1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
|
SUBROUTINE PBSTRNV( ICONTXT, XDIST, TRANS, N, NB, NZ, X, INCX,
$ BETA, Y, INCY, IXROW, IXCOL, IYROW, IYCOL,
$ WORK )
*
* -- PB-BLAS routine (version 2.1) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory.
* April 28, 1996
*
* Jaeyoung Choi, Oak Ridge National Laboratory
* Jack Dongarra, University of Tennessee and Oak Ridge National Lab.
* David Walker, Oak Ridge National Laboratory
*
* .. Scalar Arguments ..
CHARACTER*1 TRANS, XDIST
INTEGER ICONTXT, INCX, INCY, IXCOL, IXROW, IYCOL,
$ IYROW, N, NB, NZ
REAL BETA
* ..
* .. Array Arguments ..
REAL WORK( * ), X( * ), Y( * )
* ..
*
* Purpose
* =======
*
* PBSTRNV transposes a column vector to row vector, or a row vector to
* column vector by reallocating data distribution.
*
* Y := X'
*
* where X and Y are N vectors.
*
* Parameters
* ==========
*
* ICONTXT (input) INTEGER
* ICONTXT is the BLACS mechanism for partitioning communication
* space. A defining property of a context is that a message in
* a context cannot be sent or received in another context. The
* BLACS context includes the definition of a grid, and each
* process' coordinates in it.
*
* XDIST (input) CHARACTER*1
* XDIST specifies whether X is a column vector or a row vector,
*
* XDIST = 'C', X is a column vector (distributed columnwise)
* XDIST = 'R', X is a row vector (distributed rowwise)
*
* TRANS (input) CHARACTER*1
* TRANS specifies whether the transposed format is transpose
* or conjugate transpose. If the vectors X and Y are real,
* the argument is ignored.
*
* TRANS = 'T', transpose
* TRANS = 'C', conjugate transpose
*
* N (input) INTEGER
* N specifies the (global) number of the vector X and the
* vector Y. N >= 0.
*
* NB (input) INTEGER
* NB specifies the block size of vectors X and Y. NB >= 0.
*
* NZ (input) INTEGER
* NZ is the column offset to specify the column distance from
* the beginning of the block to the first element of the
* vector X, and the row offset to the first element of the
* vector Y if XDIST = 'C'.
* Otherwise, it is row offset to specify the row distance
* from the beginning of the block to the first element of the
* vector X, and the column offset to the first element of the
* vector Y. 0 < NZ <= NB.
*
* X (input) REAL array of dimension at least
* ( 1 + (Np-1) * abs(INCX)) in IXCOL if XDIST = 'C', or
* ( 1 + (Nq-1) * abs(INCX)) in IXROW if XDIST = 'R'.
* The incremented array X must contain the vector X.
*
* INCX (input) INTEGER
* INCX specifies the increment for the elements of X.
* INCX <> 0.
*
* BETA (input) REAL
* BETA specifies scaler beta.
*
* Y (input/output) REAL array of dimension at least
* ( 1 + (Nq-1) * abs(INCY)) in IYROW if XDIST = 'C', or
* ( 1 + (Np-1) * abs(INCY)) in IYCOL if XDIST = 'R', or
* The incremented array Y must contain the vector Y.
* Y will not be referenced if beta is zero.
*
* INCY (input) INTEGER
* INCY specifies the increment for the elements of Y.
* INCY <> 0.
*
* IXROW (input) INTEGER
* IXROW specifies a row of the process template, which holds
* the first element of the vector X. If X is a row vector and
* all rows of processes have a copy of X, then set IXROW = -1.
*
* IXCOL (input) INTEGER
* IXCOL specifies a column of the process template,
* which holds the first element of the vector X. If X is a
* column block and all columns of processes have a copy of X,
* then set IXCOL = -1.
*
* IYROW (input) INTEGER
* IYROW specifies the current row process which holds the
* first element of the vector Y, which is transposed of X.
