1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
SUBROUTINE PBSVECADD( ICONTXT, MODE, N, ALPHA, X, INCX, BETA, Y,
$ INCY )
*
* -- PB-BLAS routine (version 2.1) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory.
* April 28, 1996
*
* .. Scalar Arguments ..
CHARACTER*1 MODE
INTEGER ICONTXT, INCX, INCY, N
REAL ALPHA, BETA
* ..
* .. Array Arguments ..
REAL X( * ), Y( * )
*
* ..
*
* Purpose
* =======
*
* PBSVECADD performs a vector X to be added to Y
* Y := alpha*op(X) + beta*Y,
* where alpha and beta are scalars, and X and Y are n vectors,
* and op(X) = X**H if MODE = 'C',
*
* Arguments
* =========
*
* ICONTXT (input) INTEGER
* ICONTXT is the BLACS mechanism for partitioning communication
* space. A defining property of a context is that a message in
* a context cannot be sent or received in another context. The
* BLACS context includes the definition of a grid, and each
* process' coordinates in it.
*
* MODE (input) CHARACTER*1
* Specifies the transposed, or conjugate transposed vector X
* to be added to the vector Y
* = 'C': Conjugate vector X is added for complex data set.
* Y = alpha * X**H + beta * Y
* ELSE : Vector X is added. Y = alpha*X + beta*Y
* if MODE = 'V', BLAS routine may be used.
*
* N (input) INTEGER
* The number of elements of the vectors X and Y to be added.
* N >= 0.
*
* ALPHA (input) REAL
* ALPHA specifies the scalar alpha.
*
* X (input) REAL array of DIMENSION at least
* ( 1 + ( N - 1 )*abs( INCX ) )
* The incremented array X must contain the vector X.
*
* INCX (input) INTEGER
* INCX specifies the increment for the elements of X.
* INCX <> 0.
*
* BETA (input) REAL
* BETA specifies the scalar beta.
*
* Y (input/output) REAL array of DIMENSION at least
* ( 1 + ( N - 1 )*abs( INCY ) )
* On entry with BETA non-zero, the incremented array Y must
* contain the vector Y.
* On exit, Y is overwritten by the updated vector Y.
*
* INCY - (input) INTEGER
* INCY specifies the increment for the elements of Y.
* INCY <> 0.
*
* =====================================================================
*
* ..
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0)
* ..
* .. Local Scalars ..
INTEGER I, IX, IY
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL SSCAL, SCOPY, SAXPY
* ..
* .. Executable Statements ..
*
IF( N.LE.0 .OR. ( ALPHA.EQ.ZERO .AND. BETA.EQ.ONE ) ) RETURN
*
IF( ALPHA.EQ.ZERO ) THEN
IF( BETA.EQ.ZERO ) THEN
IF( INCY.EQ.1 ) THEN
DO 10 I = 1, N
Y( I ) = ZERO
10 CONTINUE
ELSE
IY = 1
DO 20 I = 1, N
Y( IY ) = ZERO
IY = IY + INCY
20 CONTINUE
END IF
*
ELSE
IF( LSAME( MODE, 'V' ) ) THEN
CALL SSCAL( N, BETA, Y, INCY )
ELSE IF( INCY.EQ.1 ) THEN
DO 30 I = 1, N
Y( I ) = BETA * Y( I )
30 CONTINUE
ELSE
IY = 1
DO 40 I = 1, N
Y( IY ) = BETA * Y( IY )
IY = IY + INCY
40 CONTINUE
END IF
END IF
*
ELSE
IF( ALPHA.EQ.ONE ) THEN
IF( BETA.EQ.ZERO ) THEN
IF( LSAME( MODE, 'V' ) ) THEN
CALL SCOPY( N, X, INCX, Y, INCY )
ELSE IF( INCX.EQ.1 .AND. INCY.EQ.1 ) THEN
DO 50 I = 1, N
Y( I ) = X( I )
50 CONTINUE
ELSE
IX = 1
IY = 1
DO 60 I = 1, N
Y( IY ) = X( IX )
IX = IX + INCX
IY = IY + INCY
60 CONTINUE
END IF
*
ELSE IF( BETA.EQ.ONE ) THEN
IF( INCX.EQ.1 .AND. INCY.EQ.1 ) THEN
DO 70 I = 1, N
Y( I ) = X( I ) + Y( I )
70 CONTINUE
ELSE
IX = 1
IY = 1
DO 80 I = 1, N
Y( IY ) = X( IX ) + Y( IY )
IX = IX + INCX
IY = IY + INCY
80 CONTINUE
END IF
*
ELSE
IF( INCX.EQ.1 .AND. INCY.EQ.1 ) THEN
DO 90 I = 1, N
Y( I ) = X( I ) + BETA * Y( I )
90 CONTINUE
ELSE
IX = 1
IY = 1
DO 100 I = 1, N
Y( IY ) = X( IX ) + BETA * Y( IY )
IX = IX + INCX
IY = IY + INCY
100 CONTINUE
END IF
END IF
*
ELSE
IF( BETA.EQ.ZERO ) THEN
IF( INCX.EQ.1 .AND. INCY.EQ.1 ) THEN
DO 110 I = 1, N
Y( I ) = ALPHA * X( I )
110 CONTINUE
ELSE
IX = 1
IY = 1
DO 120 I = 1, N
Y( IY ) = X( IX )
IX = IX + INCX
IY = IY + INCY
120 CONTINUE
END IF
*
ELSE IF( BETA.EQ.ONE ) THEN
IF( LSAME( MODE, 'V' ) ) THEN
CALL SAXPY( N, ALPHA, X, INCX, Y, INCY )
ELSE IF( INCX.EQ.1 .AND. INCY.EQ.1 ) THEN
DO 130 I = 1, N
Y( I ) = ALPHA * X( I ) + Y( I )
130 CONTINUE
ELSE
IX = 1
IY = 1
DO 140 I = 1, N
Y( IY ) = ALPHA * X( IX ) + Y( IY )
IX = IX + INCX
IY = IY + INCY
140 CONTINUE
END IF
*
ELSE
IF( INCX.EQ.1 .AND. INCY.EQ.1 ) THEN
DO 150 I = 1, N
Y( I ) = ALPHA * X( I ) + BETA * Y( I )
150 CONTINUE
ELSE
IX = 1
IY = 1
DO 160 I = 1, N
Y( IY ) = ALPHA * X( IX ) + BETA * Y( IY )
IX = IX + INCX
IY = IY + INCY
160 CONTINUE
END IF
END IF
END IF
END IF
*
RETURN
*
* End of PBSVECADD
*
END
|