File: pbstrnv.f

package info (click to toggle)
scalapack 1.8.0-6
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 32,240 kB
  • ctags: 29,143
  • sloc: fortran: 288,069; ansic: 64,035; makefile: 1,911
file content (793 lines) | stat: -rw-r--r-- 27,025 bytes parent folder | download | duplicates (13)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
      SUBROUTINE PBSTRNV( ICONTXT, XDIST, TRANS, N, NB, NZ, X, INCX,
     $                    BETA, Y, INCY, IXROW, IXCOL, IYROW, IYCOL,
     $                    WORK )
*
*  -- PB-BLAS routine (version 2.1) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory.
*     April 28, 1996
*
*     Jaeyoung Choi, Oak Ridge National Laboratory
*     Jack Dongarra, University of Tennessee and Oak Ridge National Lab.
*     David Walker,  Oak Ridge National Laboratory
*
*     .. Scalar Arguments ..
      CHARACTER*1        TRANS, XDIST
      INTEGER            ICONTXT, INCX, INCY, IXCOL, IXROW, IYCOL,
     $                   IYROW, N, NB, NZ
      REAL               BETA
*     ..
*     .. Array Arguments ..
      REAL               WORK( * ), X( * ), Y( * )
*     ..
*
*  Purpose
*  =======
*
*  PBSTRNV transposes a column vector to row vector, or a row vector to
*  column vector by reallocating data distribution.
*
*     Y := X'
*
*  where X and Y are N vectors.
*
*  Parameters
*  ==========
*
*  ICONTXT (input) INTEGER
*          ICONTXT is the BLACS mechanism for partitioning communication
*          space.  A defining property of a context is that a message in
*          a context cannot be sent or received in another context.  The
*          BLACS context includes the definition of a grid, and each
*          process' coordinates in it.
*
*  XDIST   (input) CHARACTER*1
*          XDIST specifies whether X is a column vector or a row vector,
*
*            XDIST = 'C',  X is a column vector (distributed columnwise)
*            XDIST = 'R',  X is a row vector    (distributed rowwise)
*
*  TRANS   (input) CHARACTER*1
*          TRANS specifies whether the transposed format is transpose
*          or conjugate transpose.  If the vectors X and Y are real,
*          the argument is ignored.
*
*             TRANS = 'T',  transpose
*             TRANS = 'C',  conjugate transpose
*
*  N       (input) INTEGER
*          N specifies the (global) number of the vector X and the
*          vector Y.  N >= 0.
*
*  NB      (input) INTEGER
*          NB specifies the block size of vectors X and Y.  NB >= 0.
*
*  NZ      (input) INTEGER
*          NZ is the column offset to specify the column distance from
*          the beginning of the block to the first element of the
*          vector X, and the row offset to the first element of the
*          vector Y if XDIST = 'C'.
*          Otherwise, it is row offset to specify the row distance
*          from the beginning of the block to the first element of the
*          vector X, and the column offset to the first element of the
*          vector Y.  0 < NZ <= NB.
*
*  X       (input) REAL array of dimension  at least
*          ( 1 + (Np-1) * abs(INCX)) in IXCOL if XDIST = 'C', or
*          ( 1 + (Nq-1) * abs(INCX)) in IXROW if XDIST = 'R'.
*          The incremented array X must contain the vector X.
*
*  INCX    (input) INTEGER
*          INCX specifies the increment for the elements of X.
*          INCX <> 0.
*
*  BETA    (input) REAL
*          BETA specifies scaler beta.
*
*  Y       (input/output) REAL array of dimension at least
*          ( 1 + (Nq-1) * abs(INCY)) in IYROW if XDIST = 'C', or
*          ( 1 + (Np-1) * abs(INCY)) in IYCOL if XDIST = 'R', or
*          The incremented array Y must contain the vector Y.
*          Y will not be referenced if beta is zero.
*
*  INCY    (input) INTEGER
*          INCY specifies the increment for the elements of Y.
*          INCY <> 0.
*
*  IXROW   (input) INTEGER
*          IXROW specifies a row of the process template, which holds
*          the first element of the vector X. If X is a row vector and
*          all rows of processes have a copy of X, then set IXROW = -1.