* If X is a column vector and the transposed row vector Y is
* distributed all rows of processes, set IYROW = -1.
*
* IYCOL (input) INTEGER
* IYCOL specifies the current column process which holds
* the first element of the vector Y, which is transposed of Y.
* If X is a row block and the transposed column vector Y is
* distributed all columns of processes, set IYCOL = -1.
*
* WORK (workspace) REAL array of dimension Size(WORK).
* It needs extra working space of x**T or x**H.
*
* Parameters Details
* ==================
*
* Nx It is a local portion of N owned by a process, where x is
* replaced by either p (=NPROW) or q (=NPCOL)). The value is
* determined by N, NB, NZ, x, and MI, where NB is a block size,
* NZ is a offset from the beginning of the block, and MI is a
* row or column position in a process template. Nx is equal
* to or less than Nx0 = CEIL( N+NZ, NB*x ) * NB.
*
* Communication Scheme
* ====================
*
* The communication scheme of the routine is set to '1-tree', which is
* fan-out. (For details, see BLACS user's guide.)
*
* Memory Requirement of WORK
* ==========================
*
* NN = N + NZ
* Npb = CEIL( NN, NB*NPROW )
* Nqb = CEIL( NN, NB*NPCOL )
* LCMP = LCM / NPROW
* LCMQ = LCM / NPCOL
*
* (1) XDIST = 'C'
* (a) IXCOL != -1
* Size(WORK) = CEIL(Nqb,LCMQ)*NB
* (b) IXCOL = -1
* Size(WORK) = CEIL(Nqb,LCMQ)*NB * MIN(LCMQ,CEIL(NN,NB))
*
* (2) XDIST = 'R'
* (a) IXROW != -1
* Size(WORK) = CEIL(Npb,LCMP)*NB
* (b) IXROW = -1
* Size(WORK) = CEIL(Npb,LCMP)*NB * MIN(LCMP,CEIL(NN,NB))
*
* Notes
* -----
* More precise space can be computed as
*
* CEIL(Npb,LCMP)*NB => NUMROC( NUMROC(NN,NB,0,0,NPROW), NB, 0, 0, LCMP)
* CEIL(Nqb,LCMQ)*NB => NUMROC( NUMROC(NN,NB,0,0,NPCOL), NB, 0, 0, LCMQ)
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL COLFORM, ROWFORM
INTEGER I, IDEX, IGD, INFO, JDEX, JYCOL, JYROW, JZ, KZ,
$ LCM, LCMP, LCMQ, MCCOL, MCROW, MRCOL, MRROW,
$ MYCOL, MYROW, NN, NP, NP0, NP1, NPCOL, NPROW,
$ NQ, NQ0, NQ1
REAL TBETA
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILCM, ICEIL, NUMROC
EXTERNAL LSAME, ILCM, ICEIL, NUMROC
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, PBSTR2A1, PBSTR2B1, PBSTRGET,
$ PBSTRST1, PBSVECADD, PXERBLA, SGEBR2D, SGEBS2D,
$ SGERV2D, SGESD2D
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, MOD
* ..
* .. Executable Statements ..
*
* Quick return if possible.
*
IF( N.EQ.0 ) RETURN
*
CALL BLACS_GRIDINFO( ICONTXT, NPROW, NPCOL, MYROW, MYCOL )
*
COLFORM = LSAME( XDIST, 'C' )
ROWFORM = LSAME( XDIST, 'R' )
*
* Test the input parameters.
*
INFO = 0
IF( ( .NOT.COLFORM ) .AND. ( .NOT.ROWFORM ) ) THEN
INFO = 2
ELSE IF( N .LT.0 ) THEN
INFO = 4
ELSE IF( NB .LT.1 ) THEN
INFO = 5
ELSE IF( NZ .LT.0 .OR. NZ.GE.NB ) THEN
INFO = 6
ELSE IF( INCX.EQ.0 ) THEN
INFO = 8
ELSE IF( INCY.EQ.0 ) THEN
INFO = 11
ELSE IF( IXROW.LT.-1 .OR. IXROW.GE.NPROW .OR.
