File: pbdvecadd.f

package info (click to toggle)
scalapack 1.8.0-6
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 32,240 kB
  • ctags: 29,143
  • sloc: fortran: 288,069; ansic: 64,035; makefile: 1,911
file content (228 lines) | stat: -rw-r--r-- 6,999 bytes parent folder | download | duplicates (13)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
      SUBROUTINE PBDVECADD( ICONTXT, MODE, N, ALPHA, X, INCX, BETA, Y,
     $                      INCY )
*
*  -- PB-BLAS routine (version 2.1) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory.
*     April 28, 1996
*
*     .. Scalar Arguments ..
      CHARACTER*1           MODE
      INTEGER               ICONTXT, INCX, INCY, N
      DOUBLE PRECISION      ALPHA, BETA
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION      X( * ), Y( * )
*
*     ..
*
*  Purpose
*  =======
*
*  PBDVECADD performs a vector X to be added to Y
*    Y := alpha*op(X) + beta*Y,
*  where alpha and beta are scalars, and X and Y are n vectors,
*  and op(X) = X**H if MODE = 'C',
*
*  Arguments
*  =========
*
*  ICONTXT (input) INTEGER
*          ICONTXT is the BLACS mechanism for partitioning communication
*          space.  A defining property of a context is that a message in
*          a context cannot be sent or received in another context.  The
*          BLACS context includes the definition of a grid, and each
*          process' coordinates in it.
*
*  MODE   (input) CHARACTER*1
*          Specifies the transposed, or conjugate transposed vector X
*          to be added to the vector Y
*          = 'C': Conjugate vector X is added for complex data set.
*                 Y = alpha * X**H + beta * Y
*          ELSE : Vector X is added.  Y = alpha*X + beta*Y
*                 if MODE = 'V', BLAS routine may be used.
*
*  N       (input) INTEGER
*          The number of elements of the vectors X and Y to be added.
*          N >= 0.
*
*  ALPHA   (input) DOUBLE PRECISION
*          ALPHA specifies the scalar alpha.
*
*  X       (input) DOUBLE PRECISION array of DIMENSION at least
*          ( 1 + ( N - 1 )*abs( INCX ) )
*          The incremented array X must contain the vector X.
*
*  INCX    (input) INTEGER
*          INCX specifies the increment for the elements of X.
*          INCX <> 0.
*
*  BETA    (input) DOUBLE PRECISION
*          BETA specifies the scalar beta.
*
*  Y       (input/output) DOUBLE PRECISION array of DIMENSION at least
*          ( 1 + ( N - 1 )*abs( INCY ) )
*          On entry with BETA non-zero, the incremented array Y must
*          contain the vector Y.
*          On exit, Y is overwritten by the updated vector Y.
*
*  INCY  - (input) INTEGER
*          INCY specifies the increment for the elements of Y.
*          INCY <> 0.
*
*  =====================================================================
*
*     ..
*     .. Parameters ..
      DOUBLE PRECISION   ZERO,          ONE
      PARAMETER        ( ZERO = 0.0D+0, ONE = 1.0D+0)
*     ..
*     .. Local Scalars ..
      INTEGER            I, IX, IY
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           DSCAL, DCOPY, DAXPY
*     ..
*     .. Executable Statements ..
