File: pbstran.f

package info (click to toggle)
scalapack 1.8.0-6
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 32,240 kB
  • ctags: 29,143
  • sloc: fortran: 288,069; ansic: 64,035; makefile: 1,911
file content (860 lines) | stat: -rw-r--r-- 29,213 bytes parent folder | download | duplicates (13)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
      SUBROUTINE PBSTRAN( ICONTXT, ADIST, TRANS, M, N, NB, A, LDA, BETA,
     $                    C, LDC, IAROW, IACOL, ICROW, ICCOL, WORK )
*
*  -- PB-BLAS routine (version 2.1) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory.
*     April 28, 1996
*
*     Jaeyoung Choi, Oak Ridge National Laboratory
*     Jack Dongarra, University of Tennessee and Oak Ridge National Lab.
*     David Walker,  Oak Ridge National Laboratory
*
*     .. Scalar Arguments ..
      CHARACTER*1        ADIST, TRANS
      INTEGER            IACOL, IAROW, ICCOL, ICONTXT, ICROW, LDA, LDC,
     $                   M, N, NB
      REAL               BETA
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), C( LDC, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  PBSTRAN  transposes  a column block to row block, or a row block to
*  column block by reallocating data distribution.
*
*     C := A^T + beta*C, or C := A^C + beta*C
*
*  where A is an M-by-N matrix  and C is an N-by-M matrix, and the size
*  of M or N is limited to its block size NB.
*
*  The first elements  of the matrices A, and C  should  be  located  at
*  the beginnings of their first blocks. (not the middle of the blocks.)
*
*  Parameters
*  ==========
*
*  ICONTXT (input) INTEGER
*          ICONTXT is the BLACS mechanism for partitioning communication
*          space.  A defining property of a context is that a message in
*          a context cannot be sent or received in another context.  The
*          BLACS context includes the definition of a grid, and each
*          process' coordinates in it.
*
*  ADIST  - (input) CHARACTER*1
*           ADIST specifies whether A is a column block or a row block.
*
*              ADIST = 'C',  A is a column block
*              ADIST = 'R',  A is a row block
*
*  TRANS  - (input) CHARACTER*1
*           TRANS specifies whether the transposed format is transpose
*           or conjugate transpose.  If the matrices A and C are real,
*           the argument is ignored.
*
*              TRANS = 'T',  transpose
*              TRANS = 'C',  conjugate transpose
*
*  M      - (input) INTEGER
*           M specifies the (global) number of rows of the matrix (block
*           column or block row) A and of columns of the matrix C.
*           M >= 0.
*
*  N      - (input) INTEGER
*           N specifies the (global) number of columns of the matrix
*           (block column or block row) A  and of columns of the matrix
*           C.  N >= 0.
*
*  NB     - (input) INTEGER
*           NB specifies  the column block size of the matrix A and the
*           row block size of the matrix C when ADIST = 'C'.  Otherwise,
*           it specifies  the row block size of the matrix A and the
*           column block size of the matrix C. NB >= 1.
*
*  A       (input) REAL array of DIMENSION ( LDA, Lx ),
*          where Lx is N  when ADIST = 'C', or Nq when ADIST = 'R'.
*          Before entry with  ADIST = 'C',  the leading Mp by N part of
*          the array A must contain the matrix A, otherwise the leading
*          M by Nq part of the array A  must contain the matrix A.  See
*          parameter details for the values of Mp and Nq.
*
*  LDA     (input) INTEGER
*          LDA specifies the leading dimension of (local) A as declared
*          in the calling (sub) program.  LDA >= MAX(1,Mp) when
*          ADIST = 'C', or LDA >= MAX(1,M) otherwise.
*
*  BETA    (input) REAL
*          BETA specifies scaler beta.
*
*  C       (input/output) REAL array of DIMENSION ( LDC, Lx ),
*          where Lx is Mq when ADIST = 'C', or N when ADIST = 'R'.
*          If ADIST = 'C', the leading N-by-Mq part of the array C
*          contains the (local) matrix C, otherwise the leading
*          Np-by-M part of the array C must contain the (local) matrix
*          C.  C will not be referenced if beta is zero.
