1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
|
SUBROUTINE PBDTRAN( ICONTXT, ADIST, TRANS, M, N, NB, A, LDA, BETA,
$ C, LDC, IAROW, IACOL, ICROW, ICCOL, WORK )
*
* -- PB-BLAS routine (version 2.1) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory.
* April 28, 1996
*
* Jaeyoung Choi, Oak Ridge National Laboratory
* Jack Dongarra, University of Tennessee and Oak Ridge National Lab.
* David Walker, Oak Ridge National Laboratory
*
* .. Scalar Arguments ..
CHARACTER*1 ADIST, TRANS
INTEGER IACOL, IAROW, ICCOL, ICONTXT, ICROW, LDA, LDC,
$ M, N, NB
DOUBLE PRECISION BETA
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), C( LDC, * ), WORK( * )
* ..
*
* Purpose
* =======
*
* PBDTRAN transposes a column block to row block, or a row block to
* column block by reallocating data distribution.
*
* C := A^T + beta*C, or C := A^C + beta*C
*
* where A is an M-by-N matrix and C is an N-by-M matrix, and the size
* of M or N is limited to its block size NB.
*
* The first elements of the matrices A, and C should be located at
* the beginnings of their first blocks. (not the middle of the blocks.)
*
* Parameters
* ==========
*
* ICONTXT (input) INTEGER
* ICONTXT is the BLACS mechanism for partitioning communication
* space. A defining property of a context is that a message in
* a context cannot be sent or received in another context. The
* BLACS context includes the definition of a grid, and each
* process' coordinates in it.
*
* ADIST - (input) CHARACTER*1
* ADIST specifies whether A is a column block or a row block.
*
* ADIST = 'C', A is a column block
* ADIST = 'R', A is a row block
*
* TRANS - (input) CHARACTER*1
* TRANS specifies whether the transposed format is transpose
* or conjugate transpose. If the matrices A and C are real,
* the argument is ignored.
*
* TRANS = 'T', transpose
* TRANS = 'C', conjugate transpose
*
* M - (input) INTEGER
* M specifies the (global) number of rows of the matrix (block
* column or block row) A and of columns of the matrix C.
* M >= 0.
*
* N - (input) INTEGER
* N specifies the (global) number of columns of the matrix
* (block column or block row) A and of columns of the matrix
* C. N >= 0.
*
* NB - (input) INTEGER
* NB specifies the column block size of the matrix A and the
* row block size of the matrix C when ADIST = 'C'. Otherwise,
* it specifies the row block size of the matrix A and the
* column block size of the matrix C. NB >= 1.
*
* A (input) DOUBLE PRECISION array of DIMENSION ( LDA, Lx ),
* where Lx is N when ADIST = 'C', or Nq when ADIST = 'R'.
* Before entry with ADIST = 'C', the leading Mp by N part of
* the array A must contain the matrix A, otherwise the leading
* M by Nq part of the array A must contain the matrix A. See
* parameter details for the values of Mp and Nq.
*
* LDA (input) INTEGER
* LDA specifies the leading dimension of (local) A as declared
* in the calling (sub) program. LDA >= MAX(1,Mp) when
* ADIST = 'C', or LDA >= MAX(1,M) otherwise.
*
* BETA (input) DOUBLE PRECISION
* BETA specifies scaler beta.
*
* C (input/output) DOUBLE PRECISION array of DIMENSION
* ( LDC, Lx ),
* where Lx is Mq when ADIST = 'C', or N when ADIST = 'R'.
* If ADIST = 'C', the leading N-by-Mq part of the array C
* contains the (local) matrix C, otherwise the leading
* Np-by-M part of the array C must contain the (local) matrix
* C. C will not be referenced if beta is zero.
*
* LDC (input) INTEGER
* LDC specifies the leading dimension of (local) C as declared
* in the calling (sub) program. LDC >= MAX(1,N) when ADIST='C',
* or LDC >= MAX(1,Np) otherwise.