$ ( IXROW.EQ.-1 .AND. COLFORM ) ) THEN
INFO = 12
ELSE IF( IXCOL.LT.-1 .OR. IXCOL.GE.NPCOL .OR.
$ ( IXCOL.EQ.-1 .AND. ROWFORM ) ) THEN
INFO = 13
ELSE IF( IYROW.LT.-1 .OR. IYROW.GE.NPROW .OR.
$ ( IYROW.EQ.-1 .AND. ROWFORM ) ) THEN
INFO = 14
ELSE IF( IYCOL.LT.-1 .OR. IYCOL.GE.NPCOL .OR.
$ ( IYCOL.EQ.-1 .AND. COLFORM ) ) THEN
INFO = 15
END IF
*
10 CONTINUE
IF( INFO.NE.0 ) THEN
CALL PXERBLA( ICONTXT, 'PBSTRNV ', INFO )
RETURN
END IF
*
* Start the operations.
*
* LCM : the least common multiple of NPROW and NPCOL
*
LCM = ILCM( NPROW, NPCOL )
LCMP = LCM / NPROW
LCMQ = LCM / NPCOL
IGD = NPCOL / LCMP
NN = N + NZ
*
* When x is a column vector
*
IF( COLFORM ) THEN
*
* Form y <== x' ( x is a column vector )
*
* ||
* ||
* _____________ ||
* -----(y)----- <== (x)
* ||
* ||
* ||
*
IF( IXROW.LT.0 .OR. IXROW.GE.NPROW ) THEN
INFO = 12
ELSE IF( IXCOL.LT.-1 .OR. IXCOL.GE.NPCOL ) THEN
INFO = 13
ELSE IF( IYROW.LT.-1 .OR. IYROW.GE.NPROW ) THEN
INFO = 14
ELSE IF( IYCOL.LT.0 .OR. IYCOL.GE.NPCOL ) THEN
INFO = 15
END IF
IF( INFO.NE.0 ) GO TO 10
*
* MRROW : row relative position in template from IXROW
* MRCOL : column relative position in template from IYCOL
*
MRROW = MOD( NPROW+MYROW-IXROW, NPROW )
MRCOL = MOD( NPCOL+MYCOL-IYCOL, NPCOL )
JYROW = IYROW
IF( IYROW.EQ.-1 ) JYROW = IXROW
*
NP = NUMROC( NN, NB, MYROW, IXROW, NPROW )
IF( MRROW.EQ.0 ) NP = NP - NZ
NQ = NUMROC( NN, NB, MYCOL, IYCOL, NPCOL )
IF( MRCOL.EQ.0 ) NQ = NQ - NZ
NQ0 = NUMROC( NUMROC(NN, NB, 0, 0, NPCOL), NB, 0, 0, LCMQ )
*
* When a column process of IXCOL has a column block A,
*
IF( IXCOL .GE. 0 ) THEN
TBETA = ZERO
IF( MYROW.EQ.JYROW ) TBETA = BETA
KZ = NZ
*
DO 20 I = 0, MIN( LCM, ICEIL(NN,NB) ) - 1
MCROW = MOD( MOD(I, NPROW) + IXROW, NPROW )
MCCOL = MOD( MOD(I, NPCOL) + IYCOL, NPCOL )
IF( LCMQ.EQ.1 ) NQ0 = NUMROC( NN, NB, I, 0, NPCOL )
JDEX = (I/NPCOL) * NB
IF( MRCOL.EQ.0 ) JDEX = MAX(0, JDEX-NZ)
*
* A source node copies the blocks to WORK, and send it
*
IF( MYROW.EQ.MCROW .AND. MYCOL.EQ.IXCOL ) THEN
*
* The source node is a destination node
*
IDEX = (I/NPROW) * NB
IF( MRROW.EQ.0 ) IDEX = MAX( 0, IDEX-NZ )
IF( MYROW.EQ.JYROW .AND. MYCOL.EQ.MCCOL ) THEN