*
*  LDC     (input) INTEGER
*          LDC specifies the leading dimension of (local) C as declared
*          in the calling (sub) program. LDC >= MAX(1,N) when ADIST='C',
*          or LDC >= MAX(1,Np) otherwise.
*
*  IAROW   (input) INTEGER
*          IAROW specifies  a row  of the process  template,
*          which holds the first block  of the matrix  A. If A is a row
*          of blocks (ADIST = 'R') and all rows of processes have a copy
*          of A, then set IAROW = -1.
*
*  IACOL   (input) INTEGER
*          IACOL specifies  a column of the process template,
*          which holds  the first block  of the matrix A.  If  A is  a
*          column of blocks (ADIST = 'C') and all columns of processes
*          have a copy of A, then set IACOL = -1.
*
*  ICROW   (input) INTEGER
*          ICROW specifies the current row process which holds
*          the first block  of the matrix C,  which is transposed of A.
*          If C is a row of blocks (ADIST = 'C') and the transposed
*          row block C is distributed all rows of processes, set
*          ICROW = -1.
*
*  ICCOL   (input) INTEGER
*          ICCOL specifies  the current column process which holds
*          the first block of the matrix C,  which is transposed of A.
*          If C is a column of blocks (ADIST = 'R') and the transposed
*          column block C is distributed all columns of processes,
*          set ICCOL = -1.
*
*  WORK    (workspace) REAL array of dimension Size(WORK).
*          It needs extra working space of A'.
*
*  Parameters Details
*  ==================
*
*  Lx      It is  a local portion  of L  owned  by  a process,  (L is
*          replaced by M, or N,  and x is replaced by either p (=NPROW)
*          or q (=NPCOL)).  The value is  determined by  L, LB, x,  and
*          MI, where  LB is  a block size  and  MI is a  row  or column
*          position  in a process template.  Lx is  equal to  or less
*          than Lx0 = CEIL( L, LB*x ) * LB.
*
*  Communication Scheme
*  ====================
*
*  The communication scheme of the routine is set to '1-tree', which is
*  fan-out.  (For details, see BLACS user's guide.)
*
*  Memory Requirement of WORK
*  ==========================
*
*  Mqb  = CEIL( M, NB*NPCOL )
*  Npb  = CEIL( N, NB*NPROW )
*  LCMQ = LCM / NPCOL
*  LCMP = LCM / NPROW
*
*  (1) ADIST = 'C'
*   (a) IACOL != -1
*       Size(WORK) = N * CEIL(Mqb,LCMQ)*NB
*   (b) IACOL = -1
*       Size(WORK) = N * CEIL(Mqb,LCMQ)*NB * MIN(LCMQ,CEIL(M,NB))
*
*  (2) ADIST = 'R'
*   (a) IAROW != -1
*       Size(WORK) = M * CEIL(Npb,LCMP)*NB
*   (b) IAROW = -1
*       Size(WORK) = M * CEIL(Npb,LCMP)*NB * MIN(LCMP,CEIL(N,NB))
*
*  Notes
*  -----
*  More precise space can be computed as
*
*  CEIL(Mqb,LCMQ)*NB => NUMROC( NUMROC(M,NB,0,0,NPCOL), NB, 0, 0, LCMQ )
*  CEIL(Npb,LCMP)*NB => NUMROC( NUMROC(N,NB,0,0,NPROW), NB, 0, 0, LCMP )
*
*  =====================================================================
*
*     ..
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            COLFORM, ROWFORM
      INTEGER            I, IDEX, IGD, INFO, JCCOL, JCROW, JDEX, LCM,
     $                   LCMP, LCMQ, MCCOL, MCROW, ML, MP, MQ, MQ0,
     $                   MRCOL, MRROW, MYCOL, MYROW, NP, NP0, NPCOL,
     $                   NPROW, NQ
      REAL               TBETA
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILCM, ICEIL, NUMROC
      EXTERNAL           ILCM, ICEIL, LSAME, NUMROC
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, PBSMATADD, PBSTR2AF, PBSTR2AT,
     $                   PBSTR2BT, PBSTRGET, PBSTRSRT, PXERBLA, SGEBR2D,
     $                   SGEBS2D, SGERV2D, SGESD2D
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, MOD
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible.