*
* IAROW (input) INTEGER
* IAROW specifies a row of the process template,
* which holds the first block of the matrix A. If A is a row
* of blocks (ADIST = 'R') and all rows of processes have a copy
* of A, then set IAROW = -1.
*
* IACOL (input) INTEGER
* IACOL specifies a column of the process template,
* which holds the first block of the matrix A. If A is a
* column of blocks (ADIST = 'C') and all columns of processes
* have a copy of A, then set IACOL = -1.
*
* ICROW (input) INTEGER
* ICROW specifies the current row process which holds
* the first block of the matrix C, which is transposed of A.
* If C is a row of blocks (ADIST = 'C') and the transposed
* row block C is distributed all rows of processes, set
* ICROW = -1.
*
* ICCOL (input) INTEGER
* ICCOL specifies the current column process which holds
* the first block of the matrix C, which is transposed of A.
* If C is a column of blocks (ADIST = 'R') and the transposed
* column block C is distributed all columns of processes,
* set ICCOL = -1.
*
* WORK (workspace) DOUBLE PRECISION array of dimension Size(WORK).
* It needs extra working space of A'.
*
* Parameters Details
* ==================
*
* Lx It is a local portion of L owned by a process, (L is
* replaced by M, or N, and x is replaced by either p (=NPROW)
* or q (=NPCOL)). The value is determined by L, LB, x, and
* MI, where LB is a block size and MI is a row or column
* position in a process template. Lx is equal to or less
* than Lx0 = CEIL( L, LB*x ) * LB.
*
* Communication Scheme
* ====================
*
* The communication scheme of the routine is set to '1-tree', which is
* fan-out. (For details, see BLACS user's guide.)
*
* Memory Requirement of WORK
* ==========================
*
* Mqb = CEIL( M, NB*NPCOL )
* Npb = CEIL( N, NB*NPROW )
* LCMQ = LCM / NPCOL
* LCMP = LCM / NPROW
*
* (1) ADIST = 'C'
* (a) IACOL != -1
* Size(WORK) = N * CEIL(Mqb,LCMQ)*NB
* (b) IACOL = -1
* Size(WORK) = N * CEIL(Mqb,LCMQ)*NB * MIN(LCMQ,CEIL(M,NB))
*
* (2) ADIST = 'R'
* (a) IAROW != -1
* Size(WORK) = M * CEIL(Npb,LCMP)*NB
* (b) IAROW = -1
* Size(WORK) = M * CEIL(Npb,LCMP)*NB * MIN(LCMP,CEIL(N,NB))
*
* Notes
* -----
* More precise space can be computed as
*
* CEIL(Mqb,LCMQ)*NB => NUMROC( NUMROC(M,NB,0,0,NPCOL), NB, 0, 0, LCMQ )
* CEIL(Npb,LCMP)*NB => NUMROC( NUMROC(N,NB,0,0,NPROW), NB, 0, 0, LCMP )
*
* =====================================================================
*
* ..
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL COLFORM, ROWFORM
INTEGER I, IDEX, IGD, INFO, JCCOL, JCROW, JDEX, LCM,
$ LCMP, LCMQ, MCCOL, MCROW, ML, MP, MQ, MQ0,
$ MRCOL, MRROW, MYCOL, MYROW, NP, NP0, NPCOL,
$ NPROW, NQ
DOUBLE PRECISION TBETA
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILCM, ICEIL, NUMROC
EXTERNAL ILCM, ICEIL, LSAME, NUMROC
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, DGEBR2D, DGEBS2D, DGERV2D,
$ DGESD2D, PBDMATADD, PBDTR2AF, PBDTR2AT,
$ PBDTR2BT, PBDTRGET, PBDTRSRT, PXERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, MOD
* ..
* .. Executable Statements ..
*
* Quick return if possible.
*
IF( M.EQ.0 .OR. N.EQ.0 ) RETURN
*
CALL BLACS_GRIDINFO( ICONTXT, NPROW, NPCOL, MYROW, MYCOL )
*
COLFORM = LSAME( ADIST, 'C' )
ROWFORM = LSAME( ADIST, 'R' )
*
* Test the input parameters.