CALL PBSTR2B1( ICONTXT, TRANS, NP-IDEX, NB, KZ,
$ X(IDEX*INCX+1), INCX, TBETA,
$ Y(JDEX*INCY+1), INCY, LCMP, LCMQ )
*
* The source node sends blocks to a destination node
*
ELSE
CALL PBSTR2B1( ICONTXT, TRANS, NP-IDEX, NB, KZ,
$ X(IDEX*INCX+1), INCX, ZERO, WORK, 1,
$ LCMP, 1 )
CALL SGESD2D( ICONTXT, 1, NQ0-KZ, WORK, 1,
$ JYROW, MCCOL )
END IF
*
* A destination node receives the copied vector
*
ELSE IF( MYROW.EQ.JYROW .AND. MYCOL.EQ.MCCOL ) THEN
IF( LCMQ.EQ.1 .AND. TBETA.EQ.ZERO ) THEN
CALL SGERV2D( ICONTXT, 1, NQ0-KZ, Y, INCY,
$ MCROW, IXCOL )
ELSE
CALL SGERV2D( ICONTXT, 1, NQ0-KZ, WORK, 1,
$ MCROW, IXCOL )
CALL PBSTR2A1( ICONTXT, NQ-JDEX, NB, KZ, WORK, 1, TBETA,
$ Y(JDEX*INCY+1), INCY, LCMQ*NB )
END IF
END IF
KZ = 0
20 CONTINUE
*
* Broadcast a row block of WORK in each column of template
*
IF( IYROW.EQ.-1 ) THEN
IF( MYROW.EQ.JYROW ) THEN
CALL SGEBS2D( ICONTXT, 'Col', '1-tree', 1, NQ, Y, INCY )
ELSE
CALL SGEBR2D( ICONTXT, 'Col', '1-tree', 1, NQ, Y, INCY,
$ JYROW, MYCOL )
END IF
END IF
*
* When all column procesors have a copy of the column block A,
*
ELSE
IF( LCMQ.EQ.1 ) NQ0 = NQ
*
* Processors, which have diagonal blocks of X, copy them to
* WORK array in transposed form
*
KZ = 0
IF( MRROW.EQ.0 ) KZ = NZ
JZ = 0
IF( MRROW.EQ.0 .AND. MYCOL.EQ.IYCOL ) JZ = NZ
*
DO 30 I = 0, LCMP - 1
IF( MRCOL.EQ.MOD(NPROW*I+MRROW, NPCOL) ) THEN
IDEX = MAX( 0, I*NB-KZ )
IF( LCMQ.EQ.1 .AND. (IYROW.EQ.-1.OR.IYROW.EQ.MYROW) ) THEN
CALL PBSTR2B1( ICONTXT, TRANS, NP-IDEX, NB, JZ,
$ X(IDEX*INCX+1), INCX, BETA, Y, INCY,
$ LCMP, 1 )
ELSE
CALL PBSTR2B1( ICONTXT, TRANS, NP-IDEX, NB, JZ,
$ X(IDEX*INCX+1), INCX, ZERO, WORK, 1,
$ LCMP, 1 )
END IF
END IF
30 CONTINUE
*
* Get diagonal blocks of A for each column of the template
*
MCROW = MOD( MOD(MRCOL, NPROW) + IXROW, NPROW )
IF( LCMQ.GT.1 ) THEN
MCCOL = MOD( NPCOL+MYCOL-IYCOL, NPCOL )
CALL PBSTRGET( ICONTXT, 'Row', 1, NQ0, ICEIL( NN, NB ),
$ WORK, 1, MCROW, MCCOL, IGD, MYROW, MYCOL,
$ NPROW, NPCOL )
END IF
*
* Broadcast a row block of WORK in every row of template
*
IF( IYROW.EQ.-1 ) THEN
IF( MYROW.EQ.MCROW ) THEN
IF( LCMQ.GT.1 ) THEN
KZ = 0
IF( MYCOL.EQ.IYCOL ) KZ = NZ
CALL PBSTRST1( ICONTXT, 'Row', NQ, NB, KZ, WORK, 1,
