*
*  Upper triangle of sub( A ): proceed by block of columns. For each block of
*  columns, operate on the trailing rows and then the logical diagonal block
*  of that block of columns. When M < N, the last columns of sub( A ) are
*  handled together.
*/
      for( k = 0; k < mn; k += nb )
      {
         kb   = mn - k; kb = MIN( kb, nb );
         Akp  = PB_Cnumroc( k,  0, Aimb1, Amb, myrow, Arow, nprow );
         Akq  = PB_Cnumroc( k,  0, Ainb1, Anb, mycol, Acol, npcol );
         Anq0 = PB_Cnumroc( kb, k, Ainb1, Anb, mycol, Acol, npcol );
         if( Akp > 0 )
            scal( C2F_CHAR( ALL ), &Akp, &Anq0, &izero, ALPHA, Mptr( Aptr,
                  0, Akq, Ald, size ), &Ald );
         PB_Cplasca2( TYPE, UPLO, CONJUG, kb, kb, ALPHA, Aptr, k, k, Ad0 );
      }
      if( ( Anq -= ( Akq += Anq0 ) ) > 0 )
         scal( C2F_CHAR( ALL ), &Amp, &Anq, &izero, ALPHA, Mptr( Aptr, 0,
               Akq, Ald, size ), &Ald );
   }
   else
   {
/*
*  All of sub( A ): proceed by block of columns. For each block of columns,
*  operate on the trailing rows, then the logical diagonal block, and finally
*  the remaining rows of that block of columns. When M < N, the last columns
*  of sub( A ) are handled together.
*/
      for( k = 0; k < mn; k += nb )
      {
         kb   = mn - k; kb = MIN( kb, nb );
         Akp  = PB_Cnumroc( k,  0, Aimb1, Amb, myrow, Arow, nprow );
         Akq  = PB_Cnumroc( k,  0, Ainb1, Anb, mycol, Acol, npcol );
         Anq0 = PB_Cnumroc( kb, k, Ainb1, Anb, mycol, Acol, npcol );
         if( Akp > 0 )
            scal( C2F_CHAR( ALL ), &Akp, &Anq0, &izero, ALPHA, Mptr( Aptr,
                  0, Akq, Ald, size ), &Ald );
         PB_Cplasca2( TYPE, UPLO, NOCONJG, kb, kb, ALPHA, Aptr, k, k, Ad0 );
         Akp = PB_Cnumroc( k+kb, 0, Aimb1, Amb, myrow, Arow, nprow );
         if( ( Amp0 = Amp - Akp ) > 0 )
            scal( C2F_CHAR( ALL ), &Amp0, &Anq0, &izero, ALPHA, Mptr( Aptr,
                  Akp, Akq, Ald, size ), &Ald );
      }
      if( ( Anq -= ( Akq += Anq0 ) ) > 0 )
         scal( C2F_CHAR( ALL ), &Amp, &Anq, &izero, ALPHA, Mptr( Aptr, 0,
               Akq, Ald, size ), &Ald );
   }
/*
*  End of PB_Cplascal
*/
}