*
INFO = 0
IF( ( .NOT.COLFORM ) .AND. ( .NOT.ROWFORM ) ) THEN
INFO = 2
ELSE IF( M .LT.0 ) THEN
INFO = 4
ELSE IF( N .LT.0 ) THEN
INFO = 5
ELSE IF( NB.LT.1 ) THEN
INFO = 6
ELSE IF( IAROW.LT.-1 .OR. IAROW.GE.NPROW .OR.
$ ( IAROW.EQ.-1 .AND. COLFORM ) ) THEN
INFO = 12
ELSE IF( IACOL.LT.-1 .OR. IACOL.GE.NPCOL .OR.
$ ( IACOL.EQ.-1 .AND. ROWFORM ) ) THEN
INFO = 13
ELSE IF( ICROW.LT.-1 .OR. ICROW.GE.NPROW .OR.
$ ( ICROW.EQ.-1 .AND. ROWFORM ) ) THEN
INFO = 14
ELSE IF( ICCOL.LT.-1 .OR. ICCOL.GE.NPCOL .OR.
$ ( ICCOL.EQ.-1 .AND. COLFORM ) ) THEN
INFO = 15
END IF
*
10 CONTINUE
IF( INFO .NE. 0 ) THEN
CALL PXERBLA( ICONTXT, 'PBDTRAN ', INFO )
RETURN
END IF
*
* Start the operations.
*
* LCM : the least common multiple of NPROW and NPCOL
*
LCM = ILCM( NPROW, NPCOL )
LCMP = LCM / NPROW
LCMQ = LCM / NPCOL
IGD = NPCOL / LCMP
*
* When A is a column block
*
IF( COLFORM ) THEN
*
* Form C <== A' ( A is a column block )
* _
* | |
* | |
* _____________ | |
* |______C______| <== |A|
* | |
* | |
* |_|
*
* MRROW : row relative position in template from IAROW
* MRCOL : column relative position in template from ICCOL
*
MRROW = MOD( NPROW+MYROW-IAROW, NPROW )
MRCOL = MOD( NPCOL+MYCOL-ICCOL, NPCOL )
JCROW = ICROW
IF( ICROW.EQ.-1 ) JCROW = IAROW
*
MP = NUMROC( M, NB, MYROW, IAROW, NPROW )
MQ = NUMROC( M, NB, MYCOL, ICCOL, NPCOL )
MQ0 = NUMROC( NUMROC(M, NB, 0, 0, NPCOL), NB, 0, 0, LCMQ )
*
IF( LDA.LT.MP .AND.
$ ( IACOL.EQ.MYCOL .OR. IACOL.EQ.-1 ) ) THEN
INFO = 8
ELSE IF( LDC.LT.N .AND.
$ ( ICROW.EQ.MYROW .OR. ICROW.EQ.-1 ) ) THEN
INFO = 11
END IF
IF( INFO.NE.0 ) GO TO 10
*
* When a column process of IACOL has a column block A,
*
IF( IACOL.GE.0 ) THEN
TBETA = ZERO
IF( MYROW.EQ.JCROW ) TBETA = BETA
*
DO 20 I = 0, MIN( LCM, ICEIL(M,NB) ) - 1
MCROW = MOD( MOD(I, NPROW) + IAROW, NPROW )
MCCOL = MOD( MOD(I, NPCOL) + ICCOL, NPCOL )
IF( LCMQ.EQ.1 ) MQ0 = NUMROC( M, NB, I, 0, NPCOL )
JDEX = (I/NPCOL) * NB
*
* A source node copies the blocks to WORK, and send it
*
IF( MYROW.EQ.MCROW .AND. MYCOL.EQ.IACOL ) THEN
*
* The source node is a destination node
*
IDEX = (I/NPROW) * NB
IF( MYROW.EQ.JCROW .AND. MYCOL.EQ.MCCOL ) THEN
CALL PBDTR2AT( ICONTXT, 'Col', TRANS, MP-IDEX, N, NB,
$ A(IDEX+1,1), LDA, TBETA, C(1,JDEX+1),
$ LDC, LCMP, LCMQ )
*
* The source node sends blocks to a destination node
*
ELSE
