File: psblas1tst.f

package info (click to toggle)
scalapack 1.8.0-12
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 32,712 kB
  • ctags: 29,423
  • sloc: fortran: 288,069; ansic: 64,035; makefile: 1,966
file content (3388 lines) | stat: -rw-r--r-- 124,466 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
      PROGRAM PSBLA1TST
*
*  -- PBLAS testing driver (version 2.0) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     April 1, 1998
*
*  Purpose
*  =======
*
*  PSBLA1TST is the main testing program for the PBLAS Level 1 routines.
*
*  The program must be driven by a short data file.  An  annotated exam-
*  ple of a data file can be obtained by deleting the first 3 characters
*  from the following 44 lines:
*  'Level 1 PBLAS, Testing input file'
*  'Intel iPSC/860 hypercube, gamma model.'
*  'PSBLAS1TST.SUMM'            output file name (if any)
*  6       device out
*  F       logical flag, T to stop on failures
*  F       logical flag, T to test error exits
*  0       verbosity, 0 for pass/fail, 1-3 for matrix dump on errors
*  10      the leading dimension gap
*  1       number of process grids (ordered pairs of P & Q)
*  2 2 1 4 2 3 8        values of P
*  2 2 4 1 3 2 1        values of Q
*  1.0E0                value of ALPHA
*  2                    number of tests problems
*  3  4                 values of N
*  6 10                 values of M_X
*  6 10                 values of N_X
*  2  5                 values of IMB_X
*  2  5                 values of INB_X
*  2  5                 values of MB_X
*  2  5                 values of NB_X
*  0  1                 values of RSRC_X
*  0  0                 values of CSRC_X
*  1  1                 values of IX
*  1  1                 values of JX
*  1  1                 values of INCX
*  6 10                 values of M_Y
*  6 10                 values of N_Y
*  2  5                 values of IMB_Y
*  2  5                 values of INB_Y
*  2  5                 values of MB_Y
*  2  5                 values of NB_Y
*  0  1                 values of RSRC_Y
*  0  0                 values of CSRC_Y
*  1  1                 values of IY
*  1  1                 values of JY
*  6  1                 values of INCY
*  PSSWAP  T            put F for no test in the same column
*  PSSCAL  T            put F for no test in the same column
*  PSCOPY  T            put F for no test in the same column
*  PSAXPY  T            put F for no test in the same column
*  PSDOT   T            put F for no test in the same column
*  PSNRM2  T            put F for no test in the same column
*  PSASUM  T            put F for no test in the same column
*  PSAMAX  T            put F for no test in the same column
*
*  Internal Parameters
*  ===================
*
*  TOTMEM  INTEGER
*          TOTMEM  is  a machine-specific parameter indicating the maxi-
*          mum  amount  of  available  memory per  process in bytes. The
*          user  should  customize TOTMEM to his  platform.  Remember to
*          leave  room  in  memory  for the  operating system, the BLACS
*          buffer, etc.  For  example,  on  a system with 8 MB of memory
*          per process (e.g., one processor  on an Intel iPSC/860),  the
*          parameters we use are TOTMEM=6200000  (leaving 1.8 MB for OS,
*          code, BLACS buffer, etc).  However,  for PVM,  we usually set
*          TOTMEM = 2000000.  Some experimenting  with the maximum value
*          of TOTMEM may be required. By default, TOTMEM is 2000000.
*
*  REALSZ  INTEGER
*          REALSZ  indicates  the  length in bytes on the given platform
*          for  a  single  precision  real. By default, REALSZ is set to
*          four.
*
*  MEM     REAL array
*          MEM is an array of dimension TOTMEM / REALSZ.
*          All arrays used by SCALAPACK routines are allocated from this
*          array MEM and referenced by pointers. The  integer  IPA,  for
*          example, is a pointer to the starting element of MEM for  the
*          matrix A.
*
*  -- Written on April 1, 1998 by
*     Antoine Petitet, University  of  Tennessee, Knoxville 37996, USA.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            MAXTESTS, MAXGRIDS, GAPMUL, REALSZ, TOTMEM,
     $                   MEMSIZ, NSUBS
      REAL               PADVAL, ZERO
      PARAMETER          ( MAXTESTS = 20, MAXGRIDS = 20, GAPMUL = 10,
     $                   REALSZ = 4, TOTMEM = 2000000,
     $                   MEMSIZ = TOTMEM / REALSZ, ZERO = 0.0E+0,
     $                   PADVAL = -9923.0E+0, NSUBS = 8 )
      INTEGER            BLOCK_CYCLIC_2D_INB, CSRC_, CTXT_, DLEN_,
     $                   DTYPE_, IMB_, INB_, LLD_, MB_, M_, NB_, N_,
     $                   RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D_INB = 2, DLEN_ = 11,
     $                   DTYPE_ = 1, CTXT_ = 2, M_ = 3, N_ = 4,
     $                   IMB_ = 5, INB_ = 6, MB_ = 7, NB_ = 8,
     $                   RSRC_ = 9, CSRC_ = 10, LLD_ = 11 )
*     ..
*     .. Local Scalars ..
      LOGICAL            ERRFLG, SOF, TEE
      INTEGER            CSRCX, CSRCY, I, IAM, ICTXT, IGAP, IMBX, IMBY,
     $                   IMIDX, IMIDY, INBX, INBY, INCX, INCY, IPMATX,
     $                   IPMATY, IPOSTX, IPOSTY, IPREX, IPREY, IPW, IPX,
     $                   IPY, IVERB, IX, IXSEED, IY, IYSEED, J, JX, JY,
     $                   K, LDX, LDY, MBX, MBY, MEMREQD, MPX, MPY, MX,
     $                   MY, MYCOL, MYROW, N, NBX, NBY, NGRIDS, NOUT,
     $                   NPCOL, NPROCS, NPROW, NQX, NQY, NTESTS, NX, NY,
     $                   PISCLR, RSRCX, RSRCY, TSKIP, TSTCNT
      REAL               ALPHA, PSCLR, PUSCLR
*     ..
*     .. Local Arrays ..
      CHARACTER*80       OUTFILE
      LOGICAL            LTEST( NSUBS ), YCHECK( NSUBS )
      INTEGER            CSCXVAL( MAXTESTS ), CSCYVAL( MAXTESTS ),
     $                   DESCX( DLEN_ ), DESCXR( DLEN_ ),
     $                   DESCY( DLEN_ ), DESCYR( DLEN_ ), IERR( 4 ),
     $                   IMBXVAL( MAXTESTS ), IMBYVAL( MAXTESTS ),
     $                   INBXVAL( MAXTESTS ), INBYVAL( MAXTESTS ),
     $                   INCXVAL( MAXTESTS ), INCYVAL( MAXTESTS ),
     $                   IXVAL( MAXTESTS ), IYVAL( MAXTESTS ),
     $                   JXVAL( MAXTESTS ), JYVAL( MAXTESTS ),
     $                   KFAIL( NSUBS ), KPASS( NSUBS ), KSKIP( NSUBS ),
     $                   KTESTS( NSUBS ), MBXVAL( MAXTESTS ),
     $                   MBYVAL( MAXTESTS ), MXVAL( MAXTESTS ),
     $                   MYVAL( MAXTESTS ), NBXVAL( MAXTESTS ),
     $                   NBYVAL( MAXTESTS ), NVAL( MAXTESTS ),
     $                   NXVAL( MAXTESTS ), NYVAL( MAXTESTS ),
     $                   PVAL( MAXTESTS ), QVAL( MAXTESTS ),
     $                   RSCXVAL( MAXTESTS ), RSCYVAL( MAXTESTS )
      REAL               MEM( MEMSIZ )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_EXIT, BLACS_GET, BLACS_GRIDEXIT,
     $                   BLACS_GRIDINFO, BLACS_GRIDINIT, BLACS_PINFO,
     $                   IGSUM2D, PB_DESCSET2, PB_PSLAPRNT, PB_SCHEKPAD,
     $                   PB_SFILLPAD, PSAMAX, PSASUM, PSAXPY,
     $                   PSBLA1TSTINFO, PSBLAS1TSTCHK, PSBLAS1TSTCHKE,
     $                   PSCHKARG1, PSCHKVOUT, PSCOPY, PSDOT, PSLAGEN,
     $                   PSMPRNT, PSNRM2, PSSCAL, PSSWAP, PSVPRNT,
     $                   PVDESCCHK, PVDIMCHK
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MOD
*     ..
*     .. Common Blocks ..
      CHARACTER*7        SNAMES( NSUBS )
      LOGICAL            ABRTFLG
      INTEGER            INFO, NBLOG
      COMMON             /SNAMEC/SNAMES
      COMMON             /INFOC/INFO, NBLOG
      COMMON             /PBERRORC/NOUT, ABRTFLG
*     ..
*     .. Data Statements ..
      DATA               SNAMES/'PSSWAP ', 'PSSCAL ', 'PSCOPY ',
     $                   'PSAXPY ', 'PSDOT  ', 'PSNRM2 ',
     $                   'PSASUM ', 'PSAMAX '/
      DATA               YCHECK/.TRUE., .FALSE., .TRUE., .TRUE., .TRUE.,
     $                   .FALSE., .FALSE., .FALSE./
*     ..
*     .. Executable Statements ..
*
*     Initialization
*
*     Set flag so that the PBLAS error handler will abort on errors.
*
      ABRTFLG = .FALSE.
*
*     So far no error, will become true as soon as one error is found.
*
      ERRFLG = .FALSE.
*
*     Test counters
*
      TSKIP  = 0
      TSTCNT = 0
*
*     Seeds for random matrix generations.
*
      IXSEED = 100
      IYSEED = 200
*
*     So far no tests have been performed.
*
      DO 10 I = 1, NSUBS
         KPASS( I )  = 0
         KSKIP( I )  = 0
         KFAIL( I )  = 0
         KTESTS( I ) = 0
   10 CONTINUE
*
*     Get starting information
*
      CALL BLACS_PINFO( IAM, NPROCS )
      CALL PSBLA1TSTINFO( OUTFILE, NOUT, NTESTS, NVAL, MXVAL, NXVAL,
     $                    IMBXVAL, MBXVAL, INBXVAL, NBXVAL, RSCXVAL,
     $                    CSCXVAL, IXVAL, JXVAL, INCXVAL, MYVAL,
     $                    NYVAL, IMBYVAL, MBYVAL, INBYVAL, NBYVAL,
     $                    RSCYVAL, CSCYVAL, IYVAL, JYVAL, INCYVAL,
     $                    MAXTESTS, NGRIDS, PVAL, MAXGRIDS, QVAL,
     $                    MAXGRIDS, LTEST, SOF, TEE, IAM, IGAP, IVERB,
     $                    NPROCS, ALPHA, MEM )
*
      IF( IAM.EQ.0 ) THEN
         WRITE( NOUT, FMT = 9979 )
         WRITE( NOUT, FMT = * )
      END IF
*
*     If TEE is set then Test Error Exits of routines.
*
      IF( TEE )
     $   CALL PSBLAS1TSTCHKE( LTEST, NOUT, NPROCS )
*
*     Loop over different process grids
*
      DO 60 I = 1, NGRIDS
*
         NPROW = PVAL( I )
         NPCOL = QVAL( I )
*
*        Make sure grid information is correct
*
         IERR( 1 ) = 0
         IF( NPROW.LT.1 ) THEN
            IF( IAM.EQ.0 )
     $         WRITE( NOUT, FMT = 9999 ) 'GRID SIZE', 'NPROW', NPROW
            IERR( 1 ) = 1
         ELSE IF( NPCOL.LT.1 ) THEN
            IF( IAM.EQ.0 )
     $         WRITE( NOUT, FMT = 9999 ) 'GRID SIZE', 'NPCOL', NPCOL
            IERR( 1 ) = 1
         ELSE IF( NPROW*NPCOL.GT.NPROCS ) THEN
            IF( IAM.EQ.0 )
     $         WRITE( NOUT, FMT = 9998 ) NPROW*NPCOL, NPROCS
            IERR( 1 ) = 1
         END IF
*
         IF( IERR( 1 ).GT.0 ) THEN
            IF( IAM.EQ.0 )
     $         WRITE( NOUT, FMT = 9997 ) 'GRID'
            TSKIP = TSKIP + 1
            GO TO 60
         END IF
*
*        Define process grid
*
         CALL BLACS_GET( -1, 0, ICTXT )
         CALL BLACS_GRIDINIT( ICTXT, 'Row-major', NPROW, NPCOL )
         CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
*        Go to bottom of process grid loop if this case doesn't use my
*        process
*
         IF( MYROW.GE.NPROW .OR. MYCOL.GE.NPCOL )
     $      GO TO 60
*
*        Loop over number of tests
*
         DO 50 J = 1, NTESTS
*
*           Get the test parameters
*
            N     = NVAL( J )
            MX    = MXVAL( J )
            NX    = NXVAL( J )
            IMBX  = IMBXVAL( J )
            MBX   = MBXVAL( J )
            INBX  = INBXVAL( J )
            NBX   = NBXVAL( J )
            RSRCX = RSCXVAL( J )
            CSRCX = CSCXVAL( J )
            IX    = IXVAL( J )
            JX    = JXVAL( J )
            INCX  = INCXVAL( J )
            MY    = MYVAL( J )
            NY    = NYVAL( J )
            IMBY  = IMBYVAL( J )
            MBY   = MBYVAL( J )
            INBY  = INBYVAL( J )
            NBY   = NBYVAL( J )
            RSRCY = RSCYVAL( J )
            CSRCY = CSCYVAL( J )
            IY    = IYVAL( J )
            JY    = JYVAL( J )
            INCY  = INCYVAL( J )
*
            IF( IAM.EQ.0 ) THEN
               TSTCNT = TSTCNT + 1
               WRITE( NOUT, FMT = * )
               WRITE( NOUT, FMT = 9996 ) TSTCNT, NPROW, NPCOL
               WRITE( NOUT, FMT = * )
*
               WRITE( NOUT, FMT = 9995 )
               WRITE( NOUT, FMT = 9994 )
               WRITE( NOUT, FMT = 9995 )
               WRITE( NOUT, FMT = 9993 ) N, IX, JX, MX, NX, IMBX, INBX,
     $                                   MBX, NBX, RSRCX, CSRCX, INCX
*
               WRITE( NOUT, FMT = 9995 )
               WRITE( NOUT, FMT = 9992 )
               WRITE( NOUT, FMT = 9995 )
               WRITE( NOUT, FMT = 9993 ) N, IY, JY, MY, NY, IMBY, INBY,
     $                                   MBY, NBY, RSRCY, CSRCY, INCY
               WRITE( NOUT, FMT = 9995 )
            END IF
*
*           Check the validity of the input and initialize DESC_
*
            CALL PVDESCCHK( ICTXT, NOUT, 'X', DESCX,
     $                      BLOCK_CYCLIC_2D_INB, MX, NX, IMBX, INBX,
     $                      MBX, NBX, RSRCX, CSRCX, INCX, MPX, NQX,
     $                      IPREX, IMIDX, IPOSTX, IGAP, GAPMUL,
     $                      IERR( 1 ) )
            CALL PVDESCCHK( ICTXT, NOUT, 'Y', DESCY,
     $                      BLOCK_CYCLIC_2D_INB, MY, NY, IMBY, INBY,
     $                      MBY, NBY, RSRCY, CSRCY, INCY, MPY, NQY,
     $                      IPREY, IMIDY, IPOSTY, IGAP, GAPMUL,
     $                      IERR( 2 ) )
*
            IF( IERR( 1 ).GT.0 .OR. IERR( 2 ).GT.0 ) THEN
               TSKIP = TSKIP + 1
               GO TO 40
            END IF
*
            LDX = MAX( 1, MX )
            LDY = MAX( 1, MY )
*
*           Assign pointers into MEM for matrices corresponding to
*           vectors X and Y. Ex: IPX starts at position MEM( IPREX+1 ).
*
            IPX    = IPREX + 1
            IPY    = IPX + DESCX( LLD_ ) * NQX + IPOSTX + IPREY
            IPMATX = IPY + DESCY( LLD_ ) * NQY + IPOSTY
            IPMATY = IPMATX + MX * NX
            IPW    = IPMATY + MY * NY
*
*           Check if sufficient memory.
*           Requirement = mem for local part of parallel matrices +
*                         mem for whole matrices for comp. check +
*                         mem for recving comp. check error vals.
*
            MEMREQD = IPW - 1 +
     $                MAX( MAX( IMBX, MBX ), MAX( IMBY, MBY ) )
            IERR( 1 ) = 0
            IF( MEMREQD.GT.MEMSIZ ) THEN
               IF( IAM.EQ.0 )
     $            WRITE( NOUT, FMT = 9990 ) MEMREQD*REALSZ
               IERR( 1 ) = 1
            END IF
*
*           Check all processes for an error
*
            CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1, IERR, 1, -1, 0 )
*
            IF( IERR( 1 ).GT.0 ) THEN
               IF( IAM.EQ.0 )
     $            WRITE( NOUT, FMT = 9991 )
               TSKIP = TSKIP + 1
               GO TO 40
            END IF
*
*           Loop over all PBLAS 1 routines
*
            DO 30 K = 1, NSUBS
*
*              Continue only if this sub has to be tested.