*
      IF( M.EQ.0 .OR. N.EQ.0 ) RETURN
*
      CALL BLACS_GRIDINFO( ICONTXT, NPROW, NPCOL, MYROW, MYCOL )
*
      COLFORM = LSAME( ADIST, 'C' )
      ROWFORM = LSAME( ADIST, 'R' )
*
*     Test the input parameters.
*
      INFO = 0
      IF( ( .NOT.COLFORM ) .AND. ( .NOT.ROWFORM ) ) THEN
         INFO = 2
      ELSE IF( M .LT.0                            ) THEN
         INFO = 4
      ELSE IF( N .LT.0                            ) THEN
         INFO = 5
      ELSE IF( NB.LT.1                            ) THEN
         INFO = 6
      ELSE IF( IAROW.LT.-1 .OR. IAROW.GE.NPROW .OR.
     $       ( IAROW.EQ.-1 .AND. COLFORM )        ) THEN
         INFO = 12
      ELSE IF( IACOL.LT.-1 .OR. IACOL.GE.NPCOL .OR.
     $       ( IACOL.EQ.-1 .AND. ROWFORM )        ) THEN
         INFO = 13
      ELSE IF( ICROW.LT.-1 .OR. ICROW.GE.NPROW .OR.
     $       ( ICROW.EQ.-1 .AND. ROWFORM )        ) THEN
         INFO = 14
      ELSE IF( ICCOL.LT.-1 .OR. ICCOL.GE.NPCOL .OR.
     $       ( ICCOL.EQ.-1 .AND. COLFORM )        ) THEN
         INFO = 15
      END IF
*
   10 CONTINUE
      IF( INFO .NE. 0 ) THEN
         CALL PXERBLA( ICONTXT, 'PBSTRAN ', INFO )
         RETURN
      END IF
*
*     Start the operations.
*
*     LCM : the least common multiple of NPROW and NPCOL
*
      LCM  = ILCM( NPROW, NPCOL )
      LCMP = LCM   / NPROW
      LCMQ = LCM   / NPCOL
      IGD  = NPCOL / LCMP
*
*     When A is a column block
*
      IF( COLFORM ) THEN
*
*       Form  C <== A'  ( A is a column block )
*                                         _
*                                        | |
*                                        | |
*            _____________               | |
*           |______C______|     <==      |A|
*                                        | |
*                                        | |
*                                        |_|
*
*       MRROW : row relative position in template from IAROW
*       MRCOL : column relative position in template from ICCOL
*
        MRROW = MOD( NPROW+MYROW-IAROW, NPROW )
        MRCOL = MOD( NPCOL+MYCOL-ICCOL, NPCOL )
        JCROW = ICROW
        IF( ICROW.EQ.-1 ) JCROW = IAROW
*
        MP  = NUMROC( M, NB, MYROW, IAROW, NPROW )
        MQ  = NUMROC( M, NB, MYCOL, ICCOL, NPCOL )
        MQ0 = NUMROC( NUMROC(M, NB, 0, 0, NPCOL), NB, 0, 0, LCMQ )
*
        IF( LDA.LT.MP .AND.
     $         ( IACOL.EQ.MYCOL .OR. IACOL.EQ.-1 ) ) THEN
           INFO = 8
        ELSE IF( LDC.LT.N .AND.
