1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
|
/* ---------------------------------------------------------------------
*
* -- PBLAS auxiliary routine (version 2.0) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* April 1, 1998
*
* ---------------------------------------------------------------------
*/
/*
* Include files
*/
#include "../pblas.h"
#include "../PBpblas.h"
#include "../PBtools.h"
#include "../PBblacs.h"
#include "../PBblas.h"
#ifdef __STDC__
void PB_Cinfog2l( int I, int J, int * DESC, int NPROW, int NPCOL,
int MYROW, int MYCOL, int * II, int * JJ,
int * PROW, int * PCOL )
#else
void PB_Cinfog2l( I, J, DESC, NPROW, NPCOL, MYROW, MYCOL, II, JJ,
PROW, PCOL )
int I, * II, J, * JJ, MYCOL, MYROW, NPCOL, NPROW, * PCOL,
* PROW;
/*
* .. Scalar Arguments ..
*/
/*
* .. Array Arguments ..
*/
int * DESC;
#endif
{
/*
* Purpose
* =======
*
* PB_Cinfog2l computes the starting local index II, JJ corresponding to
* the submatrix starting globally at the entry pointed by I, J. This
* routine returns the coordinates in the grid of the process owning the
* matrix entry of global indexes I, J, namely PROW and PCOL.
*
* Notes
* =====
*
* A description vector is associated with each 2D block-cyclicly dis-
* tributed matrix. This vector stores the information required to
* establish the mapping between a matrix entry and its corresponding
* process and memory location.
*
* In the following comments, the character _ should be read as
* "of the distributed matrix". Let A be a generic term for any 2D
* block cyclicly distributed matrix. Its description vector is DESC_A:
*
* NOTATION STORED IN EXPLANATION
* ---------------- --------------- ------------------------------------
* DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type.
* CTXT_A (global) DESCA[ CTXT_ ] The BLACS context handle, indicating
* the NPROW x NPCOL BLACS process grid
* A is distributed over. The context
* itself is global, but the handle
* (the integer value) may vary.
* M_A (global) DESCA[ M_ ] The number of rows in the distribu-
* ted matrix A, M_A >= 0.
* N_A (global) DESCA[ N_ ] The number of columns in the distri-
* buted matrix A, N_A >= 0.
* IMB_A (global) DESCA[ IMB_ ] The number of rows of the upper left
* block of the matrix A, IMB_A > 0.
* INB_A (global) DESCA[ INB_ ] The number of columns of the upper
* left block of the matrix A,
* INB_A > 0.
* MB_A (global) DESCA[ MB_ ] The blocking factor used to distri-
* bute the last M_A-IMB_A rows of A,
* MB_A > 0.
* NB_A (global) DESCA[ NB_ ] The blocking factor used to distri-
* bute the last N_A-INB_A columns of
* A, NB_A > 0.
* RSRC_A (global) DESCA[ RSRC_ ] The process row over which the first
* row of the matrix A is distributed,
* NPROW > RSRC_A >= 0.
* CSRC_A (global) DESCA[ CSRC_ ] The process column over which the
* first column of A is distributed.
* NPCOL > CSRC_A >= 0.
* LLD_A (local) DESCA[ LLD_ ] The leading dimension of the local
* array storing the local blocks of
* the distributed matrix A,
* IF( Lc( 1, N_A ) > 0 )
* LLD_A >= MAX( 1, Lr( 1, M_A ) )
* ELSE
* LLD_A >= 1.
*
* Let K be the number of rows of a matrix A starting at the global in-
* dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
* that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
* receive if these K rows were distributed over NPROW processes. If K
* is the number of columns of a matrix A starting at the global index
* JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co-
* lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if
* these K columns were distributed over NPCOL processes.
*
* The values of Lr() and Lc() may be determined via a call to the func-
* tion PB_Cnumroc:
* Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
* Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
*
* Arguments
* =========
*
* I (global input) INTEGER
* On entry, I specifies the global starting row index of the
* submatrix. I must at least zero.