*
               IF( .NOT.LTEST( K ) )
     $            GO TO 30
*
               IF( IAM.EQ.0 ) THEN
                  WRITE( NOUT, FMT = * )
                  WRITE( NOUT, FMT = 9989 ) SNAMES( K )
               END IF
*
*              Check the validity of the operand sizes
*
               CALL PVDIMCHK( ICTXT, NOUT, N, 'X', IX, JX, DESCX, INCX,
     $                        IERR( 1 ) )
               CALL PVDIMCHK( ICTXT, NOUT, N, 'Y', IY, JY, DESCY, INCY,
     $                        IERR( 2 ) )
*
               IF( IERR( 1 ).NE.0 .OR. IERR( 2 ).NE.0 ) THEN
                  KSKIP( K ) = KSKIP( K ) + 1
                  GO TO 30
               END IF
*
*              Generate distributed matrices X and Y
*
               CALL PSLAGEN( .FALSE., 'None', 'No diag', 0, MX, NX, 1,
     $                       1, DESCX, IXSEED, MEM( IPX ),
     $                       DESCX( LLD_ ) )
               IF( YCHECK( K ) )
     $            CALL PSLAGEN( .FALSE., 'None', 'No diag', 0, MY, NY,
     $                          1, 1, DESCY, IYSEED, MEM( IPY ),
     $                          DESCY( LLD_ ) )
*
*              Generate entire matrices on each process.
*
               CALL PB_DESCSET2( DESCXR, MX, NX, IMBX, INBX, MBX, NBX,
     $                           -1, -1, ICTXT, MAX( 1, MX ) )
               CALL PSLAGEN( .FALSE., 'None', 'No diag', 0, MX, NX, 1,
     $                       1, DESCXR, IXSEED, MEM( IPMATX ),
     $                       DESCXR( LLD_ ) )
               IF( YCHECK( K ) ) THEN
                  CALL PB_DESCSET2( DESCYR, MY, NY, IMBY, INBY, MBY,
     $                              NBY, -1, -1, ICTXT, MAX( 1, MY ) )
                  CALL PSLAGEN( .FALSE., 'None', 'No diag', 0, MY, NY,
     $                          1, 1, DESCYR, IYSEED, MEM( IPMATY ),
     $                          DESCYR( LLD_ ) )
               END IF
*
*              Pad the guard zones of X, and Y
*
               CALL PB_SFILLPAD( ICTXT, MPX, NQX, MEM( IPX-IPREX ),
     $                           DESCX( LLD_ ), IPREX, IPOSTX, PADVAL )
*
               IF( YCHECK( K ) ) THEN
                  CALL PB_SFILLPAD( ICTXT, MPY, NQY, MEM( IPY-IPREY ),
     $                              DESCY( LLD_ ), IPREY, IPOSTY,
     $                              PADVAL )
               END IF
*
*              Initialize the check for INPUT only args.
*
               INFO = 0
               CALL PSCHKARG1( ICTXT, NOUT, SNAMES( K ), N, ALPHA, IX,
     $                         JX, DESCX, INCX, IY, JY, DESCY, INCY,
     $                         INFO )
*
               INFO = 0
               PSCLR  = ZERO
               PUSCLR = ZERO
               PISCLR = 0
*
*              Print initial parallel data if IVERB >= 2.
*
               IF( IVERB.EQ.2 ) THEN
                  IF( INCX.EQ.DESCX( M_ ) ) THEN
                     CALL PB_PSLAPRNT( 1, N, MEM( IPX ), IX, JX, DESCX,
     $                                 0, 0, 'PARALLEL_INITIAL_X', NOUT,
     $                                 MEM( IPW ) )
                  ELSE
                     CALL PB_PSLAPRNT( N, 1, MEM( IPX ), IX, JX, DESCX,
     $                                 0, 0, 'PARALLEL_INITIAL_X', NOUT,
     $                                 MEM( IPW ) )
                  END IF
                  IF( YCHECK( K ) ) THEN
                     IF( INCY.EQ.DESCY( M_ ) ) THEN
                        CALL PB_PSLAPRNT( 1, N, MEM( IPY ), IY, JY,
     $                                    DESCY, 0, 0,
     $                                    'PARALLEL_INITIAL_Y', NOUT,
     $                                    MEM( IPW ) )
                     ELSE
                        CALL PB_PSLAPRNT( N, 1, MEM( IPY ), IY, JY,
     $                                    DESCY, 0, 0,
     $                                    'PARALLEL_INITIAL_Y', NOUT,
     $                                    MEM( IPW ) )
                     END IF
                  END IF
               ELSE IF( IVERB.GE.3 ) THEN
                  CALL PB_PSLAPRNT( MX, NX, MEM( IPX ), 1, 1, DESCX, 0,
     $                              0, 'PARALLEL_INITIAL_X', NOUT,
     $                              MEM( IPW ) )
                  IF( YCHECK( K ) )
     $               CALL PB_PSLAPRNT( MY, NY, MEM( IPY ), 1, 1, DESCY,
     $                                 0, 0, 'PARALLEL_INITIAL_Y', NOUT,
     $                                 MEM( IPW ) )
               END IF
*
*              Call the PBLAS routine
*
               IF( K.EQ.1 ) THEN
*
*                 Test PSSWAP
*
                  CALL PSSWAP( N, MEM( IPX ), IX, JX, DESCX, INCX,
     $                         MEM( IPY ), IY, JY, DESCY, INCY )
*
               ELSE IF( K.EQ.2 ) THEN
*
*                 Test PSSCAL
*
                  PSCLR = ALPHA
                  CALL PSSCAL( N, ALPHA, MEM( IPX ), IX, JX, DESCX,
     $                         INCX )
*
               ELSE IF( K.EQ.3 ) THEN
*
*                 Test PSCOPY
*
                  CALL PSCOPY( N, MEM( IPX ), IX, JX, DESCX, INCX,
     $                         MEM( IPY ), IY, JY, DESCY, INCY )
*
               ELSE IF( K.EQ.4 ) THEN
*
*                 Test PSAXPY
*
                  PSCLR = ALPHA
                  CALL PSAXPY( N, ALPHA, MEM( IPX ), IX, JX, DESCX,
     $                         INCX, MEM( IPY ), IY, JY, DESCY, INCY )
*
               ELSE IF( K.EQ.5 ) THEN
*
*                 Test PSDOT
*
                  CALL PSDOT( N, PSCLR, MEM( IPX ), IX, JX, DESCX, INCX,
     $                        MEM( IPY ), IY, JY, DESCY, INCY )
*
               ELSE IF( K.EQ.6 ) THEN
*
*                 Test PSNRM2
*
                  CALL PSNRM2( N, PUSCLR, MEM( IPX ), IX, JX, DESCX,
     $                         INCX )
*
               ELSE IF( K.EQ.7 ) THEN
*
*                 Test PSASUM
*
                  CALL PSASUM( N, PUSCLR, MEM( IPX ), IX, JX, DESCX,
     $                         INCX )
*
               ELSE IF( K.EQ.8 ) THEN
*
                  CALL PSAMAX( N, PSCLR, PISCLR, MEM( IPX ), IX, JX,
     $                         DESCX, INCX )
*
               END IF
*
*              Check if the operation has been performed.
*
               IF( INFO.NE.0 ) THEN
                  KSKIP( K ) = KSKIP( K ) + 1
                  IF( IAM.EQ.0 )
     $               WRITE( NOUT, FMT = 9978 ) INFO
                  GO TO 30
               END IF
*
*              Check the computations
*
               CALL PSBLAS1TSTCHK( ICTXT, NOUT, K, N, PSCLR, PUSCLR,
     $                             PISCLR, MEM( IPMATX ), MEM( IPX ),
     $                             IX, JX, DESCX, INCX, MEM( IPMATY ),
     $                             MEM( IPY ), IY, JY, DESCY, INCY,
     $                             INFO )
               IF( MOD( INFO, 2 ).EQ.1 ) THEN
                  IERR( 1 ) = 1
               ELSE IF( MOD( INFO / 2, 2 ).EQ.1 ) THEN
                  IERR( 2 ) = 1
               ELSE IF( INFO.NE.0 ) THEN
                  IERR( 1 ) = 1
                  IERR( 2 ) = 1
               END IF
*
*              Check padding
*
               CALL PB_SCHEKPAD( ICTXT, SNAMES( K ), MPX, NQX,
     $                           MEM( IPX-IPREX ), DESCX( LLD_ ),
     $                           IPREX, IPOSTX, PADVAL )
               IF( YCHECK( K ) ) THEN
                  CALL PB_SCHEKPAD( ICTXT, SNAMES( K ), MPY, NQY,
     $                              MEM( IPY-IPREY ), DESCY( LLD_ ),
     $                              IPREY, IPOSTY, PADVAL )
               END IF
*
*              Check input-only scalar arguments
*
               INFO = 1
               CALL PSCHKARG1( ICTXT, NOUT, SNAMES( K ), N, ALPHA, IX,
     $                         JX, DESCX, INCX, IY, JY, DESCY, INCY,
     $                         INFO )
*
*              Check input-only array arguments
*
               CALL PSCHKVOUT( N, MEM( IPMATX ), MEM( IPX ), IX, JX,
     $                         DESCX, INCX, IERR( 3 ) )
*
               IF( IERR( 3 ).NE.0 ) THEN
                  IF( IAM.EQ.0 )
     $               WRITE( NOUT, FMT = 9986 ) 'PARALLEL_X', SNAMES( K )
               END IF
*
               IF( YCHECK( K ) ) THEN
                  CALL PSCHKVOUT( N, MEM( IPMATY ), MEM( IPY ), IY, JY,
     $                            DESCY, INCY, IERR( 4 ) )
                  IF( IERR( 4 ).NE.0 ) THEN
                     IF( IAM.EQ.0 )
     $                  WRITE( NOUT, FMT = 9986 ) 'PARALLEL_Y',
     $                                       SNAMES( K )
                  END IF
               END IF
*
*              Only node 0 prints computational test result
*
               IF( INFO.NE.0 .OR. IERR( 1 ).NE.0 .OR.
     $             IERR( 2 ).NE.0 .OR. IERR( 3 ).NE.0 .OR.
     $             IERR( 4 ).NE. 0 ) THEN
                  IF( IAM.EQ.0 )
     $               WRITE( NOUT, FMT = 9988 ) SNAMES( K )
                  KFAIL( K ) = KFAIL( K ) + 1
                  ERRFLG = .TRUE.
               ELSE
                  IF( IAM.EQ.0 )
     $               WRITE( NOUT, FMT = 9987 ) SNAMES( K )
                  KPASS( K ) = KPASS( K ) + 1
               END IF
*
*              Dump matrix if IVERB >= 1 and error.
*
               IF( IVERB.GE.1 .AND. ERRFLG ) THEN
                  IF( IERR( 3 ).NE.0 .OR. IVERB.GE.3 ) THEN
                     CALL PSMPRNT( ICTXT, NOUT, MX, NX, MEM( IPMATX ),
     $                             LDX, 0, 0, 'SERIAL_X' )
                     CALL PB_PSLAPRNT( MX, NX, MEM( IPX ), 1, 1, DESCX,
     $                                 0, 0, 'PARALLEL_X', NOUT,
     $                                 MEM( IPMATX ) )
                  ELSE IF( IERR( 1 ).NE.0 ) THEN
                     IF( N.GT.0 )
     $                  CALL PSVPRNT( ICTXT, NOUT, N,
     $                                MEM( IPMATX+IX-1+(JX-1)*LDX ),
     $                                INCX, 0, 0, 'SERIAL_X' )
                     IF( INCX.EQ.DESCX( M_ ) ) THEN
                        CALL PB_PSLAPRNT( 1, N, MEM( IPX ), IX, JX,
     $                                    DESCX, 0, 0, 'PARALLEL_X',
     $                                    NOUT, MEM( IPMATX ) )
                     ELSE
                        CALL PB_PSLAPRNT( N, 1, MEM( IPX ), IX, JX,
     $                                    DESCX, 0, 0, 'PARALLEL_X',
     $                                    NOUT, MEM( IPMATX ) )
                     END IF
                  END IF
                  IF( YCHECK( K ) ) THEN
                     IF( IERR( 4 ).NE.0 .OR. IVERB.GE.3 ) THEN
                        CALL PSMPRNT( ICTXT, NOUT, MY, NY,
     $                                MEM( IPMATY ), LDY, 0, 0,
     $                                'SERIAL_Y' )
                        CALL PB_PSLAPRNT( MY, NY, MEM( IPY ), 1, 1,
     $                                    DESCY, 0, 0, 'PARALLEL_Y',
     $                                    NOUT, MEM( IPMATX ) )
                     ELSE IF( IERR( 2 ).NE.0 ) THEN
                        IF( N.GT.0 )
     $                     CALL PSVPRNT( ICTXT, NOUT, N,
     $                                   MEM( IPMATY+IY-1+(JY-1)*LDY ),
     $                                   INCY, 0, 0, 'SERIAL_Y' )
                        IF( INCY.EQ.DESCY( M_ ) ) THEN
                           CALL PB_PSLAPRNT( 1, N, MEM( IPY ), IY, JY,
     $                                       DESCY, 0, 0, 'PARALLEL_Y',
     $                                       NOUT, MEM( IPMATX ) )
                        ELSE
                           CALL PB_PSLAPRNT( N, 1, MEM( IPY ), IY, JY,
     $                                       DESCY, 0, 0, 'PARALLEL_Y',
     $                                       NOUT, MEM( IPMATX ) )
                        END IF
                     END IF
                  END IF
               END IF
*
*              Leave if error and "Stop On Failure"
*
               IF( SOF.AND.ERRFLG )
     $            GO TO 70
*
   30       CONTINUE
*
   40       IF( IAM.EQ.0 ) THEN
               WRITE( NOUT, FMT = * )
               WRITE( NOUT, FMT = 9985 ) J
            END IF
*
   50   CONTINUE
*
        CALL BLACS_GRIDEXIT( ICTXT )
*
   60 CONTINUE
*
*     Come here, if error and "Stop On Failure"
*
   70 CONTINUE
*
*     Before printing out final stats, add TSKIP to all skips
*
      DO 80 I = 1, NSUBS
         IF( LTEST( I ) ) THEN
            KSKIP( I ) = KSKIP( I ) + TSKIP
            KTESTS( I ) = KSKIP( I ) + KFAIL( I ) + KPASS( I )
         END IF
   80 CONTINUE
*
*     Print results
*
      IF( IAM.EQ.0 ) THEN
         WRITE( NOUT, FMT = * )
         WRITE( NOUT, FMT = 9981 )
         WRITE( NOUT, FMT = * )
         WRITE( NOUT, FMT = 9983 )
         WRITE( NOUT, FMT = 9982 )
*
         DO 90 I = 1, NSUBS
            WRITE( NOUT, FMT = 9984 ) '|', SNAMES( I ), KTESTS( I ),
     $                                KPASS( I ), KFAIL( I ), KSKIP( I )
   90    CONTINUE
         WRITE( NOUT, FMT = * )
         WRITE( NOUT, FMT = 9980 )
         WRITE( NOUT, FMT = * )
*
      END IF
*
      CALL BLACS_EXIT( 0 )
*
 9999 FORMAT( 'ILLEGAL ', A, ': ', A, ' = ', I10,
     $        ' should be at least 1' )
 9998 FORMAT( 'ILLEGAL GRID: NPROW*NPCOL = ', I4,
     $        '. It can be at most', I4 )
 9997 FORMAT( 'Bad ', A, ' parameters: going on to next test case.' )
 9996 FORMAT( 2X, 'Test number ', I4 , ' started on a ', I6, ' x ',
     $        I6, ' process grid.' )
 9995 FORMAT( 2X, '---------------------------------------------------',
     $        '--------------------------' )
 9994 FORMAT( 2X, '     N     IX     JX     MX     NX  IMBX  INBX',
     $        '   MBX   NBX RSRCX CSRCX   INCX' )
 9993 FORMAT( 2X,I6,1X,I6,1X,I6,1X,I6,1X,I6,1X,I5,1X,I5,1X,I5,1X,I5,1X,
     $        I5,1X,I5,1X,I6 )
 9992 FORMAT( 2X, '     N     IY     JY     MY     NY  IMBY  INBY',
     $        '   MBY   NBY RSRCY CSRCY   INCY' )
 9991 FORMAT( 'Not enough memory for this test: going on to',
     $        ' next test case.' )
 9990 FORMAT( 'Not enough memory. Need: ', I12 )
 9989 FORMAT( 2X, '   Tested Subroutine: ', A )
 9988 FORMAT( 2X, '   ***** Computational check: ', A, '       ',
     $        ' FAILED ',' *****' )
 9987 FORMAT( 2X, '   ***** Computational check: ', A, '       ',
     $        ' PASSED ',' *****' )
 9986 FORMAT( 2X, '   ***** ERROR ***** Matrix operand ', A,
     $        ' modified by ', A, ' *****' )
 9985 FORMAT( 2X, 'Test number ', I4, ' completed.' )
 9984 FORMAT( 2X,A1,2X,A7,8X,I4,6X,I4,5X,I4,4X,I4 )
 9983 FORMAT( 2X, '   SUBROUTINE  TOTAL TESTS  PASSED   FAILED  ',
     $        'SKIPPED' )
 9982 FORMAT( 2X, '   ----------  -----------  ------   ------  ',
     $        '-------' )
 9981 FORMAT( 2X, 'Testing Summary')
 9980 FORMAT( 2X, 'End of Tests.' )
 9979 FORMAT( 2X, 'Tests started.' )
 9978 FORMAT( 2X, '   ***** Operation not supported, error code: ',
     $        I5, ' *****' )
*
      STOP
*
*     End of PSBLA1TST
*
      END
      SUBROUTINE PSBLA1TSTINFO( SUMMRY, NOUT, NMAT, NVAL, MXVAL,
     $                          NXVAL, IMBXVAL, MBXVAL, INBXVAL,
     $                          NBXVAL, RSCXVAL, CSCXVAL, IXVAL,
     $                          JXVAL, INCXVAL, MYVAL, NYVAL, IMBYVAL,
     $                          MBYVAL, INBYVAL, NBYVAL, RSCYVAL,
     $                          CSCYVAL, IYVAL, JYVAL, INCYVAL,
     $                          LDVAL, NGRIDS, PVAL, LDPVAL, QVAL,
     $                          LDQVAL, LTEST, SOF, TEE, IAM, IGAP,
     $                          IVERB, NPROCS, ALPHA, WORK )
*
*  -- PBLAS test routine (version 2.0) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     April 1, 1998
*
*     .. Scalar Arguments ..
