File: pbdmatadd.f

package info (click to toggle)
scalapack 1.8.0-6
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 32,240 kB
  • ctags: 29,143
  • sloc: fortran: 288,069; ansic: 64,035; makefile: 1,911
file content (388 lines) | stat: -rw-r--r-- 12,507 bytes parent folder | download | duplicates (13)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
      SUBROUTINE PBDMATADD( ICONTXT, MODE, M, N, ALPHA, A, LDA, BETA, B,
     $                      LDB )
*
*  -- PB-BLAS routine (version 2.1) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory.
*     April 28, 1996
*
*     .. Scalar Arguments ..
      CHARACTER*1        MODE
      INTEGER            ICONTXT, LDA, LDB, M, N
      DOUBLE PRECISION   ALPHA, BETA
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
*     ..
*
*  Purpose
*  =======
*
*  PBDMATADD performs the matrix add operation B := alpha*A + beta*B,
*  where alpha and beta are scalars, and A and B are m-by-n
*  upper/lower trapezoidal matrices, or rectangular matrices.
*
*  Arguments
*  =========
*
*  ICONTXT (input) INTEGER
*          ICONTXT is the BLACS mechanism for partitioning communication
*          space.  A defining property of a context is that a message in
*          a context cannot be sent or received in another context.  The
*          BLACS context includes the definition of a grid, and each
*          process' coordinates in it.
*
*  MODE    (input) CHARACTER*1
*          Specifies the part of the matrix A, or (conjugate) transposed
*          matrix A to be added to the matrix B,
*          = 'U':  Upper triangular part
*                  up(B) = alpha*up(A) + beta*up(B)
*          = 'L':  Lower triangular part
*                  lo(B) = alpha*lo(A) + beta*lo(B)
*          = 'T':  Transposed matrix A
*                  B = alpha*A**T + beta*B
*          = 'C':  Conjugate transposed matrix A
*                  B = alpha*A**H + beta*B
*          Otherwise: B = alpha*A + beta*B
*              if M = LDA = LDB: use one BLAS loop
*              if MODE = 'V' :   columnwise copy using BLAS if possible
*              else :            use double loops
*
*  M       (input) INTEGER
*          M specifies the number of columns of the matrix A if
*          MODE != 'T'/'C', and it specifies the number of rows of the
*          matrix A otherwise.  It also specifies the number of rows of
*          the matrix B. M >= 0.
*
*  N       (input) INTEGER
*          N specifies the number of rows of the matrix A if
*          MODE != 'T'/'C', and it specifies the number of columns of
*          the matrix A otherwise. It also specifies the number of
*          columns of the matrix B. N >= 0.
*
*  ALPHA   (input) DOUBLE PRECISION
*          ALPHA specifies the scalar alpha.
*
*  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
*          The m by n matrix A if MODE != 'T'/'C'.
*          If MODE = 'U', only the upper triangle or trapezoid is
*          accessed; if MODE = 'L', only the lower triangle or
*          trapezoid is accessed.  Otherwise all m-by-n data matrix
*          is accessed.
*          And the n by m matrix A if MODE = 'T'/'C'.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,M) if
*          MODE != 'T'/'C'.  And LDA >= max(1,N) if MODE = 'T'/'C'.
*
*  BETA    (input) DOUBLE PRECISION
*          BETA specifies the scalar beta.
*
*  B       (input) DOUBLE PRECISION array, dimension (LDB,N)
*          On exit, B = alpha*A + beta*B
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,M).
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO,          ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0)
*     ..
*     .. Local Scalars ..
      INTEGER            I, J
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           DSCAL, DCOPY, DAXPY
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MIN
*     ..
*     .. Executable Statements ..