$ BETA, Y, INCY, LCMP, LCMQ, NQ0 )
END IF
CALL SGEBS2D( ICONTXT, 'Col', '1-tree', 1, NQ, Y, INCY )
ELSE
CALL SGEBR2D( ICONTXT, 'Col', '1-tree', 1, NQ, Y, INCY,
$ MCROW, MYCOL )
END IF
*
* Send a row block of WORK to the destination row
*
ELSE
IF( LCMQ.EQ.1 ) THEN
IF( MYROW.EQ.MCROW ) THEN
IF( MYROW.NE.IYROW )
$ CALL SGESD2D( ICONTXT, 1, NQ0, WORK, 1, IYROW, MYCOL )
ELSE IF( MYROW.EQ.IYROW ) THEN
IF( BETA.EQ.ZERO ) THEN
CALL SGERV2D( ICONTXT, 1, NQ0, Y, INCY, MCROW, MYCOL )
ELSE
CALL SGERV2D( ICONTXT, 1, NQ0, WORK, 1, MCROW, MYCOL )
CALL PBSVECADD( ICONTXT, 'G', NQ0, ONE, WORK, 1,
$ BETA, Y, INCY )
END IF
END IF
*
ELSE
NQ1 = NQ0 * MIN( LCMQ, MAX( 0, ICEIL(NN,NB)-MCCOL ) )
IF( MYROW.EQ.MCROW ) THEN
IF( MYROW.NE.IYROW )
$ CALL SGESD2D( ICONTXT, 1, NQ1, WORK, 1, IYROW, MYCOL )
ELSE IF( MYROW.EQ.IYROW ) THEN
CALL SGERV2D( ICONTXT, 1, NQ1, WORK, 1, MCROW, MYCOL )
END IF
*
IF( MYROW.EQ.IYROW ) THEN
KZ = 0
IF( MYCOL.EQ.IYCOL ) KZ = NZ
CALL PBSTRST1( ICONTXT, 'Row', NQ, NB, KZ, WORK, 1,
$ BETA, Y, INCY, LCMP, LCMQ, NQ0 )
END IF
END IF
END IF
END IF
*
* When x is a row vector
*
ELSE
*
* Form y <== x' ( x is a row block )
*
* ||
* ||
* || _____________
* (y) <== -----(x)-----
* ||
* ||
* ||
*
IF( IXROW.LT.-1 .OR. IXROW.GE.NPROW ) THEN
INFO = 12
ELSE IF( IXCOL.LT.0 .OR. IXCOL.GE.NPCOL ) THEN
INFO = 13
ELSE IF( IYROW.LT.0 .OR. IYROW.GE.NPROW ) THEN
INFO = 14
ELSE IF( IYCOL.LT.-1 .OR. IYCOL.GE.NPCOL ) THEN
INFO = 15
END IF
IF( INFO.NE.0 ) GO TO 10
*
* MRROW : row relative position in template from IYROW
* MRCOL : column relative position in template from IXCOL
*
MRROW = MOD( NPROW+MYROW-IYROW, NPROW )
MRCOL = MOD( NPCOL+MYCOL-IXCOL, NPCOL )
JYCOL = IYCOL
IF( IYCOL.EQ.-1 ) JYCOL = IXCOL
*
NP = NUMROC( NN, NB, MYROW, IYROW, NPROW )
IF( MRROW.EQ.0 ) NP = NP - NZ
NQ = NUMROC( NN, NB, MYCOL, IXCOL, NPCOL )
IF( MRCOL.EQ.0 ) NQ = NQ - NZ
NP0 = NUMROC( NUMROC(NN, NB, 0, 0, NPROW), NB, 0, 0, LCMP )
*
* When a row process of IXROW has a row block A,
*
IF( IXROW .GE. 0 ) THEN
TBETA = ZERO
IF( MYCOL.EQ.JYCOL ) TBETA = BETA
KZ = NZ
*
DO 40 I = 0, MIN( LCM, ICEIL(NN,NB) ) - 1
MCROW = MOD( MOD(I, NPROW) + IYROW, NPROW )