      LOGICAL            SOF, TEE
      INTEGER            IAM, IGAP, IVERB, LDPVAL, LDQVAL, LDVAL,
     $                   NGRIDS, NMAT, NOUT, NPROCS
      REAL               ALPHA
*     ..
*     .. Array Arguments ..
      CHARACTER*( * )    SUMMRY
      LOGICAL            LTEST( * )
      INTEGER            CSCXVAL( LDVAL ), CSCYVAL( LDVAL ),
     $                   IMBXVAL( LDVAL ), IMBYVAL( LDVAL ),
     $                   INBXVAL( LDVAL ), INBYVAL( LDVAL ),
     $                   INCXVAL( LDVAL ), INCYVAL( LDVAL ),
     $                   IXVAL( LDVAL ), IYVAL( LDVAL ), JXVAL( LDVAL ),
     $                   JYVAL( LDVAL ), MBXVAL( LDVAL ),
     $                   MBYVAL( LDVAL ), MXVAL( LDVAL ),
     $                   MYVAL( LDVAL ), NBXVAL( LDVAL ),
     $                   NBYVAL( LDVAL ), NVAL( LDVAL ), NXVAL( LDVAL ),
     $                   NYVAL( LDVAL ), PVAL( LDPVAL ), QVAL( LDQVAL ),
     $                   RSCXVAL( LDVAL ), RSCYVAL( LDVAL ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  PSBLA1TSTINFO  get the needed startup information for testing various
*  Level 1 PBLAS routines, and transmits it to all processes.
*
*  Notes
*  =====
*
*  For packing the information we assumed that the length in bytes of an
*  integer is equal to the length in bytes of a real single precision.
*
*  Arguments
*  =========
*
*  SUMMRY  (global output) CHARACTER*(*)
*          On  exit,  SUMMRY  is  the  name of output (summary) file (if
*          any). SUMMRY is only defined for process 0.
*
*  NOUT    (global output) INTEGER
*          On exit, NOUT  specifies the unit number for the output file.
*          When NOUT is 6, output to screen,  when  NOUT is 0, output to
*          stderr. NOUT is only defined for process 0.
*
*  NMAT    (global output) INTEGER
*          On exit,  NMAT  specifies the number of different test cases.
*
*  NVAL    (global output) INTEGER array
*          On entry, NVAL is an array of dimension LDVAL.  On exit, this
*          array contains the values of N to run the code with.
*
*  MXVAL   (global output) INTEGER array
*          On entry, MXVAL is an array of dimension LDVAL. On exit, this
*          array  contains  the values  of  DESCX( M_ )  to run the code
*          with.
*
*  NXVAL   (global output) INTEGER array
*          On entry, NXVAL is an array of dimension LDVAL. On exit, this
*          array  contains  the values  of  DESCX( N_ )  to run the code
*          with.
*
*  IMBXVAL (global output) INTEGER array
*          On entry,  IMBXVAL  is an array of  dimension LDVAL. On exit,
*          this  array  contains  the values of DESCX( IMB_ ) to run the
*          code with.
*
*  MBXVAL  (global output) INTEGER array
*          On entry,  MBXVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains  the values of DESCX( MB_ ) to  run the
*          code with.
*
*  INBXVAL (global output) INTEGER array
*          On entry,  INBXVAL  is an array of  dimension LDVAL. On exit,
*          this  array  contains  the values of DESCX( INB_ ) to run the
*          code with.
*
*  NBXVAL  (global output) INTEGER array
*          On entry,  NBXVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains  the values of DESCX( NB_ ) to  run the
*          code with.
*
*  RSCXVAL (global output) INTEGER array
*          On entry, RSCXVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains the values of DESCX( RSRC_ ) to run the
*          code with.
*
*  CSCXVAL (global output) INTEGER array
*          On entry, CSCXVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains the values of DESCX( CSRC_ ) to run the
*          code with.
*
*  IXVAL   (global output) INTEGER array
*          On entry, IXVAL is an array of dimension LDVAL. On exit, this
*          array  contains the values of IX to run the code with.
*
*  JXVAL   (global output) INTEGER array
*          On entry, JXVAL is an array of dimension LDVAL. On exit, this
*          array  contains the values of JX to run the code with.
*
*  INCXVAL (global output) INTEGER array
*          On entry,  INCXVAL  is  an array of dimension LDVAL. On exit,
*          this array  contains the values of INCX to run the code with.
*
*  MYVAL   (global output) INTEGER array
*          On entry, MYVAL is an array of dimension LDVAL. On exit, this
*          array  contains  the values  of  DESCY( M_ )  to run the code
*          with.
*
*  NYVAL   (global output) INTEGER array
*          On entry, NYVAL is an array of dimension LDVAL. On exit, this
*          array  contains  the values  of  DESCY( N_ )  to run the code
*          with.
*
*  IMBYVAL (global output) INTEGER array
*          On entry,  IMBYVAL  is an array of  dimension LDVAL. On exit,
*          this  array  contains  the values of DESCY( IMB_ ) to run the
*          code with.
*
*  MBYVAL  (global output) INTEGER array
*          On entry,  MBYVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains  the values of DESCY( MB_ ) to  run the
*          code with.
*
*  INBYVAL (global output) INTEGER array
*          On entry,  INBYVAL  is an array of  dimension LDVAL. On exit,
*          this  array  contains  the values of DESCY( INB_ ) to run the
*          code with.
*
*  NBYVAL  (global output) INTEGER array
*          On entry,  NBYVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains  the values of DESCY( NB_ ) to  run the
*          code with.
*
*  RSCYVAL (global output) INTEGER array
*          On entry, RSCYVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains the values of DESCY( RSRC_ ) to run the
*          code with.
*
*  CSCYVAL (global output) INTEGER array
*          On entry, CSCYVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains the values of DESCY( CSRC_ ) to run the
*          code with.
*
*  IYVAL   (global output) INTEGER array
*          On entry, IYVAL is an array of dimension LDVAL. On exit, this
*          array  contains the values of IY to run the code with.
*
*  JYVAL   (global output) INTEGER array
*          On entry, JYVAL is an array of dimension LDVAL. On exit, this
*          array  contains the values of JY to run the code with.
*
*  INCYVAL (global output) INTEGER array
*          On entry,  INCYVAL  is  an array of dimension LDVAL. On exit,
*          this array  contains the values of INCY to run the code with.
*
*  LDVAL   (global input) INTEGER
*          On entry, LDVAL specifies the maximum number of different va-
*          lues that can be used for  DESCX(:),  IX, JX, INCX, DESCY(:),
*          IY,  JY  and  INCY.  This  is also the maximum number of test
*          cases.
*
*  NGRIDS  (global output) INTEGER
*          On exit, NGRIDS specifies the number of different values that
*          can be used for P and Q.
*
*  PVAL    (global output) INTEGER array
*          On entry, PVAL is an array of dimension LDPVAL. On exit, this
*          array contains the values of P to run the code with.
*
*  LDPVAL  (global input) INTEGER
*          On entry,  LDPVAL  specifies  the maximum number of different
*          values that can be used for P.
*
*  QVAL    (global output) INTEGER array
*          On entry, QVAL is an array of dimension LDQVAL. On exit, this
*          array contains the values of Q to run the code with.
*
*  LDQVAL  (global input) INTEGER
*          On entry,  LDQVAL  specifies  the maximum number of different
*          values that can be used for Q.
*
*  LTEST   (global output) LOGICAL array
*          On entry,  LTEST  is an array of dimension at least eight. On
*          exit, if LTEST( i ) is .TRUE., the i-th Level 1 PBLAS routine
*          will be tested.  See  the  input file for the ordering of the
*          routines.
*
*  SOF     (global output) LOGICAL
*          On exit, if SOF is .TRUE., the tester will  stop on the first
*          detected failure. Otherwise, it won't.
*
*  TEE     (global output) LOGICAL
*          On exit, if TEE is .TRUE., the tester will  perform the error
*          exit tests. These tests won't be performed otherwise.
*
*  IAM     (local input) INTEGER
*          On entry,  IAM  specifies the number of the process executing
*          this routine.
*
*  IGAP    (global output) INTEGER
*          On exit, IGAP  specifies the user-specified gap used for pad-
*          ding. IGAP must be at least zero.
*
*  IVERB   (global output) INTEGER
*          On exit,  IVERB  specifies  the output verbosity level: 0 for
*          pass/fail, 1, 2 or 3 for matrix dump on errors.
*
*  NPROCS  (global input) INTEGER
*          On entry, NPROCS specifies the total number of processes.
*
*  ALPHA   (global output) REAL
*          On exit, ALPHA specifies the value of alpha to be used in all
*          the test cases.
*
*  WORK    (local workspace) INTEGER array
*          On   entry,   WORK   is   an  array  of  dimension  at  least
*          MAX( 2, 2*NGRIDS+23*NMAT+NSUBS+4 )  with  NSUBS  equal  to 8.
*          This array is used to pack all output arrays in order to send
*          the information in one message.
*
*  -- Written on April 1, 1998 by
*     Antoine Petitet, University  of  Tennessee, Knoxville 37996, USA.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            NIN, NSUBS
      PARAMETER          ( NIN = 11, NSUBS = 8 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LTESTT
      INTEGER            I, ICTXT, J
      REAL               EPS
*     ..
*     .. Local Arrays ..
      CHARACTER*7        SNAMET
      CHARACTER*79       USRINFO
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_ABORT, BLACS_GET, BLACS_GRIDEXIT,
     $                   BLACS_GRIDINIT, BLACS_SETUP, ICOPY, IGEBR2D,
     $                   IGEBS2D, SGEBR2D, SGEBS2D
*     ..
*     .. External Functions ..
      REAL               PSLAMCH
      EXTERNAL           PSLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Common Blocks ..
      CHARACTER*7        SNAMES( NSUBS )
      COMMON             /SNAMEC/SNAMES
*     ..
*     .. Executable Statements ..
*
*     Process 0 reads the input data, broadcasts to other processes and
*     writes needed information to NOUT
*
      IF( IAM.EQ.0 ) THEN
*
*        Open file and skip data file header
*
         OPEN( NIN, FILE='PSBLAS1TST.dat', STATUS='OLD' )
         READ( NIN, FMT = * ) SUMMRY
         SUMMRY = ' '
*
*        Read in user-supplied info about machine type, compiler, etc.
*
         READ( NIN, FMT = 9999 ) USRINFO
*
*        Read name and unit number for summary output file
*
         READ( NIN, FMT = * ) SUMMRY
         READ( NIN, FMT = * ) NOUT
         IF( NOUT.NE.0 .AND. NOUT.NE.6 )
     $      OPEN( NOUT, FILE = SUMMRY, STATUS = 'UNKNOWN' )
*
*        Read and check the parameter values for the tests.
*
*        Read the flag that indicates if Stop on Failure
*
         READ( NIN, FMT = * ) SOF
*
*        Read the flag that indicates if Test Error Exits
*
         READ( NIN, FMT = * ) TEE
*
*        Read the verbosity level
*
         READ( NIN, FMT = * ) IVERB
         IF( IVERB.LT.0 .OR. IVERB.GT.3 )
     $      IVERB = 0
*
*        Read the leading dimension gap
*
         READ( NIN, FMT = * ) IGAP
         IF( IGAP.LT.0 )
     $      IGAP = 0
*
*        Get number of grids
*
         READ( NIN, FMT = * ) NGRIDS
         IF( NGRIDS.LT.1 .OR. NGRIDS.GT.LDPVAL ) THEN
            WRITE( NOUT, FMT = 9998 ) 'Grids', LDPVAL
            GO TO 100
         ELSE IF( NGRIDS.GT.LDQVAL ) THEN
            WRITE( NOUT, FMT = 9998 ) 'Grids', LDQVAL
            GO TO 100
         END IF
*
*        Get values of P and Q
*
         READ( NIN, FMT = * ) ( PVAL( I ), I = 1, NGRIDS )
         READ( NIN, FMT = * ) ( QVAL( I ), I = 1, NGRIDS )
*
*        Read ALPHA
*
         READ( NIN, FMT = * ) ALPHA
*
*        Read number of tests.
*
         READ( NIN, FMT = * ) NMAT
         IF( NMAT.LT.1 .OR. NMAT.GT.LDVAL ) THEN
            WRITE( NOUT, FMT = 9998 ) 'Tests', LDVAL
            GO TO 100
         END IF
*
*        Read in input data into arrays.
*
         READ( NIN, FMT = * ) ( NVAL( I ),     I = 1, NMAT )
         READ( NIN, FMT = * ) ( MXVAL( I ),    I = 1, NMAT )
         READ( NIN, FMT = * ) ( NXVAL( I ),    I = 1, NMAT )
         READ( NIN, FMT = * ) ( IMBXVAL( I ),  I = 1, NMAT )
         READ( NIN, FMT = * ) ( INBXVAL( I ),  I = 1, NMAT )
         READ( NIN, FMT = * ) ( MBXVAL( I ),   I = 1, NMAT )
         READ( NIN, FMT = * ) ( NBXVAL( I ),   I = 1, NMAT )
         READ( NIN, FMT = * ) ( RSCXVAL( I ),  I = 1, NMAT )
         READ( NIN, FMT = * ) ( CSCXVAL( I ),  I = 1, NMAT )
         READ( NIN, FMT = * ) ( IXVAL( I ),    I = 1, NMAT )
         READ( NIN, FMT = * ) ( JXVAL( I ),    I = 1, NMAT )
         READ( NIN, FMT = * ) ( INCXVAL( I ),  I = 1, NMAT )
         READ( NIN, FMT = * ) ( MYVAL( I ),    I = 1, NMAT )
         READ( NIN, FMT = * ) ( NYVAL( I ),    I = 1, NMAT )
         READ( NIN, FMT = * ) ( IMBYVAL( I ),  I = 1, NMAT )
         READ( NIN, FMT = * ) ( INBYVAL( I ),  I = 1, NMAT )
         READ( NIN, FMT = * ) ( MBYVAL( I ),   I = 1, NMAT )
         READ( NIN, FMT = * ) ( NBYVAL( I ),   I = 1, NMAT )
         READ( NIN, FMT = * ) ( RSCYVAL( I ),  I = 1, NMAT )
         READ( NIN, FMT = * ) ( CSCYVAL( I ),  I = 1, NMAT )
         READ( NIN, FMT = * ) ( IYVAL( I ),    I = 1, NMAT )
         READ( NIN, FMT = * ) ( JYVAL( I ),    I = 1, NMAT )
         READ( NIN, FMT = * ) ( INCYVAL( I ),  I = 1, NMAT )
*
*        Read names of subroutines and flags which indicate
*        whether they are to be tested.
*
         DO 10 I = 1, NSUBS
            LTEST( I ) = .FALSE.
   10    CONTINUE
   20    CONTINUE
         READ( NIN, FMT = 9996, END = 50 ) SNAMET, LTESTT
         DO 30 I = 1, NSUBS
            IF( SNAMET.EQ.SNAMES( I ) )
     $         GO TO 40
   30    CONTINUE
*
         WRITE( NOUT, FMT = 9995 )SNAMET
         GO TO 100
*
   40    CONTINUE
         LTEST( I ) = LTESTT
         GO TO 20
*
   50    CONTINUE
*
*        Close input file
*
         CLOSE ( NIN )
*
*        For pvm only: if virtual machine not set up, allocate it and
*        spawn the correct number of processes.