*
      IF( M.LE.0 .OR. N.LE.0 .OR. ( ALPHA.EQ.ZERO.AND.BETA.EQ.ONE ) )
     $   RETURN
*
*     A is upper triangular or upper trapezoidal,
*
      IF( LSAME( MODE, 'U' ) ) THEN
         IF( ALPHA.EQ.ZERO ) THEN
            IF( BETA.EQ.ZERO ) THEN
               DO 20 J = 1, N
                  DO 10 I = 1, MIN( J, M )
                     B( I, J ) = ZERO
   10             CONTINUE
   20          CONTINUE
            ELSE
               DO 40 J = 1, N
                  DO 30 I = 1, MIN( J, M )
                     B( I, J ) = BETA * B( I, J )
   30             CONTINUE
   40          CONTINUE
            END IF
*
         ELSE IF( ALPHA.EQ.ONE ) THEN
            IF( BETA.EQ.ZERO ) THEN
               DO 60 J = 1, N
                  DO 50 I = 1, MIN( J, M )
                     B( I, J ) = A( I, J )
   50             CONTINUE
   60          CONTINUE
            ELSE IF( BETA.EQ.ONE ) THEN
               DO 80 J = 1, N
                  DO 70 I = 1, MIN( J, M )
                     B( I, J ) = A( I, J ) + B( I, J )
   70             CONTINUE
   80          CONTINUE
            ELSE
               DO 100 J = 1, N
                  DO 90 I = 1, MIN( J, M )
                     B( I, J ) = A( I, J ) + BETA * B( I, J )
   90             CONTINUE
  100          CONTINUE
            END IF
*
         ELSE
            IF( BETA.EQ.ZERO ) THEN
               DO 120 J = 1, N
                  DO 110 I = 1, MIN( J, M )
                     B( I, J ) = ALPHA * A( I, J )
  110             CONTINUE
  120          CONTINUE
            ELSE IF( BETA.EQ.ONE ) THEN
               DO 140 J = 1, N
                  DO 130 I = 1, MIN( J, M )
                     B( I, J ) = ALPHA * A( I, J ) + B( I, J )
  130             CONTINUE
  140          CONTINUE
            ELSE
               DO 160 J = 1, N
                  DO 150 I = 1, MIN( J, M )
                     B( I, J ) = ALPHA * A( I, J ) + BETA * B( I, J )
  150             CONTINUE
  160          CONTINUE
            END IF
         END IF
*
*     A is lower triangular or upper trapezoidal,
*
      ELSE IF( LSAME( MODE, 'L' ) ) THEN
         IF( ALPHA.EQ.ZERO ) THEN
            IF( BETA.EQ.ZERO ) THEN
               DO 180 J = 1, N
                  DO 170 I = J, M
                     B( I, J ) = ZERO
  170             CONTINUE
  180          CONTINUE
            ELSE
               DO 200 J = 1, N
                  DO 190 I = J, M
                     B( I, J ) = BETA * B( I, J )
  190             CONTINUE
  200          CONTINUE
            END IF
*
         ELSE IF( ALPHA.EQ.ONE ) THEN
            IF( BETA.EQ.ZERO ) THEN
               DO 220 J = 1, N
                  DO 210 I = J, M
                     B( I, J ) = A( I, J )
  210             CONTINUE
  220          CONTINUE
            ELSE IF( BETA.EQ.ONE ) THEN
               DO 240 J = 1, N
                  DO 230 I = J, M
                     B( I, J ) = A( I, J ) + B( I, J )
  230             CONTINUE
  240          CONTINUE
            ELSE
               DO 260 J = 1, N
                  DO 250 I = J, M
                     B( I, J ) = A( I, J ) + BETA * B( I, J )
  250             CONTINUE
  260          CONTINUE
            END IF
*
         ELSE
            IF( BETA.EQ.ZERO ) THEN
               DO 280 J = 1, N
                  DO 270 I = J, M
                     B( I, J ) = ALPHA * A( I, J )
  270             CONTINUE
  280          CONTINUE
            ELSE IF( BETA.EQ.ONE ) THEN
               DO 300 J = 1, N
                  DO 290 I = J, M
                     B( I, J ) = ALPHA * A( I, J ) + B( I, J )
  290             CONTINUE
  300          CONTINUE
            ELSE
               DO 320 J = 1, N
                  DO 310 I = J, M
                     B( I, J ) = ALPHA * A( I, J ) + BETA * B( I, J )
  310             CONTINUE
  320          CONTINUE
            END IF
         END IF
*
*     If MODE = 'Transpose'/'Conjugate'
*
      ELSE IF( LSAME( MODE, 'T' ) .OR. LSAME( MODE, 'C' ) ) THEN
         IF( ALPHA.EQ.ZERO ) THEN
            IF( BETA.EQ.ZERO ) THEN
               DO 340 J = 1, N
                  DO 330 I = 1, M
                     B( I, J ) = ZERO
  330             CONTINUE
  340          CONTINUE
            ELSE
               DO 360 J = 1, N
                  DO 350 I = 1, M
                     B( I, J ) = BETA * B( I, J )