     $         ( ICROW.EQ.MYROW .OR. ICROW.EQ.-1 ) ) THEN
           INFO = 11
        END IF
        IF( INFO.NE.0 ) GO TO 10
*
*       When a column process of IACOL has a column block A,
*
        IF( IACOL.GE.0 ) THEN
          TBETA = ZERO
          IF( MYROW.EQ.JCROW ) TBETA = BETA
*
          DO 20 I = 0, MIN( LCM, ICEIL(M,NB) ) - 1
            MCROW = MOD( MOD(I, NPROW) + IAROW, NPROW )
            MCCOL = MOD( MOD(I, NPCOL) + ICCOL, NPCOL )
            IF( LCMQ.EQ.1 )  MQ0 = NUMROC( M, NB, I, 0, NPCOL )
            JDEX = (I/NPCOL) * NB
*
*           A source node copies the blocks to WORK, and send it
*
            IF( MYROW.EQ.MCROW .AND. MYCOL.EQ.IACOL ) THEN
*
*             The source node is a destination node
*
              IDEX = (I/NPROW) * NB
              IF( MYROW.EQ.JCROW .AND. MYCOL.EQ.MCCOL ) THEN
                CALL PBSTR2AT( ICONTXT, 'Col', TRANS, MP-IDEX, N, NB,
     $                         A(IDEX+1,1), LDA, TBETA, C(1,JDEX+1),
     $                         LDC, LCMP, LCMQ )
*
*             The source node sends blocks to a destination node
*
              ELSE
                CALL PBSTR2BT( ICONTXT, 'Col', TRANS, MP-IDEX, N, NB,
     $                         A(IDEX+1,1), LDA, ZERO, WORK, N,
     $                         LCMP*NB )
                CALL SGESD2D( ICONTXT, N, MQ0, WORK, N, JCROW, MCCOL )
              END IF
*
*           A destination node receives the copied blocks
*
            ELSE IF( MYROW.EQ.JCROW .AND. MYCOL.EQ.MCCOL ) THEN
              IF( LCMQ.EQ.1 .AND. TBETA.EQ.ZERO ) THEN
                CALL SGERV2D( ICONTXT, N, MQ0, C, LDC, MCROW, IACOL )
              ELSE
                CALL SGERV2D( ICONTXT, N, MQ0, WORK, N, MCROW, IACOL )
                CALL PBSTR2AF( ICONTXT, 'Row', N, MQ-JDEX, NB, WORK, N,
     $                         TBETA, C(1,JDEX+1), LDC, LCMP, LCMQ,
     $                         MQ0 )
              END IF
            END IF
   20     CONTINUE
*
*         Broadcast a row block of C in each column of template
*
          IF( ICROW.EQ.-1 ) THEN
            IF( MYROW.EQ.JCROW ) THEN
              CALL SGEBS2D( ICONTXT, 'Col', '1-tree', N, MQ, C, LDC )
            ELSE
              CALL SGEBR2D( ICONTXT, 'Col', '1-tree', N, MQ, C, LDC,
     $                      JCROW, MYCOL )
            END IF
          END IF
*
*       When all column procesors have a copy of the column block A,
*
        ELSE
          IF( LCMQ.EQ.1 ) MQ0 = MQ
*
*         Processors, which have diagonal blocks of A, copy them to
*         WORK array in transposed form
*
          DO 30 I = 0, LCMP-1
            IF( MRCOL.EQ.MOD( NPROW*I+MRROW, NPCOL ) ) THEN
              IF( LCMQ.EQ.1.AND.(ICROW.EQ.-1.OR.ICROW.EQ.MYROW) ) THEN
                 CALL PBSTR2BT( ICONTXT, 'Col', TRANS, MP-I*NB, N, NB,
     $                          A(I*NB+1,1), LDA, BETA, C, LDC,
     $                          LCMP*NB )
              ELSE
                 CALL PBSTR2BT( ICONTXT, 'Col', TRANS, MP-I*NB, N, NB,
     $                          A(I*NB+1,1), LDA, ZERO, WORK, N,
     $                          LCMP*NB )
              END IF
            END IF
   30     CONTINUE
*
*         Get diagonal blocks of A for each column of the template
*
          MCROW = MOD( MOD(MRCOL,NPROW)+IAROW, NPROW )
          IF( LCMQ.GT.1 ) THEN
            MCCOL = MOD( NPCOL+MYCOL-ICCOL, NPCOL )
            CALL PBSTRGET( ICONTXT, 'Row', N, MQ0, ICEIL(M,NB), WORK, N,
     $                     MCROW,  MCCOL, IGD, MYROW, MYCOL, NPROW,
     $                     NPCOL )
          END IF
*
*         Broadcast a row block of WORK in every row of template
*