*
         IF( NPROCS.LT.1 ) THEN
            NPROCS = 0
            DO 60 I = 1, NGRIDS
               NPROCS = MAX( NPROCS, PVAL( I )*QVAL( I ) )
   60       CONTINUE
            CALL BLACS_SETUP( IAM, NPROCS )
         END IF
*
*        Temporarily define blacs grid to include all processes so
*        information can be broadcast to all processes
*
         CALL BLACS_GET( -1, 0, ICTXT )
         CALL BLACS_GRIDINIT( ICTXT, 'Row-major', 1, NPROCS )
*
*        Compute machine epsilon
*
         EPS = PSLAMCH( ICTXT, 'eps' )
*
*        Pack information arrays and broadcast
*
         CALL SGEBS2D( ICTXT, 'All', ' ', 1, 1, ALPHA, 1 )
*
         WORK( 1 ) = NGRIDS
         WORK( 2 ) = NMAT
         CALL IGEBS2D( ICTXT, 'All', ' ', 2, 1, WORK, 2 )
*
         I = 1
         IF( SOF ) THEN
            WORK( I ) = 1
         ELSE
            WORK( I ) = 0
         END IF
         I = I + 1
         IF( TEE ) THEN
            WORK( I ) = 1
         ELSE
            WORK( I ) = 0
         END IF
         I = I + 1
         WORK( I ) = IVERB
         I = I + 1
         WORK( I ) = IGAP
         I = I + 1
         CALL ICOPY( NGRIDS, PVAL,     1, WORK( I ), 1 )
         I = I + NGRIDS
         CALL ICOPY( NGRIDS, QVAL,     1, WORK( I ), 1 )
         I = I + NGRIDS
         CALL ICOPY( NMAT,   NVAL,     1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   MXVAL,    1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   NXVAL,    1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   IMBXVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   INBXVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   MBXVAL,   1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   NBXVAL,   1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   RSCXVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   CSCXVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   IXVAL,    1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   JXVAL,    1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   INCXVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   MYVAL,    1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   NYVAL,    1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   IMBYVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   INBYVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   MBYVAL,   1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   NBYVAL,   1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   RSCYVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   CSCYVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   IYVAL,    1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   JYVAL,    1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   INCYVAL,  1, WORK( I ), 1 )
         I = I + NMAT
*
         DO 70 J = 1, NSUBS
            IF( LTEST( J ) ) THEN
               WORK( I ) = 1
            ELSE
               WORK( I ) = 0
            END IF
            I = I + 1
   70    CONTINUE
         I = I - 1
         CALL IGEBS2D( ICTXT, 'All', ' ', I, 1, WORK, I )
*
*        regurgitate input
*
         WRITE( NOUT, FMT = 9999 ) 'Level 1 PBLAS testing program.'
         WRITE( NOUT, FMT = 9999 ) USRINFO
         WRITE( NOUT, FMT = * )
         WRITE( NOUT, FMT = 9999 )
     $               'Tests of the real single precision '//
     $               'Level 1 PBLAS'
         WRITE( NOUT, FMT = * )
         WRITE( NOUT, FMT = 9999 )
     $               'The following parameter values will be used:'
         WRITE( NOUT, FMT = * )
         WRITE( NOUT, FMT = 9993 ) NMAT
         WRITE( NOUT, FMT = 9992 ) NGRIDS
         WRITE( NOUT, FMT = 9990 )
     $               'P', ( PVAL(I), I = 1, MIN(NGRIDS, 5) )
         IF( NGRIDS.GT.5 )
     $      WRITE( NOUT, FMT = 9991 ) ( PVAL(I), I = 6,
     $                                  MIN( 10, NGRIDS ) )
         IF( NGRIDS.GT.10 )
     $      WRITE( NOUT, FMT = 9991 ) ( PVAL(I), I = 11,
     $                                  MIN( 15, NGRIDS ) )
         IF( NGRIDS.GT.15 )
     $      WRITE( NOUT, FMT = 9991 ) ( PVAL(I), I = 16, NGRIDS )
         WRITE( NOUT, FMT = 9990 )
     $               'Q', ( QVAL(I), I = 1, MIN(NGRIDS, 5) )
         IF( NGRIDS.GT.5 )
     $      WRITE( NOUT, FMT = 9991 ) ( QVAL(I), I = 6,
     $                                  MIN( 10, NGRIDS ) )
         IF( NGRIDS.GT.10 )
     $      WRITE( NOUT, FMT = 9991 ) ( QVAL(I), I = 11,
     $                                  MIN( 15, NGRIDS ) )
         IF( NGRIDS.GT.15 )
     $      WRITE( NOUT, FMT = 9991 ) ( QVAL(I), I = 16, NGRIDS )
         WRITE( NOUT, FMT = 9988 ) SOF
         WRITE( NOUT, FMT = 9987 ) TEE
         WRITE( NOUT, FMT = 9983 ) IGAP
         WRITE( NOUT, FMT = 9986 ) IVERB
         WRITE( NOUT, FMT = 9982 ) ALPHA
         IF( LTEST( 1 ) ) THEN
            WRITE( NOUT, FMT = 9985 ) SNAMES( 1 ), ' ... Yes'
         ELSE
            WRITE( NOUT, FMT = 9985 ) SNAMES( 1 ), ' ... No '
         END IF
         DO 80 I = 2, NSUBS
            IF( LTEST( I ) ) THEN
               WRITE( NOUT, FMT = 9984 ) SNAMES( I ), ' ... Yes'
            ELSE
               WRITE( NOUT, FMT = 9984 ) SNAMES( I ), ' ... No '
            END IF
   80    CONTINUE
         WRITE( NOUT, FMT = 9994 ) EPS
         WRITE( NOUT, FMT = * )
*
      ELSE
*
*        If in pvm, must participate setting up virtual machine
*
         IF( NPROCS.LT.1 )
     $      CALL BLACS_SETUP( IAM, NPROCS )
*
*        Temporarily define blacs grid to include all processes so
*        information can be broadcast to all processes
*
         CALL BLACS_GET( -1, 0, ICTXT )
         CALL BLACS_GRIDINIT( ICTXT, 'Row-major', 1, NPROCS )
*
*        Compute machine epsilon
*
         EPS = PSLAMCH( ICTXT, 'eps' )
*
         CALL SGEBR2D( ICTXT, 'All', ' ', 1, 1, ALPHA, 1, 0, 0 )
*
         CALL IGEBR2D( ICTXT, 'All', ' ', 2, 1, WORK, 2, 0, 0 )
         NGRIDS = WORK( 1 )
         NMAT   = WORK( 2 )
*
         I = 2*NGRIDS + 23*NMAT + NSUBS + 4
         CALL IGEBR2D( ICTXT, 'All', ' ', I, 1, WORK, I, 0, 0 )
*
         I = 1
         IF( WORK( I ).EQ.1 ) THEN
            SOF = .TRUE.
         ELSE
            SOF = .FALSE.
         END IF
         I = I + 1
         IF( WORK( I ).EQ.1 ) THEN
            TEE = .TRUE.
         ELSE
            TEE = .FALSE.
         END IF
         I = I + 1
         IVERB = WORK( I )
         I = I + 1
         IGAP = WORK( I )
         I = I + 1
         CALL ICOPY( NGRIDS, WORK( I ), 1, PVAL,     1 )
         I = I + NGRIDS
         CALL ICOPY( NGRIDS, WORK( I ), 1, QVAL,     1 )
         I = I + NGRIDS
         CALL ICOPY( NMAT,   WORK( I ), 1, NVAL,     1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, MXVAL,    1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, NXVAL,    1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, IMBXVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, INBXVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, MBXVAL,   1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, NBXVAL,   1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, RSCXVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, CSCXVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, IXVAL,    1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, JXVAL,    1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, INCXVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, MYVAL,    1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, NYVAL,    1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, IMBYVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, INBYVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, MBYVAL,   1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, NBYVAL,   1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, RSCYVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, CSCYVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, IYVAL,    1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, JYVAL,    1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, INCYVAL,  1 )
         I = I + NMAT
*
         DO 90 J = 1, NSUBS
            IF( WORK( I ).EQ.1 ) THEN
               LTEST( J ) = .TRUE.
            ELSE
               LTEST( J ) = .FALSE.
            END IF
            I = I + 1
   90    CONTINUE
*
      END IF
*
      CALL BLACS_GRIDEXIT( ICTXT )
*
      RETURN
*
  100 WRITE( NOUT, FMT = 9997 )
      CLOSE( NIN )
      IF( NOUT.NE.6 .AND. NOUT.NE.0 )
     $   CLOSE( NOUT )
      CALL BLACS_ABORT( ICTXT, 1 )
*
      STOP
*
 9999 FORMAT( A )
 9998 FORMAT( ' Number of values of ',5A, ' is less than 1 or greater ',
     $        'than ', I2 )
 9997 FORMAT( ' Illegal input in file ',40A,'.  Aborting run.' )
 9996 FORMAT( A7, L2 )
 9995 FORMAT( '  Subprogram name ', A7, ' not recognized',
     $        /' ******* TESTS ABANDONED *******' )
 9994 FORMAT( 2X, 'Relative machine precision (eps) is taken to be ',
     $        E18.6 )
 9993 FORMAT( 2X, 'Number of Tests           : ', I6 )
 9992 FORMAT( 2X, 'Number of process grids   : ', I6 )
 9991 FORMAT( 2X, '                          : ', 5I6 )
 9990 FORMAT( 2X, A1, '                         : ', 5I6 )
 9988 FORMAT( 2X, 'Stop on failure flag      : ', L6 )
 9987 FORMAT( 2X, 'Test for error exits flag : ', L6 )
 9986 FORMAT( 2X, 'Verbosity level           : ', I6 )
 9985 FORMAT( 2X, 'Routines to be tested     :      ', A, A8 )
 9984 FORMAT( 2X, '                                 ', A, A8 )
 9983 FORMAT( 2X, 'Leading dimension gap     : ', I6 )
 9982 FORMAT( 2X, 'Alpha                     : ', G16.6 )
*
*     End of PSBLA1TSTINFO
*
      END
      SUBROUTINE PSBLAS1TSTCHKE( LTEST, INOUT, NPROCS )
*
*  -- PBLAS test routine (version 2.0) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     April 1, 1998
*
*     .. Scalar Arguments ..
      INTEGER            INOUT, NPROCS
*     ..
*     .. Array Arguments ..
      LOGICAL            LTEST( * )
*     ..
*
*  Purpose
*  =======
*
*  PSBLAS1TSTCHKE tests the error exits of the Level 1 PBLAS.
*
*  Notes
*  =====
*
*  A description  vector  is associated with each 2D block-cyclicly dis-
*  tributed matrix.  This  vector  stores  the  information  required to
*  establish the  mapping  between a  matrix entry and its corresponding
*  process and memory location.
*
*  In  the  following  comments,   the character _  should  be  read  as
*  "of  the  distributed  matrix".  Let  A  be a generic term for any 2D
*  block cyclicly distributed matrix.  Its description vector is DESCA:
*
*  NOTATION         STORED IN       EXPLANATION
*  ---------------- --------------- ------------------------------------
*  DTYPE_A (global) DESCA( DTYPE_ ) The descriptor type.
*  CTXT_A  (global) DESCA( CTXT_  ) The BLACS context handle, indicating
*                                   the NPROW x NPCOL BLACS process grid
*                                   A  is distributed over.  The context
*                                   itself  is  global,  but  the handle
*                                   (the integer value) may vary.
*  M_A     (global) DESCA( M_     ) The  number of rows in the distribu-
*                                   ted matrix A, M_A >= 0.
*  N_A     (global) DESCA( N_     ) The number of columns in the distri-
*                                   buted matrix A, N_A >= 0.
*  IMB_A   (global) DESCA( IMB_   ) The number of rows of the upper left
*                                   block of the matrix A, IMB_A > 0.
*  INB_A   (global) DESCA( INB_   ) The  number  of columns of the upper
*                                   left   block   of   the   matrix  A,
*                                   INB_A > 0.
*  MB_A    (global) DESCA( MB_    ) The blocking factor used to  distri-
*                                   bute the last  M_A-IMB_A rows of  A,
*                                   MB_A > 0.
*  NB_A    (global) DESCA( NB_    ) The blocking factor used to  distri-
*                                   bute the last  N_A-INB_A  columns of
*                                   A, NB_A > 0.
*  RSRC_A  (global) DESCA( RSRC_  ) The process row over which the first
*                                   row of the matrix  A is distributed,
*                                   NPROW > RSRC_A >= 0.
*  CSRC_A  (global) DESCA( CSRC_  ) The  process  column  over which the
*                                   first  column of  A  is distributed.
*                                   NPCOL > CSRC_A >= 0.
*  LLD_A   (local)  DESCA( LLD_   ) The  leading  dimension of the local
*                                   array  storing  the  local blocks of
*                                   the distributed matrix A,
*                                   IF( Lc( 1, N_A ) > 0 )
*                                      LLD_A >= MAX( 1, Lr( 1, M_A ) )
*                                   ELSE
*                                      LLD_A >= 1.
*
*  Let K be the number of  rows of a matrix A starting at the global in-
*  dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
*  that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
*  receive if these K rows were distributed over NPROW processes.  If  K
*  is the number of columns of a matrix  A  starting at the global index
*  JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number  of co-
*  lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would  receive if
*  these K columns were distributed over NPCOL processes.
*
*  The values of Lr() and Lc() may be determined via a call to the func-
*  tion PB_NUMROC:
*  Lr( IA, K ) = PB_NUMROC( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
*  Lc( JA, K ) = PB_NUMROC( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
*
*  Arguments
*  =========
*
*  LTEST   (global input) LOGICAL array
*          On entry, LTEST is an array of dimension at least 8 (NSUBS).
*             If LTEST( 1 ) is .TRUE., PSSWAP will be tested;
*             If LTEST( 2 ) is .TRUE., PSSCAL will be tested;
*             If LTEST( 3 ) is .TRUE., PSCOPY will be tested;
*             If LTEST( 4 ) is .TRUE., PSAXPY will be tested;
*             If LTEST( 5 ) is .TRUE., PSDOT  will be tested;
*             If LTEST( 6 ) is .TRUE., PSNRM2 will be tested;
*             If LTEST( 7 ) is .TRUE., PSASUM will be tested;
*             If LTEST( 8 ) is .TRUE., PSAMAX will be tested.
*
*  INOUT   (global input) INTEGER
*          On entry,  INOUT  specifies  the unit number for output file.
*          When INOUT is 6, output to screen,  when INOUT = 0, output to
*          stderr. INOUT is only defined in process 0.
*
*  NPROCS  (global input) INTEGER
*          On entry, NPROCS specifies the total number of processes cal-
*          ling this routine.
*
*  Calling sequence encodings
*  ==========================
*
*  code Formal argument list                                Examples
*
*  11   (n,      v1,v2)                                     _SWAP, _COPY
*  12   (n,s1,   v1   )                                     _SCAL, _SCAL
*  13   (n,s1,   v1,v2)                                     _AXPY, _DOT_
*  14   (n,s1,i1,v1   )                                     _AMAX
*  15   (n,u1,   v1   )                                     _ASUM, _NRM2
*
*  21   (     trans,     m,n,s1,m1,v1,s2,v2)                _GEMV
*  22   (uplo,             n,s1,m1,v1,s2,v2)                _SYMV, _HEMV
*  23   (uplo,trans,diag,  n,   m1,v1      )                _TRMV, _TRSV
*  24   (                m,n,s1,v1,v2,m1)                   _GER_
*  25   (uplo,             n,s1,v1,   m1)                   _SYR
*  26   (uplo,             n,u1,v1,   m1)                   _HER
*  27   (uplo,             n,s1,v1,v2,m1)                   _SYR2, _HER2
*
*  31   (          transa,transb,     m,n,k,s1,m1,m2,s2,m3) _GEMM
*  32   (side,uplo,                   m,n,  s1,m1,m2,s2,m3) _SYMM, _HEMM
*  33   (     uplo,trans,               n,k,s1,m1,   s2,m3) _SYRK
*  34   (     uplo,trans,               n,k,u1,m1,   u2,m3) _HERK
*  35   (     uplo,trans,               n,k,s1,m1,m2,s2,m3) _SYR2K
*  36   (     uplo,trans,               n,k,s1,m1,m2,u2,m3) _HER2K
*  37   (                             m,n,  s1,m1,   s2,m3) _TRAN_
*  38   (side,uplo,transa,       diag,m,n,  s1,m1,m2      ) _TRMM, _TRSM
*  39   (          trans,             m,n,  s1,m1,   s2,m3) _GEADD
*  40   (     uplo,trans,             m,n,  s1,m1,   s2,m3) _TRADD
*
*  -- Written on April 1, 1998 by
*     Antoine Petitet, University  of  Tennessee, Knoxville 37996, USA.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            NSUBS
      PARAMETER          ( NSUBS = 8 )
*     ..
*     .. Local Scalars ..
      LOGICAL            ABRTSAV
      INTEGER            I, ICTXT, MYCOL, MYROW, NPCOL, NPROW
*     ..
*     .. Local Arrays ..
      INTEGER            SCODE( NSUBS )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GET, BLACS_GRIDEXIT, BLACS_GRIDINFO,
     $                   BLACS_GRIDINIT, PSAMAX, PSASUM, PSAXPY, PSCOPY,
     $                   PSDIMEE, PSDOT, PSNRM2, PSSCAL, PSSWAP,
     $                   PSVECEE
*     ..