*
*  IXCOL   (input) INTEGER
*          IXCOL specifies  a column of the process template,
*          which holds the first element of the vector X.  If  X is  a
*          column block and all columns of processes have a copy of X,
*          then set IXCOL = -1.
*
*  IYROW   (input) INTEGER
*          IYROW specifies the current row process which holds the
*          first element of the vector Y, which is transposed of X.
*          If X  is a column vector and the transposed  row vector Y is
*          distributed all rows of processes, set IYROW = -1.
*
*  IYCOL   (input) INTEGER
*          IYCOL specifies  the current column process  which holds
*          the first element of the vector Y, which is transposed of Y.
*          If X is a row block and the transposed column vector Y is
*          distributed all columns of processes, set IYCOL = -1.
*
*  WORK    (workspace) REAL array of dimension Size(WORK).
*          It needs extra working space of x**T or x**H.
*
*  Parameters Details
*  ==================
*
*  Nx      It is a local portion  of N owned by a process, where x is
*          replaced by  either p (=NPROW) or q (=NPCOL)).  The value is
*          determined by N, NB, NZ, x, and MI, where NB is a block size,
*          NZ is a offset from the beginning of the block,  and MI is a
*          row or column position  in a process template. Nx is equal
*          to  or less than Nx0 = CEIL( N+NZ, NB*x ) * NB.
*
*  Communication Scheme
*  ====================
*
*  The communication scheme of the routine is set to '1-tree', which is
*  fan-out.  (For details, see BLACS user's guide.)
*
*  Memory Requirement of WORK
*  ==========================
*
*  NN   = N + NZ
*  Npb  = CEIL( NN, NB*NPROW )
*  Nqb  = CEIL( NN, NB*NPCOL )
*  LCMP = LCM / NPROW
*  LCMQ = LCM / NPCOL
*
*   (1) XDIST = 'C'
*     (a) IXCOL != -1
*         Size(WORK) = CEIL(Nqb,LCMQ)*NB
*     (b) IXCOL = -1
*         Size(WORK) = CEIL(Nqb,LCMQ)*NB * MIN(LCMQ,CEIL(NN,NB))
*
*   (2) XDIST = 'R'
*     (a) IXROW != -1
*         Size(WORK) = CEIL(Npb,LCMP)*NB
*     (b) IXROW = -1
*         Size(WORK) = CEIL(Npb,LCMP)*NB * MIN(LCMP,CEIL(NN,NB))
*
*  Notes
*  -----
*  More precise space can be computed as
*
*  CEIL(Npb,LCMP)*NB => NUMROC( NUMROC(NN,NB,0,0,NPROW), NB, 0, 0, LCMP)
*  CEIL(Nqb,LCMQ)*NB => NUMROC( NUMROC(NN,NB,0,0,NPCOL), NB, 0, 0, LCMQ)
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            COLFORM, ROWFORM
      INTEGER            I, IDEX, IGD, INFO, JDEX, JYCOL, JYROW, JZ, KZ,
     $                   LCM, LCMP, LCMQ, MCCOL, MCROW, MRCOL, MRROW,
     $                   MYCOL, MYROW, NN, NP, NP0, NP1, NPCOL, NPROW,
     $                   NQ, NQ0, NQ1
      REAL               TBETA
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILCM, ICEIL, NUMROC
      EXTERNAL           LSAME, ILCM, ICEIL, NUMROC
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, PBSTR2A1, PBSTR2B1, PBSTRGET,
     $                   PBSTRST1, PBSVECADD, PXERBLA, SGEBR2D, SGEBS2D,
     $                   SGERV2D, SGESD2D
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, MOD
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible.
*
      IF( N.EQ.0 ) RETURN
*
      CALL BLACS_GRIDINFO( ICONTXT, NPROW, NPCOL, MYROW, MYCOL )
*
      COLFORM = LSAME( XDIST, 'C' )
      ROWFORM = LSAME( XDIST, 'R' )
*
*     Test the input parameters.
