1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
SUBROUTINE PBCVECADD( ICONTXT, MODE, N, ALPHA, X, INCX, BETA, Y,
$ INCY )
*
* -- PB-BLAS routine (version 2.1) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory.
* April 28, 1996
*
* .. Scalar Arguments ..
CHARACTER*1 MODE
INTEGER ICONTXT, INCX, INCY, N
COMPLEX ALPHA, BETA
* ..
* .. Array Arguments ..
COMPLEX X( * ), Y( * )
*
* ..
*
* Purpose
* =======
*
* PBCVECADD performs a vector X to be added to Y
* Y := alpha*op(X) + beta*Y,
* where alpha and beta are scalars, and X and Y are n vectors,
* and op(X) = X**H if MODE = 'C',
*
* Arguments
* =========
*
* ICONTXT (input) INTEGER
* ICONTXT is the BLACS mechanism for partitioning communication
* space. A defining property of a context is that a message in
* a context cannot be sent or received in another context. The
* BLACS context includes the definition of a grid, and each
* process' coordinates in it.
*
* MODE (input) CHARACTER*1
* Specifies the transposed, or conjugate transposed vector X
* to be added to the vector Y
* = 'C': Conjugate vector X is added for complex data set.
* Y = alpha * X**H + beta * Y
* ELSE : Vector X is added. Y = alpha*X + beta*Y
* if MODE = 'V', BLAS routine may be used.
*
* N (input) INTEGER
* The number of elements of the vectors X and Y to be added.
* N >= 0.
*
* ALPHA (input) COMPLEX
* ALPHA specifies the scalar alpha.
*
* X (input) COMPLEX array of DIMENSION at least
* ( 1 + ( N - 1 )*abs( INCX ) )
* The incremented array X must contain the vector X.
*
* INCX (input) INTEGER
* INCX specifies the increment for the elements of X.
* INCX <> 0.
*
* BETA (input) COMPLEX
* BETA specifies the scalar beta.
*
* Y (input/output) COMPLEX array of DIMENSION at least
* ( 1 + ( N - 1 )*abs( INCY ) )
* On entry with BETA non-zero, the incremented array Y must
* contain the vector Y.
* On exit, Y is overwritten by the updated vector Y.
*
* INCY - (input) INTEGER
* INCY specifies the increment for the elements of Y.
* INCY <> 0.
*
* =====================================================================
*
* ..
* .. Parameters ..
COMPLEX ZERO, ONE
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, IX, IY
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL CSCAL, CCOPY, CAXPY
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG
* ..
* .. Executable Statements ..
*
IF( N.LE.0 .OR. ( ALPHA.EQ.ZERO .AND. BETA.EQ.ONE ) ) RETURN
*
IF( ALPHA.EQ.ZERO ) THEN
IF( BETA.EQ.ZERO ) THEN
IF( INCY.EQ.1 ) THEN
DO 10 I = 1, N
Y( I ) = ZERO
10 CONTINUE
ELSE
IY = 1
DO 20 I = 1, N
Y( IY ) = ZERO
IY = IY + INCY
20 CONTINUE
END IF
*
ELSE
IF( LSAME( MODE, 'V' ) ) THEN
CALL CSCAL( N, BETA, Y, INCY )
ELSE IF( INCY.EQ.1 ) THEN
DO 30 I = 1, N
Y( I ) = BETA * Y( I )
30 CONTINUE
ELSE
IY = 1
DO 40 I = 1, N
Y( IY ) = BETA * Y( IY )
IY = IY + INCY
40 CONTINUE
END IF
END IF
*
ELSE IF( .NOT.LSAME( MODE, 'C' ) ) THEN
IF( ALPHA.EQ.ONE ) THEN
IF( BETA.EQ.ZERO ) THEN
IF( LSAME( MODE, 'V' ) ) THEN
CALL CCOPY( N, X, INCX, Y, INCY )
ELSE IF( INCX.EQ.1 .AND. INCY.EQ.1 ) THEN