*     .. Common Blocks ..
      LOGICAL            ABRTFLG
      INTEGER            NOUT
      CHARACTER*7        SNAMES( NSUBS )
      COMMON             /SNAMEC/SNAMES
      COMMON             /PBERRORC/NOUT, ABRTFLG
*     ..
*     .. Data Statements ..
      DATA               SCODE/11, 12, 11, 13, 13, 15, 15, 14/
*     ..
*     .. Executable Statements ..
*
*     Temporarily define blacs grid to include all processes so
*     information can be broadcast to all processes.
*
      CALL BLACS_GET( -1, 0, ICTXT )
      CALL BLACS_GRIDINIT( ICTXT, 'Row-major', 1, NPROCS )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
*     Set ABRTFLG to FALSE so that the PBLAS error handler won't abort
*     on errors during these tests and set the output device unit for
*     it.
*
      ABRTSAV = ABRTFLG
      ABRTFLG = .FALSE.
      NOUT    = INOUT
*
*     Test PSSWAP
*
      I = 1
      IF( LTEST( I ) ) THEN
         CALL PSDIMEE( ICTXT, NOUT, PSSWAP, SCODE( I ), SNAMES( I ) )
         CALL PSVECEE( ICTXT, NOUT, PSSWAP, SCODE( I ), SNAMES( I ) )
      END IF
*
*     Test PSSCAL
*
      I = I + 1
      IF( LTEST( I ) ) THEN
         CALL PSDIMEE( ICTXT, NOUT, PSSCAL, SCODE( I ), SNAMES( I ) )
         CALL PSVECEE( ICTXT, NOUT, PSSCAL, SCODE( I ), SNAMES( I ) )
      END IF
*
*     Test PSCOPY
*
      I = I + 1
      IF( LTEST( I ) ) THEN
         CALL PSDIMEE( ICTXT, NOUT, PSCOPY, SCODE( I ), SNAMES( I ) )
         CALL PSVECEE( ICTXT, NOUT, PSCOPY, SCODE( I ), SNAMES( I ) )
      END IF
*
*     Test PSAXPY
*
      I = I + 1
      IF( LTEST( I ) ) THEN
         CALL PSDIMEE( ICTXT, NOUT, PSAXPY, SCODE( I ), SNAMES( I ) )
         CALL PSVECEE( ICTXT, NOUT, PSAXPY, SCODE( I ), SNAMES( I ) )
      END IF
*
*     Test PSDOT
*
      I = I + 1
      IF( LTEST( I ) ) THEN
         CALL PSDIMEE( ICTXT, NOUT, PSDOT, SCODE( I ), SNAMES( I ) )
         CALL PSVECEE( ICTXT, NOUT, PSDOT, SCODE( I ), SNAMES( I ) )
      END IF
*
*     Test PSNRM2
*
      I = I + 1
      IF( LTEST( I ) ) THEN
         CALL PSDIMEE( ICTXT, NOUT, PSNRM2, SCODE( I ), SNAMES( I ) )
         CALL PSVECEE( ICTXT, NOUT, PSNRM2, SCODE( I ), SNAMES( I ) )
      END IF
*
*     Test PSASUM
*
      I = I + 1
      IF( LTEST( I ) ) THEN
         CALL PSDIMEE( ICTXT, NOUT, PSASUM, SCODE( I ), SNAMES( I ) )
         CALL PSVECEE( ICTXT, NOUT, PSASUM, SCODE( I ), SNAMES( I ) )
      END IF
*
*     Test PSAMAX
*
      I = I + 1
      IF( LTEST( I ) ) THEN
         CALL PSDIMEE( ICTXT, NOUT, PSAMAX, SCODE( I ), SNAMES( I ) )
         CALL PSVECEE( ICTXT, NOUT, PSAMAX, SCODE( I ), SNAMES( I ) )
      END IF
*
      IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 )
     $   WRITE( NOUT, FMT = 9999 )
*
      CALL BLACS_GRIDEXIT( ICTXT )
*
*     Reset ABRTFLG to the value it had before calling this routine
*
      ABRTFLG = ABRTSAV
*
 9999 FORMAT( 2X, 'Error-exit tests completed.' )
*
      RETURN
*
*     End of PSBLAS1TSTCHKE
*
      END
      SUBROUTINE PSCHKARG1( ICTXT, NOUT, SNAME, N, ALPHA, IX, JX,
     $                      DESCX, INCX, IY, JY, DESCY, INCY, INFO )
*
*  -- PBLAS test routine (version 2.0) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     April 1, 1998
*
*     .. Scalar Arguments ..
      INTEGER            ICTXT, INCX, INCY, INFO, IX, IY, JX, JY, N,
     $                   NOUT
      REAL               ALPHA
*     ..
*     .. Array Arguments ..
      CHARACTER*(*)      SNAME
      INTEGER            DESCX( * ), DESCY( * )
*     ..
*
*  Purpose
*  =======
*
*  PSCHKARG1 checks the input-only arguments of the Level 1 PBLAS.  When
*  INFO = 0, this routine makes a copy of its arguments (which are INPUT
*  only arguments to PBLAS routines). Otherwise, it verifies the  values
*  of these arguments against the saved copies.
*
*  Notes
*  =====
*
*  A description  vector  is associated with each 2D block-cyclicly dis-
*  tributed matrix.  This  vector  stores  the  information  required to
*  establish the  mapping  between a  matrix entry and its corresponding
*  process and memory location.
*
*  In  the  following  comments,   the character _  should  be  read  as
*  "of  the  distributed  matrix".  Let  A  be a generic term for any 2D
*  block cyclicly distributed matrix.  Its description vector is DESCA:
*
*  NOTATION         STORED IN       EXPLANATION
*  ---------------- --------------- ------------------------------------
*  DTYPE_A (global) DESCA( DTYPE_ ) The descriptor type.
*  CTXT_A  (global) DESCA( CTXT_  ) The BLACS context handle, indicating
*                                   the NPROW x NPCOL BLACS process grid
*                                   A  is distributed over.  The context
*                                   itself  is  global,  but  the handle
*                                   (the integer value) may vary.
*  M_A     (global) DESCA( M_     ) The  number of rows in the distribu-
*                                   ted matrix A, M_A >= 0.
*  N_A     (global) DESCA( N_     ) The number of columns in the distri-
*                                   buted matrix A, N_A >= 0.
*  IMB_A   (global) DESCA( IMB_   ) The number of rows of the upper left
*                                   block of the matrix A, IMB_A > 0.
*  INB_A   (global) DESCA( INB_   ) The  number  of columns of the upper
*                                   left   block   of   the   matrix  A,
*                                   INB_A > 0.
*  MB_A    (global) DESCA( MB_    ) The blocking factor used to  distri-
*                                   bute the last  M_A-IMB_A rows of  A,
*                                   MB_A > 0.
*  NB_A    (global) DESCA( NB_    ) The blocking factor used to  distri-
*                                   bute the last  N_A-INB_A  columns of
*                                   A, NB_A > 0.
*  RSRC_A  (global) DESCA( RSRC_  ) The process row over which the first
*                                   row of the matrix  A is distributed,
*                                   NPROW > RSRC_A >= 0.
*  CSRC_A  (global) DESCA( CSRC_  ) The  process  column  over which the
*                                   first  column of  A  is distributed.
*                                   NPCOL > CSRC_A >= 0.
*  LLD_A   (local)  DESCA( LLD_   ) The  leading  dimension of the local
*                                   array  storing  the  local blocks of
*                                   the distributed matrix A,
*                                   IF( Lc( 1, N_A ) > 0 )
*                                      LLD_A >= MAX( 1, Lr( 1, M_A ) )
*                                   ELSE
*                                      LLD_A >= 1.
*
*  Let K be the number of  rows of a matrix A starting at the global in-
*  dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
*  that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
*  receive if these K rows were distributed over NPROW processes.  If  K
*  is the number of columns of a matrix  A  starting at the global index
*  JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number  of co-
*  lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would  receive if
*  these K columns were distributed over NPCOL processes.
*
*  The values of Lr() and Lc() may be determined via a call to the func-
*  tion PB_NUMROC:
*  Lr( IA, K ) = PB_NUMROC( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
*  Lc( JA, K ) = PB_NUMROC( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
*
*  Arguments
*  =========
*
*  ICTXT   (local input) INTEGER
*          On entry,  ICTXT  specifies the BLACS context handle, indica-
*          ting the global  context of the operation. The context itself
*          is global, but the value of ICTXT is local.
*
*  NOUT    (global input) INTEGER
*          On entry, NOUT specifies the unit number for the output file.
*          When NOUT is 6, output to screen,  when  NOUT is 0, output to
*          stderr. NOUT is only defined for process 0.
*
*  SNAME   (global input) CHARACTER*(*)
*          On entry, SNAME specifies the subroutine  name  calling  this
*          subprogram.
*
*  N       (global input) INTEGER
*          On entry, N specifies the length of the subvector operands.
*
*  ALPHA   (global input) REAL
*          On entry, ALPHA specifies the scalar alpha.
*
*  IX      (global input) INTEGER
*          On entry, IX  specifies X's global row index, which points to
*          the beginning of the submatrix sub( X ).
*
*  JX      (global input) INTEGER
*          On entry, JX  specifies X's global column index, which points
*          to the beginning of the submatrix sub( X ).
*
*  DESCX   (global and local input) INTEGER array
*          On entry, DESCX  is an integer array of dimension DLEN_. This
*          is the array descriptor for the matrix X.
*
*  INCX    (global input) INTEGER
*          On entry,  INCX   specifies  the  global  increment  for  the
*          elements of  X.  Only two values of  INCX   are  supported in
*          this version, namely 1 and M_X. INCX  must not be zero.
*
*  IY      (global input) INTEGER
*          On entry, IY  specifies Y's global row index, which points to
*          the beginning of the submatrix sub( Y ).
*
*  JY      (global input) INTEGER
*          On entry, JY  specifies Y's global column index, which points
*          to the beginning of the submatrix sub( Y ).
*
*  DESCY   (global and local input) INTEGER array
*          On entry, DESCY  is an integer array of dimension DLEN_. This
*          is the array descriptor for the matrix Y.
*
*  INCY    (global input) INTEGER
*          On entry,  INCY   specifies  the  global  increment  for  the
*          elements of  Y.  Only two values of  INCY   are  supported in
*          this version, namely 1 and M_Y. INCY  must not be zero.
*
*  INFO    (global input/global output) INTEGER
*          When INFO = 0 on entry, the values of the arguments which are
*          INPUT only arguments to a PBLAS routine are copied into  sta-
*          tic variables and INFO is unchanged on exit.  Otherwise,  the
*          values  of  the  arguments are compared against the saved co-
*          pies. In case no error has been found INFO is zero on return,
*          otherwise it is non zero.
*
*  -- Written on April 1, 1998 by
*     Antoine Petitet, University  of  Tennessee, Knoxville 37996, USA.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D_INB, CSRC_, CTXT_, DLEN_,
     $                   DTYPE_, IMB_, INB_, LLD_, MB_, M_, NB_, N_,
     $                   RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D_INB = 2, DLEN_ = 11,
     $                   DTYPE_ = 1, CTXT_ = 2, M_ = 3, N_ = 4,
     $                   IMB_ = 5, INB_ = 6, MB_ = 7, NB_ = 8,
     $                   RSRC_ = 9, CSRC_ = 10, LLD_ = 11 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, INCXREF, INCYREF, IXREF, IYREF, JXREF,
     $                   JYREF, MYCOL, MYROW, NPCOL, NPROW, NREF
      REAL               ALPHAREF
*     ..
*     .. Local Arrays ..
      CHARACTER*15       ARGNAME
      INTEGER            DESCXREF( DLEN_ ), DESCYREF( DLEN_ )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, IGSUM2D
*     ..
*     .. Save Statements ..
      SAVE
*     ..
*     .. Executable Statements ..
*
*     Get grid parameters
*
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
*     Check if first call. If yes, then save.
*
      IF( INFO.EQ.0 ) THEN
*
         NREF = N
         IXREF = IX
         JXREF = JX
         DO 10 I = 1, DLEN_
            DESCXREF( I ) = DESCX( I )
   10    CONTINUE
         INCXREF = INCX
         IYREF = IY
         JYREF = JY
         DO 20 I = 1, DLEN_
            DESCYREF( I ) = DESCY( I )
   20    CONTINUE
         INCYREF = INCY
         ALPHAREF = ALPHA
*
      ELSE
*
*        Test saved args. Return with first mismatch.
*
         ARGNAME = ' '
         IF( N.NE.NREF ) THEN
            WRITE( ARGNAME, FMT = '(A)' ) 'N'
         ELSE IF( IX.NE.IXREF ) THEN
            WRITE( ARGNAME, FMT = '(A)' ) 'IX'
         ELSE IF( JX.NE.JXREF ) THEN
            WRITE( ARGNAME, FMT = '(A)' ) 'JX'
         ELSE IF( DESCX( DTYPE_ ).NE.DESCXREF( DTYPE_ ) ) THEN
            WRITE( ARGNAME, FMT = '(A)' ) 'DESCX( DTYPE_ )'
         ELSE IF( DESCX( M_ ).NE.DESCXREF( M_ ) ) THEN
            WRITE( ARGNAME, FMT = '(A)' ) 'DESCX( M_ )'
         ELSE IF( DESCX( N_ ).NE.DESCXREF( N_ ) ) THEN
            WRITE( ARGNAME, FMT = '(A)' ) 'DESCX( N_ )'
         ELSE IF( DESCX( IMB_ ).NE.DESCXREF( IMB_ ) ) THEN
            WRITE( ARGNAME, FMT = '(A)' ) 'DESCX( IMB_ )'
         ELSE IF( DESCX( INB_ ).NE.DESCXREF( INB_ ) ) THEN
            WRITE( ARGNAME, FMT = '(A)' ) 'DESCX( INB_ )'
         ELSE IF( DESCX( MB_ ).NE.DESCXREF( MB_ ) ) THEN
            WRITE( ARGNAME, FMT = '(A)' ) 'DESCX( MB_ )'
         ELSE IF( DESCX( NB_ ).NE.DESCXREF( NB_ ) ) THEN
            WRITE( ARGNAME, FMT = '(A)' ) 'DESCX( NB_ )'
         ELSE IF( DESCX( RSRC_ ).NE.DESCXREF( RSRC_ ) ) THEN
            WRITE( ARGNAME, FMT = '(A)' ) 'DESCX( RSRC_ )'
         ELSE IF( DESCX( CSRC_ ).NE.DESCXREF( CSRC_ ) ) THEN
            WRITE( ARGNAME, FMT = '(A)' ) 'DESCX( CSRC_ )'
         ELSE IF( DESCX( CTXT_ ).NE.DESCXREF( CTXT_ ) ) THEN
            WRITE( ARGNAME, FMT = '(A)' ) 'DESCX( CTXT_ )'
         ELSE IF( DESCX( LLD_ ).NE.DESCXREF( LLD_ ) ) THEN
            WRITE( ARGNAME, FMT = '(A)' ) 'DESCX( LLD_ )'
         ELSE IF( INCX.NE.INCXREF ) THEN
            WRITE( ARGNAME, FMT = '(A)' ) 'INCX'
         ELSE IF( IY.NE.IYREF ) THEN
            WRITE( ARGNAME, FMT = '(A)' ) 'IY'
         ELSE IF( JY.NE.JYREF ) THEN
            WRITE( ARGNAME, FMT = '(A)' ) 'JY'
         ELSE IF( DESCY( DTYPE_ ).NE.DESCYREF( DTYPE_ ) ) THEN
            WRITE( ARGNAME, FMT = '(A)' ) 'DESCY( DTYPE_ )'
         ELSE IF( DESCY( M_ ).NE.DESCYREF( M_ ) ) THEN
            WRITE( ARGNAME, FMT = '(A)' ) 'DESCY( M_ )'
         ELSE IF( DESCY( N_ ).NE.DESCYREF( N_ ) ) THEN
            WRITE( ARGNAME, FMT = '(A)' ) 'DESCY( N_ )'
         ELSE IF( DESCY( IMB_ ).NE.DESCYREF( IMB_ ) ) THEN
            WRITE( ARGNAME, FMT = '(A)' ) 'DESCY( IMB_ )'
         ELSE IF( DESCY( INB_ ).NE.DESCYREF( INB_ ) ) THEN
            WRITE( ARGNAME, FMT = '(A)' ) 'DESCY( INB_ )'
         ELSE IF( DESCY( MB_ ).NE.DESCYREF( MB_ ) ) THEN
            WRITE( ARGNAME, FMT = '(A)' ) 'DESCY( MB_ )'
         ELSE IF( DESCY( NB_ ).NE.DESCYREF( NB_ ) ) THEN
            WRITE( ARGNAME, FMT = '(A)' ) 'DESCY( NB_ )'
         ELSE IF( DESCY( RSRC_ ).NE.DESCYREF( RSRC_ ) ) THEN
            WRITE( ARGNAME, FMT = '(A)' ) 'DESCY( RSRC_ )'
         ELSE IF( DESCY( CSRC_ ).NE.DESCYREF( CSRC_ ) ) THEN
            WRITE( ARGNAME, FMT = '(A)' ) 'DESCY( CSRC_ )'
         ELSE IF( DESCY( CTXT_ ).NE.DESCYREF( CTXT_ ) ) THEN
            WRITE( ARGNAME, FMT = '(A)' ) 'DESCY( CTXT_ )'
         ELSE IF( DESCY( LLD_ ).NE.DESCYREF( LLD_ ) ) THEN
            WRITE( ARGNAME, FMT = '(A)' ) 'DESCY( LLD_ )'
         ELSE IF( INCY.NE.INCYREF ) THEN
            WRITE( ARGNAME, FMT = '(A)' ) 'INCY'
         ELSE IF( ALPHA.NE.ALPHAREF ) THEN
            WRITE( ARGNAME, FMT = '(A)' ) 'ALPHA'
         ELSE
            INFO = 0
         END IF
*
         CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1, INFO, 1, -1, 0 )
*
         IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
*
            IF( INFO.GT.0 ) THEN
               WRITE( NOUT, FMT = 9999 ) ARGNAME, SNAME
            ELSE
               WRITE( NOUT, FMT = 9998 ) SNAME
            END IF
*
         END IF
*
      END IF
*
 9999 FORMAT( 2X, '   ***** Input-only parameter check: ', A,
     $        ' FAILED  changed ', A, ' *****' )
 9998 FORMAT( 2X, '   ***** Input-only parameter check: ', A,
     $        ' PASSED  *****' )
*
      RETURN
*
*     End of PSCHKARG1
*
      END
      LOGICAL FUNCTION PISINSCOPE( ICTXT, N, IX, JX, DESCX, INCX )
*
*  -- PBLAS test routine (version 2.0) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     April 1, 1998
*
*     .. Scalar Arguments ..