*
      INFO = 0
      IF( ( .NOT.COLFORM ) .AND. ( .NOT.ROWFORM ) ) THEN
         INFO = 2
      ELSE IF( N   .LT.0                          ) THEN
         INFO = 4
      ELSE IF( NB  .LT.1                          ) THEN
         INFO = 5
      ELSE IF( NZ  .LT.0 .OR. NZ.GE.NB            ) THEN
         INFO = 6
      ELSE IF( INCX.EQ.0                          ) THEN
         INFO = 8
      ELSE IF( INCY.EQ.0                          ) THEN
         INFO = 11
      ELSE IF( IXROW.LT.-1 .OR. IXROW.GE.NPROW .OR.
     $       ( IXROW.EQ.-1 .AND. COLFORM )        ) THEN
         INFO = 12
      ELSE IF( IXCOL.LT.-1 .OR. IXCOL.GE.NPCOL .OR.
     $       ( IXCOL.EQ.-1 .AND. ROWFORM )        ) THEN
         INFO = 13
      ELSE IF( IYROW.LT.-1 .OR. IYROW.GE.NPROW .OR.
     $       ( IYROW.EQ.-1 .AND. ROWFORM )        ) THEN
         INFO = 14
      ELSE IF( IYCOL.LT.-1 .OR. IYCOL.GE.NPCOL .OR.
     $       ( IYCOL.EQ.-1 .AND. COLFORM )        ) THEN
         INFO = 15
      END IF
*
   10 CONTINUE
      IF( INFO.NE.0 ) THEN
         CALL PXERBLA( ICONTXT, 'PBSTRNV ', INFO )
         RETURN
      END IF
*
*     Start the operations.
*
*     LCM : the least common multiple of NPROW and NPCOL
*
      LCM  = ILCM( NPROW, NPCOL )
      LCMP = LCM   / NPROW
      LCMQ = LCM   / NPCOL
      IGD  = NPCOL / LCMP
      NN   = N + NZ
*
*     When x is a column vector
*
      IF( COLFORM ) THEN
*
*       Form  y <== x'  ( x is a column vector )
*
*                                        ||
*                                        ||
*            _____________               ||
*            -----(y)-----      <==     (x)
*                                        ||
*                                        ||
*                                        ||
*
        IF(      IXROW.LT.0  .OR. IXROW.GE.NPROW ) THEN
          INFO = 12
        ELSE IF( IXCOL.LT.-1 .OR. IXCOL.GE.NPCOL ) THEN
          INFO = 13
        ELSE IF( IYROW.LT.-1 .OR. IYROW.GE.NPROW ) THEN
          INFO = 14
        ELSE IF( IYCOL.LT.0  .OR. IYCOL.GE.NPCOL ) THEN
          INFO = 15
        END IF
        IF( INFO.NE.0 ) GO TO 10
*
*       MRROW : row relative position in template from IXROW
*       MRCOL : column relative position in template from IYCOL
*
        MRROW = MOD( NPROW+MYROW-IXROW, NPROW )
        MRCOL = MOD( NPCOL+MYCOL-IYCOL, NPCOL )
        JYROW = IYROW
        IF( IYROW.EQ.-1 ) JYROW = IXROW
*
        NP  = NUMROC( NN, NB, MYROW, IXROW, NPROW )
        IF( MRROW.EQ.0 ) NP = NP - NZ
        NQ  = NUMROC( NN, NB, MYCOL, IYCOL, NPCOL )
        IF( MRCOL.EQ.0 ) NQ = NQ - NZ
        NQ0 = NUMROC( NUMROC(NN, NB, 0, 0, NPCOL), NB, 0, 0, LCMQ )
*
*       When a column process of IXCOL has a column block A,
*
        IF( IXCOL .GE. 0 ) THEN
          TBETA = ZERO
          IF( MYROW.EQ.JYROW ) TBETA = BETA
          KZ = NZ
*
          DO 20 I = 0, MIN( LCM, ICEIL(NN,NB) ) - 1
            MCROW = MOD( MOD(I, NPROW) + IXROW, NPROW )
            MCCOL = MOD( MOD(I, NPCOL) + IYCOL, NPCOL )
            IF( LCMQ.EQ.1 )  NQ0 = NUMROC( NN, NB, I, 0, NPCOL )
            JDEX  = (I/NPCOL) * NB
            IF( MRCOL.EQ.0 ) JDEX = MAX(0, JDEX-NZ)
*
*           A source node copies the blocks to WORK, and send it