DO 50 I = 1, N
Y( I ) = X( I )
50 CONTINUE
ELSE
IX = 1
IY = 1
DO 60 I = 1, N
Y( IY ) = X( IX )
IX = IX + INCX
IY = IY + INCY
60 CONTINUE
END IF
*
ELSE IF( BETA.EQ.ONE ) THEN
IF( INCX.EQ.1 .AND. INCY.EQ.1 ) THEN
DO 70 I = 1, N
Y( I ) = X( I ) + Y( I )
70 CONTINUE
ELSE
IX = 1
IY = 1
DO 80 I = 1, N
Y( IY ) = X( IX ) + Y( IY )
IX = IX + INCX
IY = IY + INCY
80 CONTINUE
END IF
*
ELSE
IF( INCX.EQ.1 .AND. INCY.EQ.1 ) THEN
DO 90 I = 1, N
Y( I ) = X( I ) + BETA * Y( I )
90 CONTINUE
ELSE
IX = 1
IY = 1
DO 100 I = 1, N
Y( IY ) = X( IX ) + BETA * Y( IY )
IX = IX + INCX
IY = IY + INCY
100 CONTINUE
END IF
END IF
*
ELSE
IF( BETA.EQ.ZERO ) THEN
IF( INCX.EQ.1 .AND. INCY.EQ.1 ) THEN
DO 110 I = 1, N
Y( I ) = ALPHA * X( I )
110 CONTINUE
ELSE
IX = 1
IY = 1
DO 120 I = 1, N
Y( IY ) = X( IX )
IX = IX + INCX
IY = IY + INCY
120 CONTINUE
END IF
*
ELSE IF( BETA.EQ.ONE ) THEN
IF( LSAME( MODE, 'V' ) ) THEN
CALL CAXPY( N, ALPHA, X, INCX, Y, INCY )
ELSE IF( INCX.EQ.1 .AND. INCY.EQ.1 ) THEN
DO 130 I = 1, N
Y( I ) = ALPHA * X( I ) + Y( I )
130 CONTINUE
ELSE
IX = 1
IY = 1
DO 140 I = 1, N
Y( IY ) = ALPHA * X( IX ) + Y( IY )
IX = IX + INCX
IY = IY + INCY
140 CONTINUE
END IF
*
ELSE
IF( INCX.EQ.1 .AND. INCY.EQ.1 ) THEN
DO 150 I = 1, N
Y( I ) = ALPHA * X( I ) + BETA * Y( I )
150 CONTINUE
ELSE
IX = 1
IY = 1
DO 160 I = 1, N
Y( IY ) = ALPHA * X( IX ) + BETA * Y( IY )
IX = IX + INCX
IY = IY + INCY
160 CONTINUE
END IF
END IF
END IF
*
ELSE
IF( ALPHA.EQ.ONE ) THEN
IF( BETA.EQ.ZERO ) THEN
IF( INCX.EQ.1 .AND. INCY.EQ.1 ) THEN
DO 170 I = 1, N
Y( I ) = CONJG( X( I ) )
170 CONTINUE
ELSE
IX = 1
IY = 1
DO 180 I = 1, N
Y( IY ) = CONJG( X( IX ) )
IX = IX + INCX
IY = IY + INCY
180 CONTINUE
END IF
*
ELSE IF( BETA.EQ.ONE ) THEN
IF( INCX.EQ.1 .AND. INCY.EQ.1 ) THEN
DO 190 I = 1, N
Y( I ) = CONJG( X( I ) ) + Y( I )
190 CONTINUE
ELSE
IX = 1
IY = 1
DO 200 I = 1, N
Y( IY ) = CONJG( X( IX ) ) + Y( IY )
IX = IX + INCX
IY = IY + INCY
200 CONTINUE
END IF
*
ELSE
IF( INCX.EQ.1 .AND. INCY.EQ.1 ) THEN
DO 210 I = 1, N
Y( I ) = CONJG( X( I ) ) + BETA * Y( I )
210 CONTINUE
ELSE
IX = 1
IY = 1
DO 220 I = 1, N
Y( IY ) = CONJG( X( IX ) ) + BETA * Y( IY )
IX = IX + INCX
IY = IY + INCY
220 CONTINUE
END IF
END IF
*
ELSE
IF( BETA.EQ.ZERO ) THEN
IF( INCX.EQ.1 .AND. INCY.EQ.1 ) THEN
DO 230 I = 1, N
Y( I ) = ALPHA * CONJG( X( I ) )
230 CONTINUE
ELSE
IX = 1
IY = 1
DO 240 I = 1, N
Y( IY ) = ALPHA * CONJG( X( IX ) )
IX = IX + INCX
IY = IY + INCY
240 CONTINUE
END IF
*
ELSE IF( BETA.EQ.ONE ) THEN
IF( INCX.EQ.1 .AND. INCY.EQ.1 ) THEN
DO 250 I = 1, N
Y( I ) = ALPHA * CONJG( X( I ) ) + Y( I )
250 CONTINUE
ELSE
IX = 1
IY = 1
DO 260 I = 1, N
Y( IY ) = ALPHA * CONJG( X( IX ) ) + Y( IY )
IX = IX + INCX
IY = IY + INCY
260 CONTINUE
END IF
*
ELSE
IF( INCX.EQ.1 .AND. INCY.EQ.1 ) THEN
DO 270 I = 1, N
Y( I ) = ALPHA * CONJG( X( I ) ) + BETA * Y( I )
270 CONTINUE
ELSE
IX = 1
IY = 1
DO 280 I = 1, N
Y( IY ) = ALPHA * CONJG( X(IX) ) + BETA * Y( IY )
IX = IX + INCX
IY = IY + INCY
280 CONTINUE
END IF
END IF
END IF
END IF
*
RETURN
*
* End of PBCVECADD
*
END
|