      INTEGER            ICTXT, INCX, IX, JX, N
*     ..
*     .. Array Arguments ..
      INTEGER            DESCX( * )
*     ..
*
*  Purpose
*  =======
*
*  PISINSCOPE returns  .TRUE.  if the calling process is in the scope of
*  sub( X ) = X( IX+(JX-1)*DESCX(M_)+(i-1)*INCX ) and  .FALSE.  if it is
*  not.  This  routine is used to determine which processes should check
*  the answer returned by some Level 1 PBLAS routines.
*
*  Notes
*  =====
*
*  A description  vector  is associated with each 2D block-cyclicly dis-
*  tributed matrix.  This  vector  stores  the  information  required to
*  establish the  mapping  between a  matrix entry and its corresponding
*  process and memory location.
*
*  In  the  following  comments,   the character _  should  be  read  as
*  "of  the  distributed  matrix".  Let  A  be a generic term for any 2D
*  block cyclicly distributed matrix.  Its description vector is DESCA:
*
*  NOTATION         STORED IN       EXPLANATION
*  ---------------- --------------- ------------------------------------
*  DTYPE_A (global) DESCA( DTYPE_ ) The descriptor type.
*  CTXT_A  (global) DESCA( CTXT_  ) The BLACS context handle, indicating
*                                   the NPROW x NPCOL BLACS process grid
*                                   A  is distributed over.  The context
*                                   itself  is  global,  but  the handle
*                                   (the integer value) may vary.
*  M_A     (global) DESCA( M_     ) The  number of rows in the distribu-
*                                   ted matrix A, M_A >= 0.
*  N_A     (global) DESCA( N_     ) The number of columns in the distri-
*                                   buted matrix A, N_A >= 0.
*  IMB_A   (global) DESCA( IMB_   ) The number of rows of the upper left
*                                   block of the matrix A, IMB_A > 0.
*  INB_A   (global) DESCA( INB_   ) The  number  of columns of the upper
*                                   left   block   of   the   matrix  A,
*                                   INB_A > 0.
*  MB_A    (global) DESCA( MB_    ) The blocking factor used to  distri-
*                                   bute the last  M_A-IMB_A rows of  A,
*                                   MB_A > 0.
*  NB_A    (global) DESCA( NB_    ) The blocking factor used to  distri-
*                                   bute the last  N_A-INB_A  columns of
*                                   A, NB_A > 0.
*  RSRC_A  (global) DESCA( RSRC_  ) The process row over which the first
*                                   row of the matrix  A is distributed,
*                                   NPROW > RSRC_A >= 0.
*  CSRC_A  (global) DESCA( CSRC_  ) The  process  column  over which the
*                                   first  column of  A  is distributed.
*                                   NPCOL > CSRC_A >= 0.
*  LLD_A   (local)  DESCA( LLD_   ) The  leading  dimension of the local
*                                   array  storing  the  local blocks of
*                                   the distributed matrix A,
*                                   IF( Lc( 1, N_A ) > 0 )
*                                      LLD_A >= MAX( 1, Lr( 1, M_A ) )
*                                   ELSE
*                                      LLD_A >= 1.
*
*  Let K be the number of  rows of a matrix A starting at the global in-
*  dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
*  that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
*  receive if these K rows were distributed over NPROW processes.  If  K
*  is the number of columns of a matrix  A  starting at the global index
*  JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number  of co-
*  lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would  receive if
*  these K columns were distributed over NPCOL processes.
*
*  The values of Lr() and Lc() may be determined via a call to the func-
*  tion PB_NUMROC:
*  Lr( IA, K ) = PB_NUMROC( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
*  Lc( JA, K ) = PB_NUMROC( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
*
*  Arguments
*  =========
*
*  ICTXT   (local input) INTEGER
*          On entry,  ICTXT  specifies the BLACS context handle, indica-
*          ting the global  context of the operation. The context itself
*          is global, but the value of ICTXT is local.
*
*  N       (global input) INTEGER
*          The length of the subvector sub( X ).
*
*  IX      (global input) INTEGER
*          On entry, IX  specifies X's global row index, which points to
*          the beginning of the submatrix sub( X ).
*
*  JX      (global input) INTEGER
*          On entry, JX  specifies X's global column index, which points
*          to the beginning of the submatrix sub( X ).
*
*  DESCX   (global and local input) INTEGER array
*          On entry, DESCX  is an integer array of dimension DLEN_. This
*          is the array descriptor for the matrix X.
*
*  INCX    (global input) INTEGER
*          On entry,  INCX   specifies  the  global  increment  for  the
*          elements of  X.  Only two values of  INCX   are  supported in
*          this version, namely 1 and M_X. INCX  must not be zero.
*
*  -- Written on April 1, 1998 by
*     Antoine Petitet, University  of  Tennessee, Knoxville 37996, USA.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D_INB, CSRC_, CTXT_, DLEN_,
     $                   DTYPE_, IMB_, INB_, LLD_, MB_, M_, NB_, N_,
     $                   RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D_INB = 2, DLEN_ = 11,
     $                   DTYPE_ = 1, CTXT_ = 2, M_ = 3, N_ = 4,
     $                   IMB_ = 5, INB_ = 6, MB_ = 7, NB_ = 8,
     $                   RSRC_ = 9, CSRC_ = 10, LLD_ = 11 )
*     ..
*     .. Local Scalars ..
      LOGICAL            COLREP, ROWREP
      INTEGER            IIX, IXCOL, IXROW, JJX, MYCOL, MYROW, NPCOL,
     $                   NPROW
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, PB_INFOG2L
*     ..
*     .. Executable Statements ..
*
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
      CALL PB_INFOG2L( IX, JX, DESCX, NPROW, NPCOL, MYROW, MYCOL,
     $                 IIX, JJX, IXROW, IXCOL )
      ROWREP = ( IXROW.EQ.-1 )
      COLREP = ( IXCOL.EQ.-1 )
*
      IF( DESCX( M_ ).EQ.1 .AND. N.EQ.1 ) THEN
*
*        This is the special case, find process owner of IX, JX, and
*        only this process is the scope.
*
         PISINSCOPE = ( ( IXROW.EQ.MYROW .OR. ROWREP ) .AND.
     $                   ( IXCOL.EQ.MYCOL .OR. COLREP ) )
*
      ELSE
*
         IF( INCX.EQ.DESCX( M_ ) ) THEN
*
*           row vector
*
            PISINSCOPE = ( MYROW.EQ.IXROW .OR. ROWREP )
*
         ELSE
*
*           column vector
*
            PISINSCOPE = ( MYCOL.EQ.IXCOL .OR. COLREP )
*
         END IF
*
      END IF
*
      RETURN
*
*     End of PISINSCOPE
*
      END
      SUBROUTINE PSBLAS1TSTCHK( ICTXT, NOUT, NROUT, N, PSCLR, PUSCLR,
     $                          PISCLR, X, PX, IX, JX, DESCX, INCX, Y,
     $                          PY, IY, JY, DESCY, INCY, INFO )
*
*  -- PBLAS test routine (version 2.0) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     April 1, 1998
*
*     .. Scalar Arguments ..
      INTEGER            ICTXT, INCX, INCY, INFO, IX, IY, JX, JY, N,
     $                   NOUT, NROUT, PISCLR
      REAL               PSCLR, PUSCLR
*     ..
*     .. Array Arguments ..
      INTEGER            DESCX( * ), DESCY( * )
      REAL               PX( * ), PY( * ), X( * ), Y( * )
*     ..
*
*  Purpose
*  =======
*
*  PSBLAS1TSTCHK performs the computational tests of the Level 1 PBLAS.
*
*  Notes
*  =====
*
*  A description  vector  is associated with each 2D block-cyclicly dis-
*  tributed matrix.  This  vector  stores  the  information  required to
*  establish the  mapping  between a  matrix entry and its corresponding
*  process and memory location.
*
*  In  the  following  comments,   the character _  should  be  read  as
*  "of  the  distributed  matrix".  Let  A  be a generic term for any 2D
*  block cyclicly distributed matrix.  Its description vector is DESCA:
*
*  NOTATION         STORED IN       EXPLANATION
*  ---------------- --------------- ------------------------------------
*  DTYPE_A (global) DESCA( DTYPE_ ) The descriptor type.
*  CTXT_A  (global) DESCA( CTXT_  ) The BLACS context handle, indicating
*                                   the NPROW x NPCOL BLACS process grid
*                                   A  is distributed over.  The context
*                                   itself  is  global,  but  the handle
*                                   (the integer value) may vary.
*  M_A     (global) DESCA( M_     ) The  number of rows in the distribu-
*                                   ted matrix A, M_A >= 0.
*  N_A     (global) DESCA( N_     ) The number of columns in the distri-
*                                   buted matrix A, N_A >= 0.
*  IMB_A   (global) DESCA( IMB_   ) The number of rows of the upper left
*                                   block of the matrix A, IMB_A > 0.
*  INB_A   (global) DESCA( INB_   ) The  number  of columns of the upper
*                                   left   block   of   the   matrix  A,
*                                   INB_A > 0.
*  MB_A    (global) DESCA( MB_    ) The blocking factor used to  distri-
*                                   bute the last  M_A-IMB_A rows of  A,
*                                   MB_A > 0.
*  NB_A    (global) DESCA( NB_    ) The blocking factor used to  distri-
*                                   bute the last  N_A-INB_A  columns of
*                                   A, NB_A > 0.
*  RSRC_A  (global) DESCA( RSRC_  ) The process row over which the first
*                                   row of the matrix  A is distributed,
*                                   NPROW > RSRC_A >= 0.
*  CSRC_A  (global) DESCA( CSRC_  ) The  process  column  over which the
*                                   first  column of  A  is distributed.
*                                   NPCOL > CSRC_A >= 0.
*  LLD_A   (local)  DESCA( LLD_   ) The  leading  dimension of the local
*                                   array  storing  the  local blocks of
*                                   the distributed matrix A,
*                                   IF( Lc( 1, N_A ) > 0 )
*                                      LLD_A >= MAX( 1, Lr( 1, M_A ) )
*                                   ELSE
*                                      LLD_A >= 1.
*
*  Let K be the number of  rows of a matrix A starting at the global in-
*  dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
*  that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
*  receive if these K rows were distributed over NPROW processes.  If  K
*  is the number of columns of a matrix  A  starting at the global index
*  JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number  of co-
*  lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would  receive if
*  these K columns were distributed over NPCOL processes.
*
*  The values of Lr() and Lc() may be determined via a call to the func-
*  tion PB_NUMROC:
*  Lr( IA, K ) = PB_NUMROC( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
*  Lc( JA, K ) = PB_NUMROC( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
*
*  Arguments
*  =========
*
*  ICTXT   (local input) INTEGER
*          On entry,  ICTXT  specifies the BLACS context handle, indica-
*          ting the global  context of the operation. The context itself
*          is global, but the value of ICTXT is local.
*
*  NOUT    (global input) INTEGER
*          On entry, NOUT specifies the unit number for the output file.
*          When NOUT is 6, output to screen,  when  NOUT is 0, output to
*          stderr. NOUT is only defined for process 0.
*
*  NROUT   (global input) INTEGER
*          On entry,  NROUT  specifies  which  routine will be tested as
*          follows:
*             If NROUT = 1,      PSSWAP will be tested;
*             else if NROUT = 2, PSSCAL will be tested;
*             else if NROUT = 3, PSCOPY will be tested;
*             else if NROUT = 4, PSAXPY will be tested;
*             else if NROUT = 5, PSDOT  will be tested;
*             else if NROUT = 6, PSNRM2 will be tested;
*             else if NROUT = 7, PSASUM will be tested;
*             else if NROUT = 8, PSAMAX will be tested.
*
*  N       (global input) INTEGER
*          On entry, N specifies the length of the subvector operands.
*
*  PSCLR   (global input) REAL
*          On entry, depending on the value of  NROUT,  PSCLR  specifies
*          the scalar ALPHA, or the output scalar returned by the PBLAS,
*          i.e., the dot product, the 2-norm,  the  absolute sum  or the
*          value of AMAX.
*
*  PUSCLR  (global input) REAL
*          On entry, PUSCLR specifies the real part of the  scalar ALPHA
*          used  by  the  real  scaling, the 2-norm, or the absolute sum
*          routines.  PUSCLR  is  not  used in the real versions of this
*          routine.
*
*  PISCLR  (global input) REAL
*          On entry, PISCLR  specifies the value of the global index re-
*          turned by PSAMAX, otherwise PISCLR is not used.
*
*  X       (local input/local output) REAL array
*          On entry, X is an array of  dimension  (DESCX( M_ ),*).  This
*          array contains a local copy of the initial entire matrix PX.
*
*  PX      (local input) REAL array
*          On entry, PX is an array of dimension (DESCX( LLD_ ),*). This
*          array contains the local entries of the matrix PX.
*
*  IX      (global input) INTEGER
*          On entry, IX  specifies X's global row index, which points to
*          the beginning of the submatrix sub( X ).
*
*  JX      (global input) INTEGER
*          On entry, JX  specifies X's global column index, which points
*          to the beginning of the submatrix sub( X ).
*
*  DESCX   (global and local input) INTEGER array
*          On entry, DESCX  is an integer array of dimension DLEN_. This
*          is the array descriptor for the matrix X.
*
*  INCX    (global input) INTEGER
*          On entry,  INCX   specifies  the  global  increment  for  the
*          elements of  X.  Only two values of  INCX   are  supported in
*          this version, namely 1 and M_X. INCX  must not be zero.
*
*  Y       (local input/local output) REAL array
*          On entry, Y is an array of  dimension  (DESCY( M_ ),*).  This
*          array contains a local copy of the initial entire matrix PY.
*
*  PY      (local input) REAL array
*          On entry, PY is an array of dimension (DESCY( LLD_ ),*). This
*          array contains the local entries of the matrix PY.
*
*  IY      (global input) INTEGER
*          On entry, IY  specifies Y's global row index, which points to
*          the beginning of the submatrix sub( Y ).
*
*  JY      (global input) INTEGER
*          On entry, JY  specifies Y's global column index, which points
*          to the beginning of the submatrix sub( Y ).
*
*  DESCY   (global and local input) INTEGER array
*          On entry, DESCY  is an integer array of dimension DLEN_. This
*          is the array descriptor for the matrix Y.
*
*  INCY    (global input) INTEGER
*          On entry,  INCY   specifies  the  global  increment  for  the
*          elements of  Y.  Only two values of  INCY   are  supported in
*          this version, namely 1 and M_Y. INCY  must not be zero.
*
*  INFO    (global output) INTEGER
*          On exit, if INFO = 0,  no  error  has  been  found, otherwise
*          if( MOD( INFO,   2 ) = 1 ) then an error on X has been found,
*          if( MOD( INFO/2, 2 ) = 1 ) then an error on Y has been found.
*
*  -- Written on April 1, 1998 by
*     Antoine Petitet, University  of  Tennessee, Knoxville 37996, USA.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0E+0 )
      INTEGER            BLOCK_CYCLIC_2D_INB, CSRC_, CTXT_, DLEN_,
     $                   DTYPE_, IMB_, INB_, LLD_, MB_, M_, NB_, N_,
     $                   RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D_INB = 2, DLEN_ = 11,
     $                   DTYPE_ = 1, CTXT_ = 2, M_ = 3, N_ = 4,
     $                   IMB_ = 5, INB_ = 6, MB_ = 7, NB_ = 8,
     $                   RSRC_ = 9, CSRC_ = 10, LLD_ = 11 )
*     ..