CALL PBDTR2BT( ICONTXT, 'Col', TRANS, MP-IDEX, N, NB,
$ A(IDEX+1,1), LDA, ZERO, WORK, N,
$ LCMP*NB )
CALL DGESD2D( ICONTXT, N, MQ0, WORK, N, JCROW, MCCOL )
END IF
*
* A destination node receives the copied blocks
*
ELSE IF( MYROW.EQ.JCROW .AND. MYCOL.EQ.MCCOL ) THEN
IF( LCMQ.EQ.1 .AND. TBETA.EQ.ZERO ) THEN
CALL DGERV2D( ICONTXT, N, MQ0, C, LDC, MCROW, IACOL )
ELSE
CALL DGERV2D( ICONTXT, N, MQ0, WORK, N, MCROW, IACOL )
CALL PBDTR2AF( ICONTXT, 'Row', N, MQ-JDEX, NB, WORK, N,
$ TBETA, C(1,JDEX+1), LDC, LCMP, LCMQ,
$ MQ0 )
END IF
END IF
20 CONTINUE
*
* Broadcast a row block of C in each column of template
*
IF( ICROW.EQ.-1 ) THEN
IF( MYROW.EQ.JCROW ) THEN
CALL DGEBS2D( ICONTXT, 'Col', '1-tree', N, MQ, C, LDC )
ELSE
CALL DGEBR2D( ICONTXT, 'Col', '1-tree', N, MQ, C, LDC,
$ JCROW, MYCOL )
END IF
END IF
*
* When all column procesors have a copy of the column block A,
*
ELSE
IF( LCMQ.EQ.1 ) MQ0 = MQ
*
* Processors, which have diagonal blocks of A, copy them to
* WORK array in transposed form
*
DO 30 I = 0, LCMP-1
IF( MRCOL.EQ.MOD( NPROW*I+MRROW, NPCOL ) ) THEN
IF( LCMQ.EQ.1.AND.(ICROW.EQ.-1.OR.ICROW.EQ.MYROW) ) THEN
CALL PBDTR2BT( ICONTXT, 'Col', TRANS, MP-I*NB, N, NB,
$ A(I*NB+1,1), LDA, BETA, C, LDC,
$ LCMP*NB )
ELSE
CALL PBDTR2BT( ICONTXT, 'Col', TRANS, MP-I*NB, N, NB,
$ A(I*NB+1,1), LDA, ZERO, WORK, N,
$ LCMP*NB )
END IF
END IF
30 CONTINUE
*
* Get diagonal blocks of A for each column of the template
*
MCROW = MOD( MOD(MRCOL,NPROW)+IAROW, NPROW )
IF( LCMQ.GT.1 ) THEN
MCCOL = MOD( NPCOL+MYCOL-ICCOL, NPCOL )
CALL PBDTRGET( ICONTXT, 'Row', N, MQ0, ICEIL(M,NB), WORK, N,
$ MCROW, MCCOL, IGD, MYROW, MYCOL, NPROW,
$ NPCOL )
END IF
*
* Broadcast a row block of WORK in every row of template
*
IF( ICROW.EQ.-1 ) THEN
IF( MYROW.EQ.MCROW ) THEN
IF( LCMQ.GT.1 )
$ CALL PBDTRSRT( ICONTXT, 'Row', N, MQ, NB, WORK, N, BETA,
$ C, LDC, LCMP, LCMQ, MQ0 )
CALL DGEBS2D( ICONTXT, 'Col', '1-tree', N, MQ, C, LDC )
ELSE
CALL DGEBR2D( ICONTXT, 'Col', '1-tree', N, MQ, C, LDC,
$ MCROW, MYCOL )
END IF
*
* Send a row block of WORK to the destination row
*
ELSE
IF( LCMQ.EQ.1 ) THEN
IF( MYROW.EQ.MCROW ) THEN
IF( MYROW.NE.ICROW )
$ CALL DGESD2D( ICONTXT, N, MQ, WORK, N, ICROW, MYCOL )
ELSE IF( MYROW.EQ.ICROW ) THEN
IF( BETA.EQ.ZERO ) THEN
CALL DGERV2D( ICONTXT, N, MQ, C, LDC, MCROW, MYCOL )
ELSE
CALL DGERV2D( ICONTXT, N, MQ, WORK, N, MCROW, MYCOL )