MCCOL = MOD( MOD(I, NPCOL) + IXCOL, NPCOL )
IF( LCMP.EQ.1 ) NP0 = NUMROC( NN, NB, I, 0, NPROW )
JDEX = (I/NPROW) * NB
IF( MRROW.EQ.0 ) JDEX = MAX(0, JDEX-NZ)
*
* A source node copies the blocks to WORK, and send it
*
IF( MYROW.EQ.IXROW .AND. MYCOL.EQ.MCCOL ) THEN
*
* The source node is a destination node
*
IDEX = (I/NPCOL) * NB
IF( MRCOL.EQ.0 ) IDEX = MAX( 0, IDEX-NZ )
IF( MYROW.EQ.MCROW .AND. MYCOL.EQ.JYCOL ) THEN
CALL PBSTR2B1( ICONTXT, TRANS, NQ-IDEX, NB, KZ,
$ X(IDEX*INCX+1), INCX, TBETA,
$ Y(JDEX*INCY+1), INCY, LCMQ, LCMP )
*
* The source node sends blocks to a destination node
*
ELSE
CALL PBSTR2B1( ICONTXT, TRANS, NQ-IDEX, NB, KZ,
$ X(IDEX*INCX+1), INCX, ZERO, WORK, 1,
$ LCMQ, 1 )
CALL SGESD2D( ICONTXT, 1, NP0-KZ, WORK, 1,
$ MCROW, JYCOL )
END IF
*
* A destination node receives the copied blocks
*
ELSE IF( MYROW.EQ.MCROW .AND. MYCOL.EQ.JYCOL ) THEN
IF( LCMP.EQ.1 .AND. TBETA.EQ.ZERO ) THEN
CALL SGERV2D( ICONTXT, 1, NP0-KZ, Y, INCY,
$ IXROW, MCCOL )
ELSE
CALL SGERV2D( ICONTXT, 1, NP0-KZ, WORK, 1,
$ IXROW, MCCOL )
CALL PBSTR2A1( ICONTXT, NP-JDEX, NB, KZ, WORK, 1, TBETA,
$ Y(JDEX*INCY+1), INCY, LCMP*NB )
END IF
END IF
KZ = 0
40 CONTINUE
*
* Broadcast a column vector Y in each row of template
*
IF( IYCOL.EQ.-1 ) THEN
IF( MYCOL.EQ.JYCOL ) THEN
CALL SGEBS2D( ICONTXT, 'Row', '1-tree', 1, NP, Y, INCY )
ELSE
CALL SGEBR2D( ICONTXT, 'Row', '1-tree', 1, NP, Y, INCY,
$ MYROW, JYCOL )
END IF
END IF
*
* When all row procesors have a copy of the row block A,
*
ELSE
IF( LCMP.EQ.1 ) NP0 = NP
*
* Processors, which have diagonal blocks of A, copy them to
* WORK array in transposed form
*
KZ = 0
IF( MRCOL.EQ.0 ) KZ = NZ
JZ = 0
IF( MRCOL.EQ.0 .AND. MYROW.EQ.IYROW ) JZ = NZ
*
DO 50 I = 0, LCMQ-1
IF( MRROW.EQ.MOD(NPCOL*I+MRCOL, NPROW) ) THEN
IDEX = MAX( 0, I*NB-KZ )
IF( LCMP.EQ.1 .AND. (IYCOL.EQ.-1.OR.IYCOL.EQ.MYCOL) ) THEN
CALL PBSTR2B1( ICONTXT, TRANS, NQ-IDEX, NB, JZ,
$ X(IDEX*INCX+1), INCX, BETA, Y, INCY,
$ LCMQ, 1 )
ELSE
CALL PBSTR2B1( ICONTXT, TRANS, NQ-IDEX, NB, JZ,
$ X(IDEX*INCX+1), INCX, ZERO, WORK, 1,
$ LCMQ, 1 )
END IF
END IF
50 CONTINUE
*
* Get diagonal blocks of A for each row of the template
*