*
      IF( N.LE.0 .OR. ( ALPHA.EQ.ZERO .AND. BETA.EQ.ONE ) ) RETURN
*
      IF( ALPHA.EQ.ZERO ) THEN
         IF( BETA.EQ.ZERO ) THEN
            IF( INCY.EQ.1 ) THEN
               DO 10 I = 1, N
                  Y( I ) = ZERO
   10          CONTINUE
            ELSE
               IY = 1
               DO 20 I = 1, N
                  Y( IY ) = ZERO
                  IY = IY + INCY
   20          CONTINUE
            END IF
*
         ELSE
            IF( LSAME( MODE, 'V' ) ) THEN
               CALL DSCAL( N, BETA, Y, INCY )
            ELSE IF( INCY.EQ.1 ) THEN
               DO 30 I = 1, N
                  Y( I ) = BETA * Y( I )
   30          CONTINUE
            ELSE
               IY = 1
               DO 40 I = 1, N
                  Y( IY ) = BETA * Y( IY )
                  IY = IY + INCY
   40          CONTINUE
            END IF
         END IF
*
      ELSE
         IF( ALPHA.EQ.ONE ) THEN
            IF( BETA.EQ.ZERO ) THEN
               IF( LSAME( MODE, 'V' ) ) THEN
                  CALL DCOPY( N, X, INCX, Y, INCY )
               ELSE IF( INCX.EQ.1 .AND. INCY.EQ.1 ) THEN
                  DO 50 I = 1, N
                     Y( I ) = X( I )
   50             CONTINUE
               ELSE
                  IX = 1
                  IY = 1
                  DO 60 I = 1, N
                     Y( IY ) = X( IX )
                     IX = IX + INCX
                     IY = IY + INCY
   60             CONTINUE
               END IF
*
            ELSE IF( BETA.EQ.ONE ) THEN
               IF( INCX.EQ.1 .AND. INCY.EQ.1 ) THEN
                  DO 70 I = 1, N
                     Y( I ) = X( I ) + Y( I )
   70             CONTINUE
               ELSE
                  IX = 1
                  IY = 1
                  DO 80 I = 1, N
                     Y( IY ) = X( IX ) + Y( IY )
                     IX = IX + INCX
                     IY = IY + INCY
   80             CONTINUE
               END IF
*
            ELSE
               IF( INCX.EQ.1 .AND. INCY.EQ.1 ) THEN
                  DO 90 I = 1, N
                     Y( I ) = X( I ) + BETA * Y( I )
   90             CONTINUE
               ELSE
                  IX = 1
                  IY = 1
                  DO 100 I = 1, N
                     Y( IY ) = X( IX ) + BETA * Y( IY )
                     IX = IX + INCX
                     IY = IY + INCY
  100             CONTINUE
               END IF
            END IF
*
         ELSE
            IF( BETA.EQ.ZERO ) THEN
               IF( INCX.EQ.1 .AND. INCY.EQ.1 ) THEN
                  DO 110 I = 1, N
                     Y( I ) = ALPHA * X( I )
  110             CONTINUE
               ELSE
                  IX = 1
                  IY = 1
                  DO 120 I = 1, N
                     Y( IY ) = X( IX )
                     IX = IX + INCX
                     IY = IY + INCY
  120             CONTINUE
               END IF
*
            ELSE IF( BETA.EQ.ONE ) THEN
               IF( LSAME( MODE, 'V' ) ) THEN
                  CALL DAXPY( N, ALPHA, X, INCX, Y, INCY )
               ELSE IF( INCX.EQ.1 .AND. INCY.EQ.1 ) THEN
                  DO 130 I = 1, N
                     Y( I ) = ALPHA * X( I ) + Y( I )
  130             CONTINUE
               ELSE
                  IX = 1
                  IY = 1
                  DO 140 I = 1, N
                     Y( IY ) = ALPHA * X( IX ) + Y( IY )
                     IX = IX + INCX
                     IY = IY + INCY
  140             CONTINUE
               END IF
*
            ELSE
               IF( INCX.EQ.1 .AND. INCY.EQ.1 ) THEN
                  DO 150 I = 1, N
                     Y( I ) = ALPHA * X( I ) + BETA * Y( I )
  150             CONTINUE
               ELSE
                  IX = 1
                  IY = 1
                  DO 160 I = 1, N
                     Y( IY ) = ALPHA * X( IX ) + BETA * Y( IY )
                     IX = IX + INCX
                     IY = IY + INCY
  160             CONTINUE
               END IF
            END IF
         END IF
      END IF
*
      RETURN
*
*     End of PBDVECADD
*
      END