CALL PBDMATADD( ICONTXT, 'G', N, MQ, ONE, WORK, N,
$ BETA, C, LDC )
END IF
END IF
*
ELSE
ML = MQ0 * MIN( LCMQ, MAX(0,ICEIL(M,NB)-MCCOL) )
IF( MYROW.EQ.MCROW ) THEN
IF( MYROW.NE.ICROW )
$ CALL DGESD2D( ICONTXT, N, ML, WORK, N, ICROW, MYCOL )
ELSE IF( MYROW.EQ.ICROW ) THEN
CALL DGERV2D( ICONTXT, N, ML, WORK, N, MCROW, MYCOL )
END IF
*
IF( MYROW.EQ.ICROW )
$ CALL PBDTRSRT( ICONTXT, 'Row', N, MQ, NB, WORK, N, BETA,
$ C, LDC, LCMP, LCMQ, MQ0 )
END IF
END IF
*
END IF
*
* When A is a row block
*
ELSE
*
* Form C <== A' ( A is a row block )
* _
* | |
* | |
* | | _____________
* |C| <== |______A______|
* | |
* | |
* |_|
*
* MRROW : row relative position in template from ICROW
* MRCOL : column relative position in template from IACOL
*
MRROW = MOD( NPROW+MYROW-ICROW, NPROW )
MRCOL = MOD( NPCOL+MYCOL-IACOL, NPCOL )
JCCOL = ICCOL
IF( ICCOL.EQ.-1 ) JCCOL = IACOL
*
NP = NUMROC( N, NB, MYROW, ICROW, NPROW )
NQ = NUMROC( N, NB, MYCOL, IACOL, NPCOL )
NP0 = NUMROC( NUMROC(N, NB, 0, 0, NPROW), NB, 0, 0, LCMP )
*
IF( LDA.LT.M .AND.
$ ( IAROW.EQ.MYROW .OR. IAROW.EQ.-1 ) ) THEN
INFO = 8
ELSE IF( LDC.LT.NP .AND.
$ ( ICCOL.EQ.MYCOL .OR. ICCOL.EQ.-1 ) ) THEN
INFO = 11
END IF
IF( INFO.NE.0 ) GO TO 10
*
* When a row process of IAROW has a row block A,
*
IF( IAROW.GE.0 ) THEN
TBETA = ZERO
IF( MYCOL.EQ.JCCOL ) TBETA = BETA
*
DO 40 I = 0, MIN( LCM, ICEIL(N,NB) ) - 1
MCROW = MOD( MOD(I, NPROW) + ICROW, NPROW )
MCCOL = MOD( MOD(I, NPCOL) + IACOL, NPCOL )
IF( LCMP.EQ.1 ) NP0 = NUMROC( N, NB, I, 0, NPROW )
IDEX = (I/NPROW) * NB
*
* A source node copies the blocks to WORK, and send it
*
IF( MYROW.EQ.IAROW .AND. MYCOL.EQ.MCCOL ) THEN
*
* The source node is a destination node
*
JDEX = (I/NPCOL) * NB
IF( MYROW.EQ.MCROW .AND. MYCOL.EQ.JCCOL ) THEN
CALL PBDTR2AT( ICONTXT, 'Row', TRANS, M, NQ-JDEX, NB,
$ A(1,JDEX+1), LDA, TBETA, C(IDEX+1,1),
$ LDC, LCMP, LCMQ )
*
* The source node sends blocks to a destination node
*
ELSE
CALL PBDTR2BT( ICONTXT, 'Row', TRANS, M, NQ-JDEX, NB,
$ A(1,JDEX+1), LDA, ZERO, WORK, NP0,
$ LCMQ*NB )
CALL DGESD2D( ICONTXT, NP0, M, WORK, NP0,
$ MCROW, JCCOL )
END IF
*
* A destination node receives the copied blocks
*
ELSE IF( MYROW.EQ.MCROW .AND. MYCOL.EQ.JCCOL ) THEN
IF( LCMP.EQ.1 .AND. TBETA.EQ.ZERO ) THEN
CALL DGERV2D( ICONTXT, NP0, M, C, LDC, IAROW, MCCOL )
ELSE