MCCOL = MOD( MOD(MRROW, NPCOL) + IXCOL, NPCOL )
IF( LCMP.GT.1 ) THEN
MCROW = MOD( NPROW+MYROW-IYROW, NPROW )
CALL PBSTRGET( ICONTXT, 'Col', 1, NP0, ICEIL( NN, NB ),
$ WORK, 1, MCROW, MCCOL, IGD, MYROW, MYCOL,
$ NPROW, NPCOL )
END IF
*
* Broadcast a column block of WORK in every column of template
*
IF( IYCOL.EQ.-1 ) THEN
IF( MYCOL.EQ.MCCOL ) THEN
IF( LCMP.GT.1 ) THEN
KZ = 0
IF( MYROW.EQ.IYROW ) KZ = NZ
CALL PBSTRST1( ICONTXT, 'Col', NP, NB, KZ, WORK, 1,
$ BETA, Y, INCY, LCMP, LCMQ, NP0 )
END IF
CALL SGEBS2D( ICONTXT, 'Row', '1-tree', 1, NP, Y, INCY )
ELSE
CALL SGEBR2D( ICONTXT, 'Row', '1-tree', 1, NP, Y, INCY,
$ MYROW, MCCOL )
END IF
*
* Send a column block of WORK to the destination column
*
ELSE
IF( LCMP.EQ.1 ) THEN
IF( MYCOL.EQ.MCCOL ) THEN
IF( MYCOL.NE.IYCOL )
$ CALL SGESD2D( ICONTXT, 1, NP, WORK, 1, MYROW, IYCOL )
ELSE IF( MYCOL.EQ.IYCOL ) THEN
IF( BETA.EQ.ZERO ) THEN
CALL SGERV2D( ICONTXT, 1, NP, Y, INCY, MYROW, MCCOL )
ELSE
CALL SGERV2D( ICONTXT, 1, NP, WORK, 1, MYROW, MCCOL )
CALL PBSVECADD( ICONTXT, 'G', NP, ONE, WORK, 1, BETA,
$ Y, INCY )
END IF
END IF
*
ELSE
NP1 = NP0 * MIN( LCMP, MAX( 0, ICEIL(NN,NB)-MCROW ) )
IF( MYCOL.EQ.MCCOL ) THEN
IF( MYCOL.NE.IYCOL )
$ CALL SGESD2D( ICONTXT, 1, NP1, WORK, 1, MYROW, IYCOL )
ELSE IF( MYCOL.EQ.IYCOL ) THEN
CALL SGERV2D( ICONTXT, 1, NP1, WORK, 1, MYROW, MCCOL )
END IF
*
IF( MYCOL.EQ.IYCOL ) THEN
KZ = 0
IF( MYROW.EQ.IYROW ) KZ = NZ
CALL PBSTRST1( ICONTXT, 'Col', NP, NB, KZ, WORK, 1,
$ BETA, Y, INCY, LCMP, LCMQ, NP0 )
END IF
END IF
END IF
END IF
END IF
*
RETURN
*
* End of PBSTRNV
*
END
*
*=======================================================================
* SUBROUTINE PBSTR2A1
*=======================================================================
*
SUBROUTINE PBSTR2A1( ICONTXT, N, NB, NZ, X, INCX, BETA, Y, INCY,
$ INTV )
*
* -- PB-BLAS routine (version 2.1) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory.
* April 28, 1996
*
* .. Scalar Arguments ..
INTEGER ICONTXT, N, NB, NZ, INCX, INCY, INTV
REAL BETA
* ..
* .. Array Arguments ..
REAL X( * ), Y( * )
* ..
*
* Purpose
* =======
*
* y <== x
* y is a scattered vector, copied from a condensed vector x.