*
            IF( MYROW.EQ.MCROW .AND. MYCOL.EQ.IXCOL ) THEN
*
*             The source node is a destination node
*
              IDEX = (I/NPROW) * NB
              IF( MRROW.EQ.0 ) IDEX = MAX( 0, IDEX-NZ )
              IF( MYROW.EQ.JYROW .AND. MYCOL.EQ.MCCOL ) THEN
                CALL PBSTR2B1( ICONTXT, TRANS, NP-IDEX, NB, KZ,
     $                          X(IDEX*INCX+1), INCX, TBETA,
     $                          Y(JDEX*INCY+1), INCY, LCMP, LCMQ )
*
*             The source node sends blocks to a destination node
*
              ELSE
                CALL PBSTR2B1( ICONTXT, TRANS, NP-IDEX, NB, KZ,
     $                         X(IDEX*INCX+1), INCX, ZERO, WORK, 1,
     $                         LCMP, 1 )
                CALL SGESD2D( ICONTXT, 1, NQ0-KZ, WORK, 1,
     $                        JYROW, MCCOL )
              END IF
*
*           A destination node receives the copied vector
*
            ELSE IF( MYROW.EQ.JYROW .AND. MYCOL.EQ.MCCOL ) THEN
              IF( LCMQ.EQ.1 .AND. TBETA.EQ.ZERO ) THEN
                CALL SGERV2D( ICONTXT, 1, NQ0-KZ, Y, INCY,
     $                        MCROW, IXCOL )
              ELSE
                CALL SGERV2D( ICONTXT, 1, NQ0-KZ, WORK, 1,
     $                        MCROW, IXCOL )
                CALL PBSTR2A1( ICONTXT, NQ-JDEX, NB, KZ, WORK, 1, TBETA,
     $                         Y(JDEX*INCY+1), INCY, LCMQ*NB )
              END IF
            END IF
            KZ = 0
   20     CONTINUE
*
*         Broadcast a row block of WORK in each column of template
*
          IF( IYROW.EQ.-1 ) THEN
            IF( MYROW.EQ.JYROW ) THEN
              CALL SGEBS2D( ICONTXT, 'Col', '1-tree', 1, NQ, Y, INCY )
            ELSE
              CALL SGEBR2D( ICONTXT, 'Col', '1-tree', 1, NQ, Y, INCY,
     $                     JYROW, MYCOL )
             END IF
          END IF
*
*       When all column procesors have a copy of the column block A,
*
        ELSE
          IF( LCMQ.EQ.1 ) NQ0 = NQ
*
*         Processors, which have diagonal blocks of X, copy them to
*         WORK array in transposed form
*
          KZ = 0
          IF( MRROW.EQ.0 ) KZ = NZ
          JZ = 0
          IF( MRROW.EQ.0 .AND. MYCOL.EQ.IYCOL ) JZ = NZ
*
          DO 30 I = 0, LCMP - 1
            IF( MRCOL.EQ.MOD(NPROW*I+MRROW, NPCOL) ) THEN
              IDEX = MAX( 0, I*NB-KZ )
              IF( LCMQ.EQ.1 .AND. (IYROW.EQ.-1.OR.IYROW.EQ.MYROW) ) THEN
                 CALL PBSTR2B1( ICONTXT, TRANS, NP-IDEX, NB, JZ,
     $                          X(IDEX*INCX+1), INCX, BETA, Y, INCY,
     $                          LCMP, 1 )
              ELSE
                 CALL PBSTR2B1( ICONTXT, TRANS, NP-IDEX, NB, JZ,
     $                          X(IDEX*INCX+1), INCX, ZERO, WORK, 1,
     $                          LCMP, 1 )
              END IF
            END IF
   30     CONTINUE
*
*         Get diagonal blocks of A for each column of the template
*
          MCROW = MOD( MOD(MRCOL, NPROW) + IXROW, NPROW )
          IF( LCMQ.GT.1 ) THEN
            MCCOL = MOD( NPCOL+MYCOL-IYCOL, NPCOL )
            CALL PBSTRGET( ICONTXT, 'Row', 1, NQ0, ICEIL( NN, NB ),
     $                     WORK, 1, MCROW, MCCOL, IGD, MYROW, MYCOL,