          IF( ICROW.EQ.-1 ) THEN
            IF( MYROW.EQ.MCROW ) THEN
              IF( LCMQ.GT.1 )
     $          CALL PBSTRSRT( ICONTXT, 'Row', N, MQ, NB, WORK, N, BETA,
     $                         C, LDC, LCMP, LCMQ, MQ0 )
              CALL SGEBS2D( ICONTXT, 'Col', '1-tree', N, MQ, C, LDC )
            ELSE
              CALL SGEBR2D( ICONTXT, 'Col', '1-tree', N, MQ, C, LDC,
     $                      MCROW, MYCOL )
            END IF
*
*         Send a row block of WORK to the destination row
*
          ELSE
            IF( LCMQ.EQ.1 ) THEN
              IF( MYROW.EQ.MCROW ) THEN
                IF( MYROW.NE.ICROW )
     $            CALL SGESD2D( ICONTXT, N, MQ, WORK, N, ICROW, MYCOL )
              ELSE IF( MYROW.EQ.ICROW ) THEN
                IF( BETA.EQ.ZERO ) THEN
                  CALL SGERV2D( ICONTXT, N, MQ, C, LDC, MCROW, MYCOL )
                ELSE
                  CALL SGERV2D( ICONTXT, N, MQ, WORK, N, MCROW, MYCOL )
                  CALL PBSMATADD( ICONTXT, 'G', N, MQ, ONE, WORK, N,
     $                            BETA, C, LDC )
                END IF
              END IF
*
            ELSE
              ML = MQ0 * MIN( LCMQ, MAX(0,ICEIL(M,NB)-MCCOL) )
              IF( MYROW.EQ.MCROW ) THEN
                IF( MYROW.NE.ICROW )
     $            CALL SGESD2D( ICONTXT, N, ML, WORK, N, ICROW, MYCOL )
              ELSE IF( MYROW.EQ.ICROW ) THEN
                CALL SGERV2D( ICONTXT, N, ML, WORK, N, MCROW, MYCOL )
              END IF
*
              IF( MYROW.EQ.ICROW )
     $          CALL PBSTRSRT( ICONTXT, 'Row', N, MQ, NB, WORK, N, BETA,
     $                         C, LDC, LCMP, LCMQ, MQ0 )
            END IF
          END IF
*
        END IF
*
*     When A is a row block
*
      ELSE
*
*        Form  C <== A'  ( A is a row block )
*            _
*           | |
*           | |
*           | |                _____________
*           |C|      <==      |______A______|
*           | |
*           | |
*           |_|
*
*        MRROW : row relative position in template from ICROW
*        MRCOL : column relative position in template from IACOL
*
         MRROW = MOD( NPROW+MYROW-ICROW, NPROW )
         MRCOL = MOD( NPCOL+MYCOL-IACOL, NPCOL )
         JCCOL = ICCOL
         IF( ICCOL.EQ.-1 ) JCCOL = IACOL
*
         NP  = NUMROC( N, NB, MYROW, ICROW, NPROW )
         NQ  = NUMROC( N, NB, MYCOL, IACOL, NPCOL )
         NP0 = NUMROC( NUMROC(N, NB, 0, 0, NPROW), NB, 0, 0, LCMP )
*
         IF( LDA.LT.M .AND.
     $          ( IAROW.EQ.MYROW .OR. IAROW.EQ.-1 ) ) THEN
            INFO = 8
         ELSE IF( LDC.LT.NP .AND.
     $          ( ICCOL.EQ.MYCOL .OR. ICCOL.EQ.-1 ) ) THEN
            INFO = 11
         END IF
         IF( INFO.NE.0 ) GO TO 10
*
*        When a row process of IAROW has a row block A,
*
         IF( IAROW.GE.0 ) THEN
           TBETA = ZERO
           IF( MYCOL.EQ.JCCOL ) TBETA = BETA
*
           DO 40 I = 0, MIN( LCM, ICEIL(N,NB) ) - 1
             MCROW = MOD( MOD(I, NPROW) + ICROW, NPROW )
             MCCOL = MOD( MOD(I, NPCOL) + IACOL, NPCOL )
             IF( LCMP.EQ.1 )  NP0 = NUMROC( N, NB, I, 0, NPROW )
             IDEX = (I/NPROW) * NB
*
*            A source node copies the blocks to WORK, and send it
*
             IF( MYROW.EQ.IAROW .AND. MYCOL.EQ.MCCOL ) THEN
*
*              The source node is a destination node
*
               JDEX = (I/NPCOL) * NB
               IF( MYROW.EQ.MCROW .AND. MYCOL.EQ.JCCOL ) THEN
                 CALL PBSTR2AT( ICONTXT, 'Row', TRANS, M, NQ-JDEX, NB,
     $                          A(1,JDEX+1), LDA, TBETA, C(IDEX+1,1),
     $                          LDC, LCMP, LCMQ )
*