*     .. Local Scalars ..
      LOGICAL            COLREP, INXSCOPE, INYSCOPE, ROWREP
      INTEGER            I, IB, ICURCOL, ICURROW, IDUMM, IIX, IIY, IN,
     $                   IOFFX, IOFFY, ISCLR, IXCOL, IXROW, IYCOL,
     $                   IYROW, J, JB, JJX, JJY, JN, KK, LDX, LDY,
     $                   MYCOL, MYROW, NPCOL, NPROW
      REAL               ERR, ERRMAX, PREC, SCLR, USCLR
*     ..
*     .. Local Arrays ..
      INTEGER            IERR( 6 )
      CHARACTER*5        ARGIN1, ARGIN2, ARGOUT1, ARGOUT2
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, IGAMX2D, PB_INFOG2L, PSCHKVIN,
     $                   PSERRASUM, PSERRAXPY, PSERRDOT, PSERRNRM2,
     $                   PSERRSCAL, SCOPY, SSWAP
*     ..
*     .. External Functions ..
      LOGICAL            PISINSCOPE
      INTEGER            ISAMAX
      REAL               PSLAMCH
      EXTERNAL           ISAMAX, PISINSCOPE, PSLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MIN
*     ..
*     .. Executable Statements ..
*
      INFO    = 0
*
*     Quick return if possible
*
      IF( N.LE.0 )
     $   RETURN
*
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
      ARGIN1  = '     '
      ARGIN2  = '     '
      ARGOUT1 = '     '
      ARGOUT2 = '     '
      DO 10 I = 1, 6
         IERR( I ) = 0
   10 CONTINUE
*
      PREC = PSLAMCH( ICTXT, 'precision' )
*
      IF( NROUT.EQ.1 ) THEN
*
*        Test PSSWAP
*
         IOFFX = IX + ( JX - 1 ) * DESCX( M_ )
         IOFFY = IY + ( JY - 1 ) * DESCY( M_ )
         CALL SSWAP( N, X( IOFFX ), INCX, Y( IOFFY ), INCY )
         CALL PSCHKVIN( ERRMAX, N, X, PX, IX, JX, DESCX, INCX,
     $                    IERR( 1 ) )
         CALL PSCHKVIN( ERRMAX, N, Y, PY, IY, JY, DESCY, INCY,
     $                    IERR( 2 ) )
*
      ELSE IF( NROUT.EQ.2 ) THEN
*
*        Test PSSCAL
*
         LDX   = DESCX( LLD_ )
         IOFFX = IX + ( JX - 1 ) * DESCX( M_ )
         CALL PB_INFOG2L( IX, JX, DESCX, NPROW, NPCOL, MYROW, MYCOL,
     $                    IIX, JJX, IXROW, IXCOL )
         ICURROW = IXROW
         ICURCOL = IXCOL
         ROWREP = ( IXROW.EQ.-1 )
         COLREP = ( IXCOL.EQ.-1 )
*
         IF( INCX.EQ.DESCX( M_ ) ) THEN
*
*           sub( X ) is a row vector
*
            JB = DESCX( INB_ ) - JX + 1
            IF( JB.LE.0 )
     $         JB = ( (-JB ) / DESCX( NB_ ) + 1 ) * DESCX( NB_ ) + JB
            JB = MIN( JB, N )
            JN = JX + JB - 1
*
            DO 20 J = JX, JN
*
               CALL PSERRSCAL( ERR, PSCLR, X( IOFFX ), PREC )
*
               IF( ( MYROW.EQ.ICURROW .OR. ROWREP ) .AND.
     $             ( MYCOL.EQ.ICURCOL .OR. COLREP ) ) THEN
                  IF( ABS( PX( IIX+(JJX-1)*LDX ) - X( IOFFX ) ).GT.
     $                ERR )
     $             IERR( 1 ) = 1
                  JJX = JJX + 1
               END IF
*
               IOFFX = IOFFX + INCX
*
   20       CONTINUE
*
            ICURCOL = MOD( ICURCOL+1, NPCOL )
*
            DO 40 J = JN+1, JX+N-1, DESCX( NB_ )
               JB = MIN( JX+N-J, DESCX( NB_ ) )
*
               DO 30 KK = 0, JB-1
*
                  CALL PSERRSCAL( ERR, PSCLR, X( IOFFX ), PREC )
*
                  IF( ( MYROW.EQ.ICURROW .OR. ROWREP ) .AND.
     $                ( MYCOL.EQ.ICURCOL .OR. COLREP ) ) THEN
                     IF( ABS( PX( IIX+(JJX-1)*LDX ) - X( IOFFX ) ).GT.
     $                   ERR )
     $                  IERR( 1 ) = 1
                     JJX = JJX + 1
                  END IF
*
                  IOFFX = IOFFX + INCX
*
   30          CONTINUE
*
               ICURCOL = MOD( ICURCOL+1, NPCOL )
*
   40       CONTINUE
*
         ELSE
*
*           sub( X ) is a column vector
*
            IB = DESCX( IMB_ ) - IX + 1
            IF( IB.LE.0 )
     $         IB = ( (-IB ) / DESCX( MB_ ) + 1 ) * DESCX( MB_ ) + IB
            IB = MIN( IB, N )
            IN = IX + IB - 1
*
            DO 50 I = IX, IN
*
               CALL PSERRSCAL( ERR, PSCLR, X( IOFFX ), PREC )
*
               IF( ( MYROW.EQ.ICURROW .OR. ROWREP ) .AND.
     $             ( MYCOL.EQ.ICURCOL .OR. COLREP ) ) THEN
                  IF( ABS( PX( IIX+(JJX-1)*LDX ) - X( IOFFX ) ).GT.
     $                ERR )
     $               IERR( 1 ) = 1
                  IIX = IIX + 1
               END IF
*
               IOFFX = IOFFX + INCX
*
   50       CONTINUE
*
            ICURROW = MOD( ICURROW+1, NPROW )
*
            DO 70 I = IN+1, IX+N-1, DESCX( MB_ )
               IB = MIN( IX+N-I, DESCX( MB_ ) )
*
               DO 60 KK = 0, IB-1
*
                  CALL PSERRSCAL( ERR, PSCLR, X( IOFFX ), PREC )
*
                  IF( ( MYROW.EQ.ICURROW .OR. ROWREP ) .AND.
     $                ( MYCOL.EQ.ICURCOL .OR. COLREP ) ) THEN
                     IF( ABS( PX( IIX+(JJX-1)*LDX ) - X( IOFFX ) ).GT.
     $                   ERR )
     $                  IERR( 1 ) = 1
                     IIX = IIX + 1
                  END IF
*
                  IOFFX = IOFFX + INCX
   60          CONTINUE
*
               ICURROW = MOD( ICURROW+1, NPROW )
*
   70       CONTINUE
*
         END IF
*
      ELSE IF( NROUT.EQ.3 ) THEN
*
*        Test PSCOPY
*
         IOFFX = IX + ( JX - 1 ) * DESCX( M_ )
         IOFFY = IY + ( JY - 1 ) * DESCY( M_ )
         CALL SCOPY( N, X( IOFFX ), INCX, Y( IOFFY ), INCY )
         CALL PSCHKVIN( ERRMAX, N, X, PX, IX, JX, DESCX, INCX,
     $                  IERR( 1 ) )
         CALL PSCHKVIN( ERRMAX, N, Y, PY, IY, JY, DESCY, INCY,
     $                  IERR( 2 ) )
*
      ELSE IF( NROUT.EQ.4 ) THEN
*
*        Test PSAXPY
*
         CALL PSCHKVIN( ERRMAX, N, X, PX, IX, JX, DESCX, INCX,
     $                  IERR( 1 ) )
         LDY = DESCY( LLD_ )
         IOFFX = IX + ( JX - 1 ) * DESCX( M_ )
         IOFFY = IY + ( JY - 1 ) * DESCY( M_ )
         CALL PB_INFOG2L( IY, JY, DESCY, NPROW, NPCOL, MYROW, MYCOL,
     $                    IIY, JJY, IYROW, IYCOL )
         ICURROW = IYROW
         ICURCOL = IYCOL
         ROWREP  = ( IYROW.EQ.-1 )
         COLREP  = ( IYCOL.EQ.-1 )
*
         IF( INCY.EQ.DESCY( M_ ) ) THEN
*
*           sub( Y ) is a row vector
*
            JB = DESCY( INB_ ) - JY + 1
            IF( JB.LE.0 )
     $         JB = ( (-JB ) / DESCY( NB_ ) + 1 ) * DESCY( NB_ ) + JB
            JB = MIN( JB, N )
            JN = JY + JB - 1
*
            DO 140 J = JY, JN
*
               CALL PSERRAXPY( ERR, PSCLR, X( IOFFX ), Y( IOFFY ),
     $                         PREC )
*
               IF( ( MYROW.EQ.ICURROW .OR. ROWREP ) .AND.
     $             ( MYCOL.EQ.ICURCOL .OR. COLREP ) ) THEN
                  IF( ABS( PY( IIY+(JJY-1)*LDY ) - Y( IOFFY ) ).GT.
     $                ERR ) THEN
                     IERR( 2 ) = 1
                  END IF
                  JJY = JJY + 1
               END IF
*
               IOFFX = IOFFX + INCX
               IOFFY = IOFFY + INCY
*
  140       CONTINUE
*
            ICURCOL = MOD( ICURCOL+1, NPCOL )
*
            DO 160 J = JN+1, JY+N-1, DESCY( NB_ )
               JB = MIN( JY+N-J, DESCY( NB_ ) )
*
               DO 150 KK = 0, JB-1
*
                  CALL PSERRAXPY( ERR, PSCLR, X( IOFFX ), Y( IOFFY ),
     $                            PREC )
*
                  IF( ( MYROW.EQ.ICURROW .OR. ROWREP ) .AND.
     $                ( MYCOL.EQ.ICURCOL .OR. COLREP ) ) THEN
                     IF( ABS( PY( IIY+(JJY-1)*LDY ) - Y( IOFFY ) ).GT.
     $                   ERR ) THEN
                        IERR( 2 ) = 1
                     END IF
                     JJY = JJY + 1
                  END IF
*
                  IOFFX = IOFFX + INCX
                  IOFFY = IOFFY + INCY
*
  150          CONTINUE
*
               ICURCOL = MOD( ICURCOL+1, NPCOL )
*
  160       CONTINUE
*
         ELSE
*
*           sub( Y ) is a column vector
*
            IB = DESCY( IMB_ ) - IY + 1
            IF( IB.LE.0 )
     $         IB = ( (-IB ) / DESCY( MB_ ) + 1 ) * DESCY( MB_ ) + IB
            IB = MIN( IB, N )
            IN = IY + IB - 1
*
            DO 170 I = IY, IN
*
               CALL PSERRAXPY( ERR, PSCLR, X( IOFFX ), Y( IOFFY ),
     $                         PREC )
*
               IF( ( MYROW.EQ.ICURROW .OR. ROWREP ) .AND.
     $             ( MYCOL.EQ.ICURCOL .OR. COLREP ) ) THEN
                  IF( ABS( PY( IIY+(JJY-1)*LDY ) - Y( IOFFY ) ).GT.
     $                ERR ) THEN
                     IERR( 2 ) = 1
                  END IF
                  IIY = IIY + 1
               END IF
*
               IOFFX = IOFFX + INCX
               IOFFY = IOFFY + INCY
*
  170       CONTINUE
*
            ICURROW = MOD( ICURROW+1, NPROW )
*
            DO 190 I = IN+1, IY+N-1, DESCY( MB_ )
               IB = MIN( IY+N-I, DESCY( MB_ ) )
*
               DO 180 KK = 0, IB-1
*
                  CALL PSERRAXPY( ERR, PSCLR, X( IOFFX ), Y( IOFFY ),
     $                            PREC )
*
                  IF( ( MYROW.EQ.ICURROW .OR. ROWREP ) .AND.
     $                ( MYCOL.EQ.ICURCOL .OR. COLREP ) ) THEN
                     IF( ABS( PY( IIY+(JJY-1)*LDY ) - Y( IOFFY ) ).GT.
     $                   ERR ) THEN
                        IERR( 2 ) = 1
                     END IF
                     IIY = IIY + 1
                  END IF
*
                  IOFFX = IOFFX + INCX
                  IOFFY = IOFFY + INCY
*
  180          CONTINUE
*
               ICURROW = MOD( ICURROW+1, NPROW )
*
  190       CONTINUE
*
         END IF
*
      ELSE IF( NROUT.EQ.5 ) THEN
*
*        Test PSDOT
*
         CALL PSCHKVIN( ERRMAX, N, X, PX, IX, JX, DESCX, INCX,
     $                  IERR( 1 ) )
         CALL PSCHKVIN( ERRMAX, N, Y, PY, IY, JY, DESCY, INCY,
     $                  IERR( 2 ) )
         IOFFX = IX + ( JX - 1 ) * DESCX( M_ )
         IOFFY = IY + ( JY - 1 ) * DESCY( M_ )
         CALL PSERRDOT( ERR, N, SCLR, X( IOFFX ), INCX, Y( IOFFY ),
     $                  INCY, PREC )
         INXSCOPE = PISINSCOPE( ICTXT, N, IX, JX, DESCX, INCX )
         INYSCOPE = PISINSCOPE( ICTXT, N, IY, JY, DESCY, INCY )
         IF( INXSCOPE.OR.INYSCOPE ) THEN
            IF( ABS( PSCLR - SCLR ).GT.ERR ) THEN
               IERR( 3 ) = 1
               WRITE( ARGIN1, FMT = '(A)' ) 'DOT'
               IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
                  WRITE( NOUT, FMT = 9998 ) ARGIN1
                  WRITE( NOUT, FMT = 9996 ) SCLR, PSCLR
               END IF
            END IF
         ELSE
            SCLR = ZERO
            IF( PSCLR.NE.SCLR ) THEN
               IERR( 4 ) = 1
               WRITE( ARGOUT1, FMT = '(A)' ) 'DOT'
               IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
                  WRITE( NOUT, FMT = 9997 ) ARGOUT1
                  WRITE( NOUT, FMT = 9996 ) SCLR, PSCLR
               END IF
            END IF
         END IF
*
      ELSE IF( NROUT.EQ.6 ) THEN
*
*        Test PSNRM2
*
         CALL PSCHKVIN( ERRMAX, N, X, PX, IX, JX, DESCX, INCX,
     $                  IERR( 1 ) )
         IOFFX = IX + ( JX - 1 ) * DESCX( M_ )
         CALL PSERRNRM2( ERR, N, USCLR, X( IOFFX ), INCX, PREC )
         IF( PISINSCOPE( ICTXT, N, IX, JX, DESCX, INCX ) ) THEN
            IF( ABS( PUSCLR - USCLR ).GT.ERR ) THEN
               IERR( 3 ) = 1
               WRITE( ARGIN1, FMT = '(A)' ) 'NRM2'
               IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
                  WRITE( NOUT, FMT = 9998 ) ARGIN1
                  WRITE( NOUT, FMT = 9996 ) USCLR, PUSCLR
               END IF
            END IF
         ELSE
            USCLR = ZERO
            IF( PUSCLR.NE.USCLR ) THEN
               IERR( 4 ) = 1
               WRITE( ARGOUT1, FMT = '(A)' ) 'NRM2'
               IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
                  WRITE( NOUT, FMT = 9997 ) ARGOUT1
                  WRITE( NOUT, FMT = 9996 ) USCLR, PUSCLR
               END IF
            END IF
         END IF
*
      ELSE IF( NROUT.EQ.7 ) THEN
*
*        Test PSASUM
*
         CALL PSCHKVIN( ERRMAX, N, X, PX, IX, JX, DESCX, INCX,
     $                  IERR( 1 ) )
         IOFFX = IX + ( JX - 1 ) * DESCX( M_ )
         CALL PSERRASUM( ERR, N, USCLR, X( IOFFX ), INCX, PREC )
         IF( PISINSCOPE( ICTXT, N, IX, JX, DESCX, INCX ) ) THEN
            IF( ABS( PUSCLR - USCLR ) .GT. ERR ) THEN
               IERR( 3 ) = 1
               WRITE( ARGIN1, FMT = '(A)' ) 'ASUM'
               IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
                  WRITE( NOUT, FMT = 9998 ) ARGIN1
                  WRITE( NOUT, FMT = 9996 ) USCLR, PUSCLR
               END IF
            END IF
         ELSE
            USCLR = ZERO
            IF( PUSCLR.NE.USCLR ) THEN
               IERR( 4 ) = 1
               WRITE( ARGOUT1, FMT = '(A)' ) 'ASUM'
               IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
                  WRITE( NOUT, FMT = 9997 ) ARGOUT1
                  WRITE( NOUT, FMT = 9996 ) USCLR, PUSCLR
               END IF
            END IF
         END IF
*
      ELSE IF( NROUT.EQ.8 ) THEN
*
*        Test PSAMAX
*
         CALL PSCHKVIN( ERRMAX, N, X, PX, IX, JX, DESCX, INCX,
     $                  IERR( 1 ) )
         IOFFX = IX + ( JX - 1 ) * DESCX( M_ )
         IF( PISINSCOPE( ICTXT, N, IX, JX, DESCX, INCX ) ) THEN
            ISCLR = ISAMAX( N, X( IOFFX ), INCX )
            IF( N.LT.1 ) THEN
               SCLR = ZERO
            ELSE IF( ( INCX.EQ.1 ).AND.( DESCX( M_ ).EQ.1 ).AND.