     $                     NPROW, NPCOL )
          END IF
*
*         Broadcast a row block of WORK in every row of template
*
          IF( IYROW.EQ.-1 ) THEN
            IF( MYROW.EQ.MCROW ) THEN
              IF( LCMQ.GT.1 ) THEN
                KZ = 0
                IF( MYCOL.EQ.IYCOL ) KZ = NZ
                CALL PBSTRST1( ICONTXT, 'Row', NQ, NB, KZ, WORK, 1,
     $                         BETA, Y, INCY, LCMP, LCMQ, NQ0 )
              END IF
              CALL SGEBS2D( ICONTXT, 'Col', '1-tree', 1, NQ, Y, INCY )
            ELSE
              CALL SGEBR2D( ICONTXT, 'Col', '1-tree', 1, NQ, Y, INCY,
     $                      MCROW, MYCOL )
            END IF
*
*         Send a row block of WORK to the destination row
*
          ELSE
            IF( LCMQ.EQ.1 ) THEN
              IF( MYROW.EQ.MCROW ) THEN
                IF( MYROW.NE.IYROW )
     $            CALL SGESD2D( ICONTXT, 1, NQ0, WORK, 1, IYROW, MYCOL )
              ELSE IF( MYROW.EQ.IYROW ) THEN
                IF( BETA.EQ.ZERO ) THEN
                  CALL SGERV2D( ICONTXT, 1, NQ0, Y, INCY, MCROW, MYCOL )
                ELSE
                  CALL SGERV2D( ICONTXT, 1, NQ0, WORK, 1, MCROW, MYCOL )
                  CALL PBSVECADD( ICONTXT, 'G', NQ0, ONE, WORK, 1,
     $                            BETA, Y, INCY )
                END IF
              END IF
*
            ELSE
              NQ1 = NQ0 * MIN( LCMQ, MAX( 0, ICEIL(NN,NB)-MCCOL ) )
              IF( MYROW.EQ.MCROW ) THEN
                IF( MYROW.NE.IYROW )
     $            CALL SGESD2D( ICONTXT, 1, NQ1, WORK, 1, IYROW, MYCOL )
              ELSE IF( MYROW.EQ.IYROW ) THEN
                CALL SGERV2D( ICONTXT, 1, NQ1, WORK, 1, MCROW, MYCOL )
              END IF
*
              IF( MYROW.EQ.IYROW ) THEN
                KZ = 0
                IF( MYCOL.EQ.IYCOL ) KZ = NZ
                CALL PBSTRST1( ICONTXT, 'Row', NQ, NB, KZ, WORK, 1,
     $                         BETA, Y, INCY, LCMP, LCMQ, NQ0 )
              END IF
            END IF
          END IF
        END IF
*
*     When x is a row vector
*
      ELSE
*
*       Form  y <== x'  ( x is a row block )
*
*           ||
*           ||
*           ||               _____________
*          (y)      <==      -----(x)-----
*           ||
*           ||
*           ||
*
        IF(      IXROW.LT.-1 .OR. IXROW.GE.NPROW ) THEN
          INFO = 12
        ELSE IF( IXCOL.LT.0  .OR. IXCOL.GE.NPCOL ) THEN
          INFO = 13
        ELSE IF( IYROW.LT.0  .OR. IYROW.GE.NPROW ) THEN
          INFO = 14
        ELSE IF( IYCOL.LT.-1 .OR. IYCOL.GE.NPCOL ) THEN
          INFO = 15
        END IF
        IF( INFO.NE.0 ) GO TO 10
*
*       MRROW : row relative position in template from IYROW
*       MRCOL : column relative position in template from IXCOL
*
        MRROW = MOD( NPROW+MYROW-IYROW, NPROW )
        MRCOL = MOD( NPCOL+MYCOL-IXCOL, NPCOL )
        JYCOL = IYCOL
        IF( IYCOL.EQ.-1 ) JYCOL = IXCOL
*
        NP  = NUMROC( NN, NB, MYROW, IYROW, NPROW )
        IF( MRROW.EQ.0 ) NP = NP - NZ
        NQ  = NUMROC( NN, NB, MYCOL, IXCOL, NPCOL )
        IF( MRCOL.EQ.0 ) NQ = NQ - NZ
        NP0 = NUMROC( NUMROC(NN, NB, 0, 0, NPROW), NB, 0, 0, LCMP )
*
*       When a row process of IXROW has a row block A,