*              The source node sends blocks to a destination node
*
               ELSE
                 CALL PBSTR2BT( ICONTXT, 'Row', TRANS, M, NQ-JDEX, NB,
     $                          A(1,JDEX+1), LDA, ZERO, WORK, NP0,
     $                          LCMQ*NB )
                 CALL SGESD2D( ICONTXT, NP0, M, WORK, NP0,
     $                         MCROW, JCCOL )
               END IF
*
*           A destination node receives the copied blocks
*
            ELSE IF( MYROW.EQ.MCROW .AND. MYCOL.EQ.JCCOL ) THEN
              IF( LCMP.EQ.1 .AND. TBETA.EQ.ZERO ) THEN
                CALL SGERV2D( ICONTXT, NP0, M, C, LDC, IAROW, MCCOL )
              ELSE
                CALL SGERV2D( ICONTXT, NP0, M, WORK, NP0, IAROW, MCCOL )
                CALL PBSTR2AF( ICONTXT, 'Col', NP-IDEX, M, NB, WORK,
     $                         NP0, TBETA, C(IDEX+1,1), LDC, LCMP, LCMQ,
     $                         NP0 )
              END IF
            END IF
   40     CONTINUE
*
*         Broadcast a column block of WORK in each row of template
*
          IF( ICCOL.EQ.-1 ) THEN
            IF( MYCOL.EQ.JCCOL ) THEN
              CALL SGEBS2D( ICONTXT, 'Row', '1-tree', NP, M, C, LDC )
            ELSE
              CALL SGEBR2D( ICONTXT, 'Row', '1-tree', NP, M, C, LDC,
     $                       MYROW, JCCOL )
            END IF
          END IF
*
*       When all row procesors have a copy of the row block A,
*
        ELSE
          IF( LCMP.EQ.1 ) NP0 = NP
*
*         Processors, which have diagonal blocks of A, copy them to
*         WORK array in transposed form
*
          DO 50 I = 0, LCMQ-1
            IF( MRROW.EQ.MOD(NPCOL*I+MRCOL, NPROW) ) THEN
              IF( LCMP.EQ.1.AND.(ICCOL.EQ.-1.OR.ICCOL.EQ.MYCOL) ) THEN
                CALL PBSTR2BT( ICONTXT, 'Row', TRANS, M, NQ-I*NB, NB,
     $                         A(1,I*NB+1), LDA, BETA, C, LDC,
     $                         LCMQ*NB )
              ELSE
                CALL PBSTR2BT( ICONTXT, 'Row', TRANS, M, NQ-I*NB, NB,
     $                         A(1,I*NB+1), LDA, ZERO, WORK, NP0,
     $                         LCMQ*NB )
              END IF
            END IF
   50     CONTINUE
*
*         Get diagonal blocks of A for each row of the template
*
          MCCOL = MOD( MOD(MRROW, NPCOL)+IACOL, NPCOL )
          IF( LCMP.GT.1 ) THEN
            MCROW = MOD( NPROW+MYROW-ICROW, NPROW )
            CALL PBSTRGET( ICONTXT, 'Col', NP0, M, ICEIL(N,NB), WORK,
     $                     NP0, MCROW, MCCOL, IGD, MYROW, MYCOL, NPROW,
     $                     NPCOL )
          END IF
*
*         Broadcast a column block of WORK in every column of template
*
          IF( ICCOL.EQ.-1 ) THEN
            IF( MYCOL.EQ.MCCOL ) THEN
              IF( LCMP.GT.1 )
     $          CALL PBSTRSRT( ICONTXT, 'Col', NP, M, NB, WORK, NP0,
     $                         BETA, C, LDC, LCMP, LCMQ, NP0 )
              CALL SGEBS2D( ICONTXT, 'Row', '1-tree', NP, M, C, LDC )
            ELSE
              CALL SGEBR2D( ICONTXT, 'Row', '1-tree', NP, M, C, LDC,
     $                       MYROW, MCCOL )
            END IF
*
*         Send a column block of WORK to the destination column
*
          ELSE
            IF( LCMP.EQ.1 ) THEN
              IF( MYCOL.EQ.MCCOL ) THEN
                IF( MYCOL.NE.ICCOL )
     $            CALL SGESD2D( ICONTXT, NP, M, WORK, NP, MYROW, ICCOL )
              ELSE IF( MYCOL.EQ.ICCOL ) THEN
                IF( BETA.EQ.ZERO ) THEN
                  CALL SGERV2D( ICONTXT, NP, M, C, LDC, MYROW, MCCOL )
                ELSE
                  CALL SGERV2D( ICONTXT, NP, M, WORK, NP, MYROW, MCCOL )
