1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
|
/* ---------------------------------------------------------------------
*
* -- PBLAS auxiliary routine (version 2.0) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* April 1, 1998
*
* ---------------------------------------------------------------------
*/
/*
* Include files
*/
#include "../pblas.h"
#include "../PBpblas.h"
#include "../PBtools.h"
#include "../PBblacs.h"
#include "../PBblas.h"
#ifdef __STDC__
int PB_Cgcd( int M, int N )
#else
int PB_Cgcd( M, N )
/*
* .. Scalar Arguments ..
*/
int M, N;
#endif
{
/*
* Purpose
* =======
*
* PB_Cgcd computes and returns the Greatest Common Divisor (GCD) of two
* positive integers M and N using a binary gcd algorithm.
*
* Arguments
* =========
*
* M (input) INTEGER
* On entry, M must be at least zero.
*
* N (input) INTEGER
* On entry, N must be at least zero.
*
* -- Written on April 1, 1998 by
* Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
*
* ---------------------------------------------------------------------
*/
/*
* .. Local Scalars ..
*/
int gcd=1, m_val, n_val, t;
/* ..
* .. Executable Statements ..
*
*/
if( M > N ) { m_val = N; n_val = M; }
else { m_val = M; n_val = N; }
while( m_val > 0 )
{
while( !( m_val & 1 ) )
{
/*
* m is even
*/
m_val >>= 1; /* if n is odd, gcd( m, n ) = gcd( m / 2, n ) */
/*
* if n is odd, gcd( m, n ) = gcd( m / 2, n )
*/
if( !( n_val & 1 ) )
{
/*
* otherwise gcd( m, n ) = 2 * gcd( m / 2, n / 2 )
*/
n_val >>= 1;
gcd <<= 1;
}
}
/*
* m is odd now. If n is odd, gcd( m, n ) = gcd( m, ( m - n ) / 2 ).
* Otherwise, gcd( m, n ) = gcd ( m, n / 2 ).
*/
n_val -= ( n_val & 1 ) ? m_val : 0;
n_val >>= 1;
while( n_val >= m_val )
{
/*
* If n is odd, gcd( m, n ) = gcd( m, ( m - n ) / 2 ).
* Otherwise, gcd( m, n ) = gcd ( m, n / 2 )
*/
n_val -= ( n_val & 1 ) ? m_val : 0;
n_val >>= 1;
}
/*
* n < m, gcd( m, n ) = gcd( n, m )
*/
t = n_val;
n_val = m_val;
m_val = t;
}
return ( n_val * gcd );
/*
* End of PB_Cgcd
*/
}
|