*
        IF( IXROW .GE. 0 ) THEN
          TBETA = ZERO
          IF( MYCOL.EQ.JYCOL ) TBETA = BETA
          KZ = NZ
*
          DO 40 I = 0, MIN( LCM, ICEIL(NN,NB) ) - 1
            MCROW = MOD( MOD(I, NPROW) + IYROW, NPROW )
            MCCOL = MOD( MOD(I, NPCOL) + IXCOL, NPCOL )
            IF( LCMP.EQ.1 ) NP0 = NUMROC( NN, NB, I, 0, NPROW )
            JDEX  = (I/NPROW) * NB
            IF( MRROW.EQ.0 ) JDEX = MAX(0, JDEX-NZ)
*
*           A source node copies the blocks to WORK, and send it
*
            IF( MYROW.EQ.IXROW .AND. MYCOL.EQ.MCCOL ) THEN
*
*             The source node is a destination node
*
              IDEX = (I/NPCOL) * NB
              IF( MRCOL.EQ.0 ) IDEX = MAX( 0, IDEX-NZ )
              IF( MYROW.EQ.MCROW .AND. MYCOL.EQ.JYCOL ) THEN
                CALL PBSTR2B1( ICONTXT, TRANS, NQ-IDEX, NB, KZ,
     $                         X(IDEX*INCX+1), INCX, TBETA,
     $                         Y(JDEX*INCY+1), INCY, LCMQ, LCMP )
*
*             The source node sends blocks to a destination node
*
              ELSE
                CALL PBSTR2B1( ICONTXT, TRANS, NQ-IDEX, NB, KZ,
     $                         X(IDEX*INCX+1), INCX, ZERO, WORK, 1,
     $                         LCMQ, 1 )
                CALL SGESD2D( ICONTXT, 1, NP0-KZ, WORK, 1,
     $                        MCROW, JYCOL )
              END IF
*
*           A destination node receives the copied blocks
*
            ELSE IF( MYROW.EQ.MCROW .AND. MYCOL.EQ.JYCOL ) THEN
              IF( LCMP.EQ.1 .AND. TBETA.EQ.ZERO ) THEN
                CALL SGERV2D( ICONTXT, 1, NP0-KZ, Y, INCY,
     $                        IXROW, MCCOL )
              ELSE
                CALL SGERV2D( ICONTXT, 1, NP0-KZ, WORK, 1,
     $                        IXROW, MCCOL )
                CALL PBSTR2A1( ICONTXT, NP-JDEX, NB, KZ, WORK, 1, TBETA,
     $                         Y(JDEX*INCY+1), INCY, LCMP*NB )
              END IF
            END IF
            KZ = 0
   40     CONTINUE
*
*         Broadcast a column vector Y in each row of template
*
          IF( IYCOL.EQ.-1 ) THEN
            IF( MYCOL.EQ.JYCOL ) THEN
              CALL SGEBS2D( ICONTXT, 'Row', '1-tree', 1, NP, Y, INCY )
            ELSE
              CALL SGEBR2D( ICONTXT, 'Row', '1-tree', 1, NP, Y, INCY,
     $                      MYROW, JYCOL )
            END IF
          END IF
*
*       When all row procesors have a copy of the row block A,
*
        ELSE
          IF( LCMP.EQ.1 ) NP0 = NP
*
*         Processors, which have diagonal blocks of A, copy them to
*         WORK array in transposed form
*
          KZ = 0
          IF( MRCOL.EQ.0 ) KZ = NZ
          JZ = 0
          IF( MRCOL.EQ.0 .AND. MYROW.EQ.IYROW ) JZ = NZ
*
          DO 50 I = 0, LCMQ-1
            IF( MRROW.EQ.MOD(NPCOL*I+MRCOL, NPROW) ) THEN
              IDEX = MAX( 0, I*NB-KZ )
              IF( LCMP.EQ.1 .AND. (IYCOL.EQ.-1.OR.IYCOL.EQ.MYCOL) ) THEN
                CALL PBSTR2B1( ICONTXT, TRANS, NQ-IDEX, NB, JZ,
     $                          X(IDEX*INCX+1), INCX, BETA, Y, INCY,
     $                          LCMQ, 1 )
              ELSE
                CALL PBSTR2B1( ICONTXT, TRANS, NQ-IDEX, NB, JZ,