CALL DGERV2D( ICONTXT, NP0, M, WORK, NP0, IAROW, MCCOL )
CALL PBDTR2AF( ICONTXT, 'Col', NP-IDEX, M, NB, WORK,
$ NP0, TBETA, C(IDEX+1,1), LDC, LCMP, LCMQ,
$ NP0 )
END IF
END IF
40 CONTINUE
*
* Broadcast a column block of WORK in each row of template
*
IF( ICCOL.EQ.-1 ) THEN
IF( MYCOL.EQ.JCCOL ) THEN
CALL DGEBS2D( ICONTXT, 'Row', '1-tree', NP, M, C, LDC )
ELSE
CALL DGEBR2D( ICONTXT, 'Row', '1-tree', NP, M, C, LDC,
$ MYROW, JCCOL )
END IF
END IF
*
* When all row procesors have a copy of the row block A,
*
ELSE
IF( LCMP.EQ.1 ) NP0 = NP
*
* Processors, which have diagonal blocks of A, copy them to
* WORK array in transposed form
*
DO 50 I = 0, LCMQ-1
IF( MRROW.EQ.MOD(NPCOL*I+MRCOL, NPROW) ) THEN
IF( LCMP.EQ.1.AND.(ICCOL.EQ.-1.OR.ICCOL.EQ.MYCOL) ) THEN
CALL PBDTR2BT( ICONTXT, 'Row', TRANS, M, NQ-I*NB, NB,
$ A(1,I*NB+1), LDA, BETA, C, LDC,
$ LCMQ*NB )
ELSE
CALL PBDTR2BT( ICONTXT, 'Row', TRANS, M, NQ-I*NB, NB,
$ A(1,I*NB+1), LDA, ZERO, WORK, NP0,
$ LCMQ*NB )
END IF
END IF
50 CONTINUE
*
* Get diagonal blocks of A for each row of the template
*
MCCOL = MOD( MOD(MRROW, NPCOL)+IACOL, NPCOL )
IF( LCMP.GT.1 ) THEN
MCROW = MOD( NPROW+MYROW-ICROW, NPROW )
CALL PBDTRGET( ICONTXT, 'Col', NP0, M, ICEIL(N,NB), WORK,
$ NP0, MCROW, MCCOL, IGD, MYROW, MYCOL, NPROW,
$ NPCOL )
END IF
*
* Broadcast a column block of WORK in every column of template
*
IF( ICCOL.EQ.-1 ) THEN
IF( MYCOL.EQ.MCCOL ) THEN
IF( LCMP.GT.1 )
$ CALL PBDTRSRT( ICONTXT, 'Col', NP, M, NB, WORK, NP0,
$ BETA, C, LDC, LCMP, LCMQ, NP0 )
CALL DGEBS2D( ICONTXT, 'Row', '1-tree', NP, M, C, LDC )
ELSE
CALL DGEBR2D( ICONTXT, 'Row', '1-tree', NP, M, C, LDC,
$ MYROW, MCCOL )
END IF
*
* Send a column block of WORK to the destination column
*
ELSE
IF( LCMP.EQ.1 ) THEN
IF( MYCOL.EQ.MCCOL ) THEN
IF( MYCOL.NE.ICCOL )
$ CALL DGESD2D( ICONTXT, NP, M, WORK, NP, MYROW, ICCOL )
ELSE IF( MYCOL.EQ.ICCOL ) THEN
IF( BETA.EQ.ZERO ) THEN
CALL DGERV2D( ICONTXT, NP, M, C, LDC, MYROW, MCCOL )
ELSE
CALL DGERV2D( ICONTXT, NP, M, WORK, NP, MYROW, MCCOL )
CALL PBDMATADD( ICONTXT, 'G', NP, M, ONE, WORK, NP,
$ BETA, C, LDC )
END IF
END IF
*
ELSE
ML = M * MIN( LCMP, MAX( 0, ICEIL(N,NB) - MCROW ) )
IF( MYCOL.EQ.MCCOL ) THEN
IF( MYCOL.NE.ICCOL )
$ CALL DGESD2D( ICONTXT, NP0, ML, WORK, NP0,
$ MYROW, ICCOL )
ELSE IF( MYCOL.EQ.ICCOL ) THEN
CALL DGERV2D( ICONTXT, NP0, ML, WORK, NP0,