                  CALL PBSMATADD( ICONTXT, 'G', NP, M, ONE, WORK, NP,
     $                            BETA, C, LDC )
                END IF
              END IF
*
            ELSE
              ML = M * MIN( LCMP, MAX( 0, ICEIL(N,NB) - MCROW ) )
              IF( MYCOL.EQ.MCCOL ) THEN
                IF( MYCOL.NE.ICCOL )
     $            CALL SGESD2D( ICONTXT, NP0, ML, WORK, NP0,
     $                          MYROW, ICCOL )
              ELSE IF( MYCOL.EQ.ICCOL ) THEN
                CALL SGERV2D( ICONTXT, NP0, ML, WORK, NP0,
     $                        MYROW, MCCOL )
              END IF
*
              IF( MYCOL.EQ.ICCOL )
     $          CALL PBSTRSRT( ICONTXT, 'Col', NP, M, NB, WORK, NP0,
     $                         BETA, C, LDC, LCMP, LCMQ, NP0 )
            END IF
          END IF
*
        END IF
      END IF
*
      RETURN
*
*     End of PBSTRAN
*
      END
*
*=======================================================================
*     SUBROUTINE PBSTR2AT
*=======================================================================
*
      SUBROUTINE PBSTR2AT( ICONTXT, ADIST, TRANS, M, N, NB, A, LDA,
     $                     BETA, B, LDB, LCMP, LCMQ )
*
*  -- PB-BLAS routine (version 2.1) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory.
*     April 28, 1996
*
*     .. Scalar Arguments ..
      CHARACTER*1        ADIST, TRANS
      INTEGER            ICONTXT, LCMP, LCMQ, LDA, LDB, M, N, NB
      REAL               BETA
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), B( LDB, * )
*     ..
*
*  Purpose
*  =======
*
*  PBSTR2AT forms   B <== A^T + beta*B, or A^C + beta*B
*  B is a ((conjugate) transposed) scattered block row (or column),
*  copied from a scattered block column (or row) of A
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE
      PARAMETER          ( ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            IA, IB, K, INTV, JNTV
*     ..
*     .. External Subroutines ..
      EXTERNAL           PBSMATADD
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ICEIL
      EXTERNAL           LSAME, ICEIL
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MIN
*     ..
*     .. Excutable Statements ..
*
      IF( LCMP.EQ.LCMQ ) THEN
         CALL PBSMATADD( ICONTXT, TRANS, N, M, ONE, A, LDA, BETA, B,
     $                   LDB )
*
      ELSE
*
*        If A is a column block ( ADIST = 'C' ),
*
         IF( LSAME( ADIST, 'C' ) ) THEN
            INTV = LCMP * NB
            JNTV = LCMQ * NB
            IA = 1
            IB = 1
            DO 10 K = 1, ICEIL( M, INTV )
               CALL PBSMATADD( ICONTXT, TRANS, N, MIN( M-IA+1, NB ),
     $                         ONE, A(IA,1), LDA, BETA, B(1,IB), LDB )
               IA = IA + INTV
               IB = IB + JNTV
   10       CONTINUE
*
*        If A is a row block ( ADIST = 'R' ),
*
         ELSE
            INTV = LCMP * NB
            JNTV = LCMQ * NB
            IA = 1
            IB = 1
            DO 20 K = 1, ICEIL( N, JNTV )
               CALL PBSMATADD( ICONTXT, TRANS, MIN( N-IA+1, NB ), M,
     $                         ONE, A(1,IA), LDA, BETA, B(IB,1), LDB )
               IA = IA + JNTV
               IB = IB + INTV
   20       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of PBSTR2AT
*
      END
*
*=======================================================================
*     SUBROUTINE PBSTR2BT
*=======================================================================
*
      SUBROUTINE PBSTR2BT( ICONTXT, ADIST, TRANS, M, N, NB, A, LDA,
     $                     BETA, B, LDB, INTV )
*
*  -- PB-BLAS routine (version 2.1) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory.