     $               ( N.EQ.1 ) ) THEN
               ISCLR = JX
               SCLR = X( IOFFX )
            ELSE IF( INCX.EQ.DESCX( M_ ) ) THEN
               ISCLR = JX + ISCLR - 1
               SCLR = X( IX + ( ISCLR - 1 ) * DESCX( M_ ) )
            ELSE
               ISCLR = IX + ISCLR - 1
               SCLR = X( ISCLR + ( JX - 1 ) * DESCX( M_ ) )
            END IF
*
            IF( PSCLR.NE.SCLR ) THEN
               IERR( 3 ) = 1
               WRITE( ARGIN1, FMT = '(A)' ) 'AMAX'
               IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
                  WRITE( NOUT, FMT = 9998 ) ARGIN1
                  WRITE( NOUT, FMT = 9996 ) SCLR, PSCLR
               END IF
            END IF
*
            IF( PISCLR.NE.ISCLR ) THEN
               IERR( 5 ) = 1
               WRITE( ARGIN2, FMT = '(A)' ) 'INDX'
               IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
                  WRITE( NOUT, FMT = 9998 ) ARGIN2
                  WRITE( NOUT, FMT = 9995 ) ISCLR, PISCLR
               END IF
            END IF
         ELSE
            ISCLR = 0
            SCLR  = ZERO
            IF( PSCLR.NE.SCLR ) THEN
               IERR( 4 ) = 1
               WRITE( ARGOUT1, FMT = '(A)' ) 'AMAX'
               IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
                  WRITE( NOUT, FMT = 9997 ) ARGOUT1
                  WRITE( NOUT, FMT = 9996 ) SCLR, PSCLR
               END IF
            END IF
            IF( PISCLR.NE.ISCLR ) THEN
               IERR( 6 ) = 1
               WRITE( ARGOUT2, FMT = '(A)' ) 'INDX'
               IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
                  WRITE( NOUT, FMT = 9997 ) ARGOUT2
                  WRITE( NOUT, FMT = 9995 ) ISCLR, PISCLR
               END IF
            END IF
         END IF
*
      END IF
*
*     Find IERR across all processes
*
      CALL IGAMX2D( ICTXT, 'All', ' ', 6, 1, IERR, 6, IDUMM, IDUMM, -1,
     $              -1, 0 )
*
*     Encode the errors found in INFO
*
      IF( IERR( 1 ).NE.0 ) THEN
         INFO = INFO + 1
         IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 )
     $      WRITE( NOUT, FMT = 9999 ) 'X'
      END IF
*
      IF( IERR( 2 ).NE.0 ) THEN
         INFO = INFO + 2
         IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 )
     $      WRITE( NOUT, FMT = 9999 ) 'Y'
      END IF
*
      IF( IERR( 3 ).NE.0 )
     $   INFO = INFO + 4
*
      IF( IERR( 4 ).NE.0 )
     $   INFO = INFO + 8
*
      IF( IERR( 5 ).NE.0 )
     $   INFO = INFO + 16
*
      IF( IERR( 6 ).NE.0 )
     $   INFO = INFO + 32
*
 9999 FORMAT( 2X, '   ***** ERROR: Vector operand ', A,
     $        ' is incorrect.' )
 9998 FORMAT( 2X, '   ***** ERROR: Output scalar result ', A,
     $        ' in scope is incorrect.' )
 9997 FORMAT( 2X, '   ***** ERROR: Output scalar result ', A,
     $        ' out of scope is incorrect.' )
 9996 FORMAT( 2X, '   ***** Expected value is: ', E16.8, /2X,
     $        '         Obtained value is: ', E16.8 )
 9995 FORMAT( 2X, '   ***** Expected value is: ', I6, /2X,
     $        '         Obtained value is: ', I6 )
*
      RETURN
*
*     End of PSBLAS1TSTCHK
*
      END
      SUBROUTINE PSERRDOT( ERRBND, N, SCLR, X, INCX, Y, INCY, PREC )
*
*  -- PBLAS test routine (version 2.0) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     April 1, 1998
*
*     .. Scalar Arguments ..
      INTEGER            INCX, INCY, N
      REAL               ERRBND, PREC, SCLR
*     ..
*     .. Array Arguments ..
      REAL               X( * ), Y( * )
*     ..
*
*  Purpose
*  =======
*
*  PSERRDOT  serially  computes  the  dot product X**T * Y and returns a
*  scaled relative acceptable error bound on the result.
*
*  Notes
*  =====
*
*  If dot1 = SCLR and  dot2 are two different computed results, and dot1
*  is being assumed to be correct, we require
*
*     abs( dot1 - dot2 ) <= ERRBND = ERRFACT * abs( dot1 ),
*
*  where ERRFACT is computed as the maximum of the positive and negative
*  partial  sums  multiplied  by  a constant proportional to the machine
*  precision.
*
*  Arguments
*  =========
*
*  ERRBND  (global output) REAL
*          On exit, ERRBND  specifies the scaled relative acceptable er-
*          ror bound.
*
*  N       (global input) INTEGER
*          On entry, N specifies the length of the vector operands.
*
*  SCLR    (global output) REAL
*          On exit,  SCLR  specifies  the dot product of the two vectors
*          X and Y.
*
*  X       (global input) REAL array
*          On   entry,   X   is   an   array   of   dimension  at  least
*          ( 1 + ( n - 1 )*abs( INCX ) ).  Before  entry,  the incremen-
*          ted array X must contain the vector x.
*
*  INCX    (global input) INTEGER.
*          On entry, INCX specifies the increment for the elements of X.
*          INCX must not be zero.
*
*  Y       (global input) REAL array
*          On   entry,   Y   is   an   array   of   dimension  at  least
*          ( 1 + ( n - 1 )*abs( INCY ) ).  Before  entry,  the incremen-
*          ted array Y must contain the vector y.
*
*  INCY    (global input) INTEGER.
*          On entry, INCY specifies the increment for the elements of Y.
*          INCY must not be zero.
*
*  PREC    (global input) REAL
*          On entry, PREC specifies the machine precision.
*
*  -- Written on April 1, 1998 by
*     Antoine Petitet, University  of  Tennessee, Knoxville 37996, USA.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, TWO, ZERO
      PARAMETER          ( ONE = 1.0E+0, TWO = 2.0E+0,
     $                   ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, IX, IY
      REAL               ADDBND, FACT, SUMNEG, SUMPOS, TMP
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX
*     ..
*     .. Executable Statements ..
*
      IX = 1
      IY = 1
      SCLR = ZERO
      SUMPOS = ZERO
      SUMNEG = ZERO
      FACT = TWO * ( ONE + PREC )
      ADDBND = TWO * TWO * TWO * PREC
*
      DO 10 I = 1, N
         TMP = X( IX ) * Y( IY )
         SCLR = SCLR + TMP
         IF( TMP.GE.ZERO ) THEN
            SUMPOS = SUMPOS + TMP * FACT
         ELSE
            SUMNEG = SUMNEG - TMP * FACT
         END IF
         IX = IX + INCX
         IY = IY + INCY
   10 CONTINUE
*
      ERRBND = ADDBND * MAX( SUMPOS, SUMNEG )
*
      RETURN
*
*     End of PSERRDOT
*
      END
      SUBROUTINE PSERRNRM2( ERRBND, N, USCLR, X, INCX, PREC )
*
*  -- PBLAS test routine (version 2.0) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     April 1, 1998
*
*     .. Scalar Arguments ..
      INTEGER            INCX, N
      REAL               ERRBND, PREC, USCLR
*     ..
*     .. Array Arguments ..
      REAL               X( * )
*     ..
*
*  Purpose
*  =======
*
*  PSERRNRM2  serially  computes  the  2-norm the vector X and returns a
*  scaled relative acceptable error bound on the result.
*
*  Notes
*  =====
*
*  If  norm1 = SCLR  and  norm2  are two different computed results, and
*  norm1 being assumed to be correct, we require
*
*     abs( norm1 - norm2 ) <= ERRBND = ERRFACT * abs( norm1 ),
*
*  where ERRFACT is computed as the maximum of the positive and negative
*  partial  sums  multiplied  by  a constant proportional to the machine
*  precision.
*
*  Arguments
*  =========
*
*  ERRBND  (global output) REAL
*          On exit, ERRBND  specifies the scaled relative acceptable er-
*          ror bound.
*
*  N       (global input) INTEGER
*          On entry, N specifies the length of the vector operand.
*
*  USCLR   (global output) REAL
*          On exit, USCLR specifies the 2-norm of the vector X.
*
*  X       (global input) REAL array
*          On   entry,   X   is   an   array   of   dimension  at  least
*          ( 1 + ( n - 1 )*abs( INCX ) ).  Before  entry,  the incremen-
*          ted array X must contain the vector x.
*
*  INCX    (global input) INTEGER.
*          On entry, INCX specifies the increment for the elements of X.
*          INCX must not be zero.
*
*  PREC    (global input) REAL
*          On entry, PREC specifies the machine precision.
*
*  -- Written on April 1, 1998 by
*     Antoine Petitet, University  of  Tennessee, Knoxville 37996, USA.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, TWO, ZERO
      PARAMETER          ( ONE = 1.0E+0, TWO = 2.0E+0,
     $                   ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            IX
      REAL               ABSXI, ADDBND, FACT, SCALE, SSQ, SUMSCA, SUMSSQ
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS
*     ..
*     .. Executable Statements ..
*
      USCLR = ZERO
      SUMSSQ = ONE
      SUMSCA = ZERO
      ADDBND = TWO * TWO * TWO * PREC
      FACT = ONE + TWO * ( ( ONE + PREC )**3 - ONE )
*
      SCALE = ZERO
      SSQ = ONE
      DO 10 IX = 1, 1 + ( N - 1 )*INCX, INCX
         IF( X( IX ).NE.ZERO ) THEN
            ABSXI = ABS( X( IX ) )
            IF( SCALE.LT.ABSXI )THEN
               SUMSSQ = ONE + ( SSQ*( SCALE/ABSXI )**2 ) * FACT
               ERRBND = ADDBND * SUMSSQ
               SUMSSQ = SUMSSQ + ERRBND
               SSQ    = ONE + SSQ*( SCALE/ABSXI )**2
               SUMSCA = ABSXI
               SCALE  = ABSXI
            ELSE
               SUMSSQ = SSQ + ( ( ABSXI/SCALE )**2 ) * FACT
               ERRBND = ADDBND * SUMSSQ
               SUMSSQ = SUMSSQ + ERRBND
               SSQ    = SSQ + ( ABSXI/SCALE )**2
            END IF
         END IF
   10 CONTINUE
*
      USCLR = SCALE * SQRT( SSQ )
*
*     Error on square root
*
      ERRBND = SQRT( SUMSSQ ) * ( ONE + TWO * ( 1.00001E+0 * PREC ) )
*
      ERRBND = ( SUMSCA * ERRBND ) - USCLR
*
      RETURN
*
*     End of PSERRNRM2
*
      END
      SUBROUTINE PSERRASUM( ERRBND, N, USCLR, X, INCX, PREC )
*
*  -- PBLAS test routine (version 2.0) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     April 1, 1998
*
*     .. Scalar Arguments ..
      INTEGER            INCX, N
      REAL               ERRBND, PREC, USCLR
*     ..
*     .. Array Arguments ..
      REAL               X( * )
*     ..
*
*  Purpose
*  =======
*
*  PSERRASUM  serially computes the sum of absolute values of the vector
*  X and returns a scaled relative acceptable error bound on the result.
*
*  Arguments
*  =========
*
*  ERRBND  (global output) REAL
*          On exit, ERRBND  specifies a scaled relative acceptable error
*          bound. In this case the error bound is just the absolute  sum
*          multiplied  by  a constant proportional to the machine preci-
*          sion.
*
*  N       (global input) INTEGER
*          On entry, N specifies the length of the vector operand.
*
*  USCLR   (global output) REAL
*          On exit, USCLR  specifies  the  sum of absolute values of the
*          vector X.
*
*  X       (global input) REAL array
*          On   entry,   X   is   an   array   of   dimension  at  least
*          ( 1 + ( n - 1 )*abs( INCX ) ).  Before  entry,  the incremen-
*          ted array X must contain the vector x.
*
*  INCX    (global input) INTEGER.
*          On entry, INCX specifies the increment for the elements of X.
*          INCX must not be zero.
*
*  PREC    (global input) REAL
*          On entry, PREC specifies the machine precision.
*
*  -- Written on April 1, 1998 by
*     Antoine Petitet, University  of  Tennessee, Knoxville 37996, USA.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               TWO, ZERO
      PARAMETER          ( TWO = 2.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            IX
      REAL               ADDBND
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS
*     ..
*     .. Executable Statements ..
*
      IX = 1
      USCLR = ZERO
      ADDBND = TWO * TWO * TWO * PREC
*
      DO 10 IX = 1, 1 + ( N - 1 )*INCX, INCX
         USCLR = USCLR + ABS( X( IX ) )
   10 CONTINUE
*
      ERRBND = ADDBND * USCLR
*
      RETURN
*
*     End of PSERRASUM
*
      END
      SUBROUTINE PSERRSCAL( ERRBND, PSCLR, X, PREC )
*
*  -- PBLAS test routine (version 2.0) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     April 1, 1998
*
*     .. Scalar Arguments ..
      REAL               ERRBND, PREC, PSCLR, X
*     ..
*
*  Purpose
*  =======
*
*  PSERRSCAL serially computes the product PSCLR * X and returns a sca-
*  led relative acceptable error bound on the result.
*
*  Notes
*  =====
*
*  If s1 = PSCLR*X and  s2 are two different computed results, and s1 is
*  being assumed to be correct, we require
*
*        abs( s1 - s2 ) <= ERRBND = ERRFACT * abs( s1 ),
*
*  where ERRFACT is computed as two times the machine precision.
*
*  Arguments
*  =========
*
*  ERRBND  (global output) REAL
*          On exit, ERRBND  specifies the scaled relative acceptable er-
*          ror bound.
*
*  PSCLR   (global input) REAL
*          On entry, PSCLR specifies the scale factor.
*
*  X       (global input/global output) REAL
*          On entry, X  specifies the scalar to be scaled. On exit, X is
*          the scaled entry.
*
*  PREC    (global input) REAL
*          On entry, PREC specifies the machine precision.
*
*  -- Written on April 1, 1998 by
*     Antoine Petitet, University  of  Tennessee, Knoxville 37996, USA.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               TWO
      PARAMETER          ( TWO = 2.0E+0 )
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS
*     ..
*     .. Executable Statements ..
*
      X = PSCLR * X
*
      ERRBND = ( TWO * PREC ) * ABS( X )
*
      RETURN
*
*     End of PSERRSCAL
*
      END
      SUBROUTINE PSERRAXPY( ERRBND, PSCLR, X, Y, PREC )
*
*  -- PBLAS test routine (version 2.0) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     April 1, 1998
*
*     .. Scalar Arguments ..
      REAL               ERRBND, PREC, PSCLR, X, Y
*     ..
*
*  Purpose
*  =======
*
*  PSERRAXPY  serially computes Y := Y + PSCLR * X and returns a scaled
*  relative acceptable error bound on the result.
*
*  Arguments
*  =========
*
*  ERRBND  (global output) REAL
*          On exit, ERRBND  specifies the scaled relative acceptable er-
*          ror bound.
*
*  PSCLR   (global input) REAL
*          On entry, PSCLR specifies the scale factor.
*
*  X       (global input) REAL
*          On entry, X  specifies the scalar to be scaled.
*
*  Y       (global input/global output) REAL
*          On entry, Y specifies the scalar to be added. On exit, Y con-
*          tains the resulting scalar.
*
*  PREC    (global input) REAL
*          On entry, PREC specifies the machine precision.
*
*  -- Written on April 1, 1998 by
*     Antoine Petitet, University  of  Tennessee, Knoxville 37996, USA.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, TWO, ZERO
      PARAMETER          ( ONE = 1.0E+0, TWO = 2.0E+0,
     $                   ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      REAL               ADDBND, FACT, SUMPOS, SUMNEG, TMP
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
      SUMPOS = ZERO
      SUMNEG = ZERO
      FACT = ONE + TWO * PREC
      ADDBND = TWO * TWO * TWO * PREC
*
      TMP = PSCLR * X
      IF( TMP.GE.ZERO ) THEN
         SUMPOS = SUMPOS + TMP * FACT
      ELSE
         SUMNEG = SUMNEG - TMP * FACT
      END IF
*
      TMP = Y
      IF( TMP.GE.ZERO ) THEN
         SUMPOS = SUMPOS + TMP
      ELSE
         SUMNEG = SUMNEG - TMP
      END IF
*
      Y = Y + ( PSCLR * X )
*
      ERRBND = ADDBND * MAX( SUMPOS, SUMNEG )
*
      RETURN
*
*     End of PSERRAXPY
*
      END