$ MYROW, MCCOL )
END IF
*
IF( MYCOL.EQ.ICCOL )
$ CALL PBDTRSRT( ICONTXT, 'Col', NP, M, NB, WORK, NP0,
$ BETA, C, LDC, LCMP, LCMQ, NP0 )
END IF
END IF
*
END IF
END IF
*
RETURN
*
* End of PBDTRAN
*
END
*
*=======================================================================
* SUBROUTINE PBDTR2AT
*=======================================================================
*
SUBROUTINE PBDTR2AT( ICONTXT, ADIST, TRANS, M, N, NB, A, LDA,
$ BETA, B, LDB, LCMP, LCMQ )
*
* -- PB-BLAS routine (version 2.1) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory.
* April 28, 1996
*
* .. Scalar Arguments ..
CHARACTER*1 ADIST, TRANS
INTEGER ICONTXT, LCMP, LCMQ, LDA, LDB, M, N, NB
DOUBLE PRECISION BETA
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * )
* ..
*
* Purpose
* =======
*
* PBDTR2AT forms B <== A^T + beta*B, or A^C + beta*B
* B is a ((conjugate) transposed) scattered block row (or column),
* copied from a scattered block column (or row) of A
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
INTEGER IA, IB, K, INTV, JNTV
* ..
* .. External Subroutines ..
EXTERNAL PBDMATADD
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ICEIL
EXTERNAL LSAME, ICEIL
* ..
* .. Intrinsic Functions ..
INTRINSIC MIN
* ..
* .. Excutable Statements ..
*
IF( LCMP.EQ.LCMQ ) THEN
CALL PBDMATADD( ICONTXT, TRANS, N, M, ONE, A, LDA, BETA, B,
$ LDB )
*
ELSE
*
* If A is a column block ( ADIST = 'C' ),
*
IF( LSAME( ADIST, 'C' ) ) THEN
INTV = LCMP * NB
JNTV = LCMQ * NB
IA = 1
IB = 1
DO 10 K = 1, ICEIL( M, INTV )
CALL PBDMATADD( ICONTXT, TRANS, N, MIN( M-IA+1, NB ),
$ ONE, A(IA,1), LDA, BETA, B(1,IB), LDB )
IA = IA + INTV
IB = IB + JNTV
10 CONTINUE
*
* If A is a row block ( ADIST = 'R' ),
*
ELSE
INTV = LCMP * NB
JNTV = LCMQ * NB
IA = 1
IB = 1
DO 20 K = 1, ICEIL( N, JNTV )
CALL PBDMATADD( ICONTXT, TRANS, MIN( N-IA+1, NB ), M,
$ ONE, A(1,IA), LDA, BETA, B(IB,1), LDB )
IA = IA + JNTV
IB = IB + INTV
20 CONTINUE
END IF
END IF
*
RETURN
*
* End of PBDTR2AT
*
END
*
*=======================================================================
* SUBROUTINE PBDTR2BT
*=======================================================================
*
SUBROUTINE PBDTR2BT( ICONTXT, ADIST, TRANS, M, N, NB, A, LDA,
$ BETA, B, LDB, INTV )
*
* -- PB-BLAS routine (version 2.1) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory.