*     April 28, 1996
*
*     .. Scalar Arguments ..
      CHARACTER*1        ADIST, TRANS
      INTEGER            ICONTXT, INTV, LDA, LDB, M, N, NB
      REAL               BETA
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), B( LDB, * )
*     ..
*
*  Purpose
*  =======
*
*  PBSTR2BT forms T <== A^T + beta*T or A^C + beta*T, where T is a
*  ((conjugate) transposed) condensed block row (or column), copied from
*  a scattered block column (or row) of A
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE
      PARAMETER          ( ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            IA, IB, K
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ICEIL
      EXTERNAL           LSAME, ICEIL
*     ..
*     .. External Subroutines ..
      EXTERNAL           PBSMATADD
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MIN
*     ..
*     .. Excutable Statements ..
*
      IF( INTV.EQ.NB ) THEN
         CALL PBSMATADD( ICONTXT, TRANS, N, M, ONE, A, LDA, BETA, B,
     $                   LDB )
*
      ELSE
*
*        If A is a column block ( ADIST = 'C' ),
*
         IF( LSAME( ADIST, 'C' ) ) THEN
            IA = 1
            IB = 1
            DO 10 K = 1, ICEIL( M, INTV )
               CALL PBSMATADD( ICONTXT, TRANS, N, MIN( M-IA+1, NB ),
     $                         ONE, A(IA,1), LDA, BETA, B(1,IB), LDB )
               IA = IA + INTV
               IB = IB + NB
   10       CONTINUE
*
*        If A is a row block (ADIST = 'R'),
*
         ELSE
            IA = 1
            IB = 1
            DO 20 K = 1, ICEIL( N, INTV )
               CALL PBSMATADD( ICONTXT, TRANS, MIN( N-IA+1, NB ), M,
     $                         ONE, A(1,IA), LDA, BETA, B(IB,1), LDB )
               IA = IA + INTV
               IB = IB + NB
   20       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of PBSTR2BT
*
      END
*
*=======================================================================
*     SUBROUTINE PBSTR2AF
*=======================================================================
*
      SUBROUTINE PBSTR2AF( ICONTXT, ADIST, M, N, NB, A, LDA, BETA, B,
     $                     LDB, LCMP, LCMQ, NINT )
*
*  -- PB-BLAS routine (version 2.1) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory.
*     April 28, 1996
*
*     .. Scalar Arguments ..
      CHARACTER*1          ADIST
      INTEGER              ICONTXT, M, N, NB, LDA, LDB, LCMP, LCMQ, NINT
      REAL                 BETA
*     ..
*     .. Array Arguments ..
      REAL                 A( LDA, * ), B( LDB, * )
*     ..
*
*  Purpose
*  =======
*
*  PBSTR2AF forms  T <== A + BETA*T, where T is a scattered block
*  row (or column) copied from a (condensed) block column (or row) of A
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE
      PARAMETER          ( ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            JA, JB, K, INTV
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ICEIL
      EXTERNAL           LSAME, ICEIL
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MIN
*     ..
*     .. Executable Statements ..
*
      IF( LSAME( ADIST, 'R' ) ) THEN
         INTV = NB * LCMQ
         JA = 1
         JB = 1
         DO 10 K = 1, ICEIL( NINT, NB )
            CALL PBSMATADD( ICONTXT, 'G', M, MIN( N-JB+1, NB ), ONE,
     $                      A(1,JA), LDA, BETA, B(1,JB), LDB )
            JA = JA + NB
            JB = JB + INTV
   10    CONTINUE
*
*     if( LSAME( ADIST, 'C' ) ) then
*
      ELSE
         INTV = NB * LCMP
         JA = 1
         JB = 1
         DO 20 K = 1, ICEIL( NINT, NB )
            CALL PBSMATADD( ICONTXT, 'G', MIN( M-JB+1, NB ), N, ONE,
     $                      A(JA,1), LDA, BETA, B(JB,1), LDB )
            JA = JA + NB
            JB = JB + INTV
   20    CONTINUE
      END IF
*
      RETURN
*
*     End of PBSTR2AF
*
      END