     $                         X(IDEX*INCX+1), INCX, ZERO, WORK, 1,
     $                         LCMQ, 1 )
              END IF
            END IF
   50     CONTINUE
*
*         Get diagonal blocks of A for each row of the template
*
          MCCOL = MOD( MOD(MRROW, NPCOL) + IXCOL, NPCOL )
          IF( LCMP.GT.1 ) THEN
            MCROW = MOD( NPROW+MYROW-IYROW, NPROW )
            CALL PBSTRGET( ICONTXT, 'Col', 1, NP0, ICEIL( NN, NB ),
     $                     WORK, 1, MCROW, MCCOL, IGD, MYROW, MYCOL,
     $                     NPROW, NPCOL )
          END IF
*
*         Broadcast a column block of WORK in every column of template
*
          IF( IYCOL.EQ.-1 ) THEN
            IF( MYCOL.EQ.MCCOL ) THEN
              IF( LCMP.GT.1 ) THEN
                KZ = 0
                IF( MYROW.EQ.IYROW ) KZ = NZ
                CALL PBSTRST1( ICONTXT, 'Col', NP, NB, KZ, WORK, 1,
     $                         BETA, Y, INCY, LCMP, LCMQ, NP0 )
              END IF
              CALL SGEBS2D( ICONTXT, 'Row', '1-tree', 1, NP, Y, INCY )
            ELSE
              CALL SGEBR2D( ICONTXT, 'Row', '1-tree', 1, NP, Y, INCY,
     $                      MYROW, MCCOL )
            END IF
*
*         Send a column block of WORK to the destination column
*
          ELSE
            IF( LCMP.EQ.1 ) THEN
              IF( MYCOL.EQ.MCCOL ) THEN
                IF( MYCOL.NE.IYCOL )
     $            CALL SGESD2D( ICONTXT, 1, NP, WORK, 1, MYROW, IYCOL )
              ELSE IF( MYCOL.EQ.IYCOL ) THEN
                IF( BETA.EQ.ZERO ) THEN
                  CALL SGERV2D( ICONTXT, 1, NP, Y, INCY, MYROW, MCCOL )
                ELSE
                  CALL SGERV2D( ICONTXT, 1, NP, WORK, 1, MYROW, MCCOL )
                  CALL PBSVECADD( ICONTXT, 'G', NP, ONE, WORK, 1, BETA,
     $                            Y, INCY )
                END IF
              END IF
*
            ELSE
              NP1 = NP0 * MIN( LCMP, MAX( 0, ICEIL(NN,NB)-MCROW ) )
              IF( MYCOL.EQ.MCCOL ) THEN
                IF( MYCOL.NE.IYCOL )
     $            CALL SGESD2D( ICONTXT, 1, NP1, WORK, 1, MYROW, IYCOL )
              ELSE IF( MYCOL.EQ.IYCOL ) THEN
                CALL SGERV2D( ICONTXT, 1, NP1, WORK, 1, MYROW, MCCOL )
              END IF
*
              IF( MYCOL.EQ.IYCOL ) THEN
                KZ = 0
                IF( MYROW.EQ.IYROW ) KZ = NZ
                CALL PBSTRST1( ICONTXT, 'Col', NP, NB, KZ, WORK, 1,
     $                         BETA, Y, INCY, LCMP, LCMQ, NP0 )
              END IF
            END IF
          END IF
        END IF
      END IF
*
      RETURN
*
*     End of PBSTRNV
*
      END
*
*=======================================================================
*     SUBROUTINE PBSTR2A1
*=======================================================================
*
      SUBROUTINE PBSTR2A1( ICONTXT, N, NB, NZ, X, INCX, BETA, Y, INCY,
     $                     INTV )
*
*  -- PB-BLAS routine (version 2.1) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory.
*     April 28, 1996
*
*     .. Scalar Arguments ..
      INTEGER              ICONTXT, N, NB, NZ, INCX, INCY, INTV
      REAL                 BETA
*     ..
*     .. Array Arguments ..
      REAL                 X( * ), Y( * )
*     ..