* April 28, 1996
*
* .. Scalar Arguments ..
CHARACTER*1 ADIST, TRANS
INTEGER ICONTXT, INTV, LDA, LDB, M, N, NB
DOUBLE PRECISION BETA
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * )
* ..
*
* Purpose
* =======
*
* PBDTR2BT forms T <== A^T + beta*T or A^C + beta*T, where T is a
* ((conjugate) transposed) condensed block row (or column), copied from
* a scattered block column (or row) of A
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
INTEGER IA, IB, K
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ICEIL
EXTERNAL LSAME, ICEIL
* ..
* .. External Subroutines ..
EXTERNAL PBDMATADD
* ..
* .. Intrinsic Functions ..
INTRINSIC MIN
* ..
* .. Excutable Statements ..
*
IF( INTV.EQ.NB ) THEN
CALL PBDMATADD( ICONTXT, TRANS, N, M, ONE, A, LDA, BETA, B,
$ LDB )
*
ELSE
*
* If A is a column block ( ADIST = 'C' ),
*
IF( LSAME( ADIST, 'C' ) ) THEN
IA = 1
IB = 1
DO 10 K = 1, ICEIL( M, INTV )
CALL PBDMATADD( ICONTXT, TRANS, N, MIN( M-IA+1, NB ),
$ ONE, A(IA,1), LDA, BETA, B(1,IB), LDB )
IA = IA + INTV
IB = IB + NB
10 CONTINUE
*
* If A is a row block (ADIST = 'R'),
*
ELSE
IA = 1
IB = 1
DO 20 K = 1, ICEIL( N, INTV )
CALL PBDMATADD( ICONTXT, TRANS, MIN( N-IA+1, NB ), M,
$ ONE, A(1,IA), LDA, BETA, B(IB,1), LDB )
IA = IA + INTV
IB = IB + NB
20 CONTINUE
END IF
END IF
*
RETURN
*
* End of PBDTR2BT
*
END
*
*=======================================================================
* SUBROUTINE PBDTR2AF
*=======================================================================
*
SUBROUTINE PBDTR2AF( ICONTXT, ADIST, M, N, NB, A, LDA, BETA, B,
$ LDB, LCMP, LCMQ, NINT )
*
* -- PB-BLAS routine (version 2.1) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory.
* April 28, 1996
*
* .. Scalar Arguments ..
CHARACTER*1 ADIST
INTEGER ICONTXT, M, N, NB, LDA, LDB, LCMP, LCMQ, NINT
DOUBLE PRECISION BETA
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * )
* ..
*
* Purpose
* =======
*
* PBDTR2AF forms T <== A + BETA*T, where T is a scattered block
* row (or column) copied from a (condensed) block column (or row) of A
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
INTEGER JA, JB, K, INTV
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ICEIL
EXTERNAL LSAME, ICEIL
* ..
* .. Intrinsic Functions ..
INTRINSIC MIN
* ..
* .. Executable Statements ..
*
IF( LSAME( ADIST, 'R' ) ) THEN
INTV = NB * LCMQ
JA = 1
JB = 1
DO 10 K = 1, ICEIL( NINT, NB )
CALL PBDMATADD( ICONTXT, 'G', M, MIN( N-JB+1, NB ), ONE,
$ A(1,JA), LDA, BETA, B(1,JB), LDB )
JA = JA + NB
JB = JB + INTV
10 CONTINUE
*
* if( LSAME( ADIST, 'C' ) ) then
*
ELSE
INTV = NB * LCMP
JA = 1
JB = 1
DO 20 K = 1, ICEIL( NINT, NB )
CALL PBDMATADD( ICONTXT, 'G', MIN( M-JB+1, NB ), N, ONE,
$ A(JA,1), LDA, BETA, B(JB,1), LDB )
JA = JA + NB
JB = JB + INTV
20 CONTINUE
END IF
*
RETURN
*
* End of PBDTR2AF
*
END
|