*
* ..
* .. Intrinsic Functions ..
INTRINSIC MIN
* ..
* .. External Functions ..
INTEGER ICEIL
EXTERNAL ICEIL
* ..
* .. External Subroutines ..
EXTERNAL PBSVECADD
* ..
* .. Parameters ..
REAL ONE
PARAMETER ( ONE = 1.0E+0 )
* ..
* .. Local Variables ..
INTEGER IX, IY, JZ, K, ITER
*
IX = 0
IY = 0
JZ = NZ
ITER = ICEIL( N+NZ, INTV )
*
IF( ITER.GT.1 ) THEN
CALL PBSVECADD( ICONTXT, 'G', NB-JZ, ONE, X(IX*INCX+1), INCX,
$ BETA, Y(IY*INCY+1), INCY )
IX = IX + NB - JZ
IY = IY + INTV - JZ
JZ = 0
*
DO 10 K = 2, ITER-1
CALL PBSVECADD( ICONTXT, 'G', NB, ONE, X(IX*INCX+1), INCX,
$ BETA, Y(IY*INCY+1), INCY )
IX = IX + NB
IY = IY + INTV
10 CONTINUE
END IF
*
CALL PBSVECADD( ICONTXT, 'G', MIN( N-IY, NB-JZ ), ONE,
$ X(IX*INCX+1), INCX, BETA, Y(IY*INCY+1), INCY )
*
RETURN
*
* End of PBSTR2A1
*
END
*
*=======================================================================
* SUBROUTINE PBSTR2B1
*=======================================================================
*
SUBROUTINE PBSTR2B1( ICONTXT, TRANS, N, NB, NZ, X, INCX, BETA, Y,
$ INCY, JINX, JINY )
*
* -- PB-BLAS routine (version 2.1) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory.
* April 28, 1996
*
* .. Scalar Arguments ..
CHARACTER*1 TRANS
INTEGER ICONTXT, N, NB, NZ, INCX, INCY, JINX, JINY
REAL BETA
* ..
* .. Array Arguments ..
REAL X( * ), Y( * )
* ..
*
* Purpose
* =======
*
* y <== x + beta * y
* y is a condensed vector, copied from a scattered vector x
*
* ..
* .. Intrinsic Functions ..
INTRINSIC MIN
* ..
* .. External Functions ..
INTEGER ICEIL
EXTERNAL ICEIL
* ..
* .. External Subroutines ..
EXTERNAL PBSVECADD
* ..
* .. Parameters ..
REAL ONE
PARAMETER ( ONE = 1.0E+0 )
* ..
* .. Local Variables ..
INTEGER IX, IY, JZ, K, ITER, LENX, LENY
*
IF( JINX.EQ.1 .AND. JINY.EQ.1 ) THEN
CALL PBSVECADD( ICONTXT, TRANS, N, ONE, X, INCX, BETA,
$ Y, INCY )
*
ELSE
IX = 0
IY = 0
JZ = NZ
LENX = NB * JINX
LENY = NB * JINY
ITER = ICEIL( N+NZ, LENX )
*
IF( ITER.GT.1 ) THEN
CALL PBSVECADD( ICONTXT, TRANS, NB-JZ, ONE, X(IX*INCX+1),
$ INCX, BETA, Y(IY*INCY+1), INCY )
IX = IX + LENX - JZ
IY = IY + LENY - JZ
JZ = 0
*
DO 10 K = 2, ITER-1
CALL PBSVECADD( ICONTXT, TRANS, NB, ONE, X(IX*INCX+1),
$ INCX, BETA, Y(IY*INCY+1), INCY )
IX = IX + LENX
IY = IY + LENY
10 CONTINUE
END IF
*
CALL PBSVECADD( ICONTXT, TRANS, MIN( N-IX, NB-JZ ), ONE,
$ X(IX*INCX+1), INCX, BETA, Y(IY*INCY+1), INCY )
END IF
*
RETURN
*
* End of PBSTR2B1
*
END
|