  350             CONTINUE
  360          CONTINUE
            END IF
*
         ELSE IF( ALPHA.EQ.ONE ) THEN
            IF( BETA.EQ.ZERO ) THEN
               DO 380 J = 1, N
                  DO 370 I = 1, M
                     B( I, J ) = A( J, I )
  370             CONTINUE
  380          CONTINUE
            ELSE IF( BETA.EQ.ONE ) THEN
               DO 400 J = 1, N
                  DO 390 I = 1, M
                     B( I, J ) = A( J, I ) + B( I, J )
  390             CONTINUE
  400          CONTINUE
            ELSE
               DO 420 J = 1, N
                  DO 410 I = 1, M
                     B( I, J ) = A( J, I ) + BETA * B( I, J )
  410             CONTINUE
  420          CONTINUE
            END IF
*
         ELSE
            IF( BETA.EQ.ZERO ) THEN
               DO 440 J = 1, N
                  DO 430 I = 1, M
                     B( I, J ) = ALPHA * A( J, I )
  430             CONTINUE
  440          CONTINUE
            ELSE IF( BETA.EQ.ONE ) THEN
               DO 460 J = 1, N
                  DO 450 I = 1, M
                     B( I, J ) = ALPHA * A( J, I ) + B( I, J )
  450             CONTINUE
  460          CONTINUE
            ELSE
               DO 480 J = 1, N
                  DO 470 I = 1, M
                     B( I, J ) = ALPHA * A( J, I ) + BETA * B( I, J )
  470             CONTINUE
  480          CONTINUE
            END IF
         END IF
*
*     Other cases (for genral matrix additions)
*
      ELSE
         IF( ALPHA.EQ.ZERO ) THEN
            IF( BETA.EQ.ZERO ) THEN
               DO 500 J = 1, N
                  DO 490 I = 1, M
                     B( I, J ) = ZERO
  490             CONTINUE
  500          CONTINUE
*
            ELSE
               IF( M.EQ.LDB ) THEN
                  CALL DSCAL( M*N, BETA, B( 1, 1 ), 1 )
               ELSE IF( LSAME( MODE, 'V' ) ) THEN
                  DO 510 J = 1, N
                     CALL DSCAL( M, BETA, B( 1, J ), 1 )
  510             CONTINUE
               ELSE
                  DO 530 J = 1, N
                     DO 520 I = 1, M
                        B( I, J ) = BETA * B( I, J )
  520                CONTINUE
  530             CONTINUE
               END IF
            END IF
*
         ELSE IF( ALPHA.EQ.ONE ) THEN
            IF( BETA.EQ.ZERO ) THEN
               IF( M.EQ.LDA .AND. M.EQ.LDB ) THEN
                  CALL DCOPY( M*N, A( 1, 1 ), 1, B( 1, 1 ), 1 )
               ELSE IF( LSAME( MODE, 'V' ) ) THEN
                  DO 540 J = 1, N
                     CALL DCOPY( M, A( 1, J ), 1, B( 1, J ), 1 )
  540             CONTINUE
               ELSE
                  DO 560 J = 1, N
                     DO 550 I = 1, M
                        B( I, J ) = A( I, J )
  550                CONTINUE
  560             CONTINUE
               END IF
*
            ELSE IF( BETA.EQ.ONE ) THEN
               DO 580 J = 1, N
                  DO 570 I = 1, M
                     B( I, J ) = A( I, J ) + B( I, J )
  570             CONTINUE
  580          CONTINUE
*
            ELSE
               DO 600 J = 1, N
                  DO 590 I = 1, M
                     B( I, J ) = A( I, J ) + BETA * B( I, J )
  590             CONTINUE
  600          CONTINUE
            END IF
*
         ELSE
            IF( BETA.EQ.ZERO ) THEN
               DO 620 J = 1, N
                  DO 610 I = 1, M
                     B( I, J ) = ALPHA * A( I, J )
  610             CONTINUE
  620          CONTINUE
*
            ELSE IF( BETA.EQ.ONE ) THEN
               IF( M.EQ.LDA .AND. M.EQ.LDB ) THEN
                  CALL DAXPY( M*N, ALPHA, A( 1, 1 ), 1, B( 1, 1 ), 1 )
               ELSE IF( LSAME( MODE, 'V' ) ) THEN
                  DO 630 J = 1, N
                     CALL DAXPY( M, ALPHA, A( 1, J ), 1, B( 1, J ), 1 )
  630             CONTINUE
               ELSE
                  DO 650 J = 1, N
                     DO 640 I = 1, M
                        B( I, J ) = ALPHA * A( I, J ) + B( I, J )
  640                CONTINUE
  650             CONTINUE
               END IF
*
            ELSE
               DO 670 J = 1, N
                  DO 660 I = 1, M
                     B( I, J ) = ALPHA * A( I, J ) + BETA * B( I, J )
  660             CONTINUE
  670          CONTINUE
            END IF
         END IF
      END IF
*
      RETURN
*
*     End of PBDMATADD
*
      END