*
*  Purpose
*  =======
*
*     y <== x
*     y is a scattered vector, copied from a condensed vector x.
*
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC            MIN
*     ..
*     .. External Functions ..
      INTEGER              ICEIL
      EXTERNAL             ICEIL
*     ..
*     .. External Subroutines ..
      EXTERNAL             PBSVECADD
*     ..
*     .. Parameters ..
      REAL                 ONE
      PARAMETER          ( ONE = 1.0E+0 )
*     ..
*     .. Local Variables ..
      INTEGER              IX, IY, JZ, K, ITER
*
      IX = 0
      IY = 0
      JZ = NZ
      ITER = ICEIL( N+NZ, INTV )
*
      IF( ITER.GT.1 ) THEN
         CALL PBSVECADD( ICONTXT, 'G', NB-JZ, ONE, X(IX*INCX+1), INCX,
     $                   BETA, Y(IY*INCY+1), INCY )
         IX = IX + NB   - JZ
         IY = IY + INTV - JZ
         JZ = 0
*
         DO 10 K = 2, ITER-1
            CALL PBSVECADD( ICONTXT, 'G', NB, ONE, X(IX*INCX+1), INCX,
     $                      BETA, Y(IY*INCY+1), INCY )
            IX = IX + NB
            IY = IY + INTV
   10    CONTINUE
      END IF
*
      CALL PBSVECADD( ICONTXT, 'G', MIN( N-IY, NB-JZ ), ONE,
     $                X(IX*INCX+1), INCX, BETA, Y(IY*INCY+1), INCY )
*
      RETURN
*
*     End of PBSTR2A1
*
      END
*
*=======================================================================
*     SUBROUTINE PBSTR2B1
*=======================================================================
*
      SUBROUTINE PBSTR2B1( ICONTXT, TRANS, N, NB, NZ, X, INCX, BETA, Y,
     $                     INCY, JINX, JINY )
*
*  -- PB-BLAS routine (version 2.1) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory.
*     April 28, 1996
*
*     .. Scalar Arguments ..
      CHARACTER*1          TRANS
      INTEGER              ICONTXT, N, NB, NZ, INCX, INCY, JINX, JINY
      REAL                 BETA
*     ..
*     .. Array Arguments ..
      REAL                 X( * ), Y( * )
*     ..
*
*  Purpose
*  =======
*
*     y <== x + beta * y
*     y is a condensed vector, copied from a scattered vector x
*
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC            MIN
*     ..
*     .. External Functions ..
      INTEGER              ICEIL
      EXTERNAL             ICEIL
*     ..
*     .. External Subroutines ..
      EXTERNAL             PBSVECADD
*     ..
*     .. Parameters ..
      REAL                 ONE
      PARAMETER          ( ONE = 1.0E+0 )
*     ..
*     .. Local Variables ..
      INTEGER              IX, IY, JZ, K, ITER, LENX, LENY
*
      IF( JINX.EQ.1 .AND. JINY.EQ.1 ) THEN
         CALL PBSVECADD( ICONTXT, TRANS, N, ONE, X, INCX, BETA,
     $                   Y, INCY )
*
      ELSE
         IX   = 0
         IY   = 0
         JZ   = NZ
         LENX = NB * JINX
         LENY = NB * JINY
         ITER = ICEIL( N+NZ, LENX )
*
         IF( ITER.GT.1 ) THEN
            CALL PBSVECADD( ICONTXT, TRANS, NB-JZ, ONE, X(IX*INCX+1),
     $                      INCX, BETA, Y(IY*INCY+1), INCY )
            IX = IX + LENX - JZ
            IY = IY + LENY - JZ
            JZ = 0
*
            DO 10 K = 2, ITER-1
               CALL PBSVECADD( ICONTXT, TRANS, NB, ONE, X(IX*INCX+1),
     $                         INCX, BETA, Y(IY*INCY+1), INCY )
               IX = IX + LENX
               IY = IY + LENY
   10       CONTINUE
         END IF
*
         CALL PBSVECADD( ICONTXT, TRANS, MIN( N-IX, NB-JZ ), ONE,
     $                   X(IX*INCX+1), INCX, BETA, Y(IY*INCY+1), INCY )
      END IF
*
      RETURN
*
*     End of PBSTR2B1
*
      END