*
* J (global input) INTEGER
* On entry, J specifies the global starting column index of
* the submatrix. J must at least zero.
*
* DESC (global and local input) INTEGER array
* On entry, DESC is an integer array of dimension DLEN_. This
* is the array descriptor of the underlying matrix.
*
* NPROW (global input) INTEGER
* On entry, NPROW specifies the total number of process rows
* over which the matrix is distributed. NPROW must be at least
* one.
*
* NPCOL (global input) INTEGER
* On entry, NPCOL specifies the total number of process columns
* over which the matrix is distributed. NPCOL must be at least
* one.
*
* MYROW (local input) INTEGER
* On entry, MYROW specifies the row coordinate of the process
* whose local index II is determined. MYROW must be at least
* zero and strictly less than NPROW.
*
* MYCOL (local input) INTEGER
* On entry, MYCOL specifies the column coordinate of the pro-
* cess whose local index JJ is determined. MYCOL must be at
* least zero and strictly less than NPCOL.
*
* II (local output) INTEGER
* On exit, II specifies the local starting row index of the
* submatrix. On exit, II is at least zero.
*
* JJ (local output) INTEGER
* On exit, JJ specifies the local starting column index of the
* submatrix. On exit, JJ is at least zero.
*
* PROW (global output) INTEGER
* On exit, PROW specifies the row coordinate of the process
* that possesses the first row of the submatrix. On exit, PROW
* is -1 if DESC( RSRC_ ) is -1 on input, and, at least zero
* and strictly less than NPROW otherwise.
*
* PCOL (global output) INTEGER
* On exit, PCOL specifies the column coordinate of the process
* that possesses the first column of the submatrix. On exit,
* PCOL is -1 if DESC( CSRC_ ) is -1 on input, and, at least
* zero and strictly less than NPCOL otherwise.
*
* -- Written on April 1, 1998 by
* Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
*
* ---------------------------------------------------------------------
*/
/*
* .. Local Scalars ..
*/
int ilocblk, imb, inb, mb, mydist, nb, nblocks, csrc, rsrc;
/* ..
* .. Executable Statements ..
*
*/
/*
* Retrieve the row distribution parameters
*/
imb = DESC[IMB_ ];
*PROW = DESC[RSRC_];
if( ( *PROW == -1 ) || ( NPROW == 1 ) )
{
/*
* The data is not distributed, or there is just one process row in the grid.
*/
*II = I;
}
else if( I < imb )
{
/*
* I refers to an entry in the first block of rows
*/
*II = ( MYROW == *PROW ? I : 0 );
}
else
{
mb = DESC[MB_];
rsrc = *PROW;
/*
* The discussion goes as follows: compute my distance from the source process
* so that within this process coordinate system, the source process is the
* process such that mydist = 0, or equivalently MYROW == rsrc.
*
* Find out the global coordinate of the block I belongs to (nblocks), as well
* as the minimum local number of blocks that every process has.
*
* when mydist < nblocks - ilocblk * NPROCS, I own ilocblk + 1 full blocks,
* when mydist > nblocks - ilocblk * NPROCS, I own ilocblk full blocks,
* when mydist = nblocks - ilocblk * NPROCS, I own ilocblk full blocks
* but not I, or I own ilocblk + 1 blocks and the entry I refers to.
*/
if( MYROW == rsrc )
{
/*
* I refers to an entry that is not in the first block, find out which process
* has it.
*/
nblocks = ( I - imb ) / mb + 1;
*PROW += nblocks;
*PROW -= ( *PROW / NPROW ) * NPROW;
/*
* Since mydist = 0 and nblocks - ilocblk * NPROW >= 0, there are only three
* possible cases:
*
* 1) When 0 = mydist = nblocks - ilocblk * NPROW = 0 and I don't own I, in
* which case II = IMB + ( ilocblk - 1 ) * MB. Note that this case cannot
* happen when ilocblk is zero, since nblocks is at least one.
*
* 2) When 0 = mydist = nblocks - ilocblk * NPROW = 0 and I own I, in which
* case I and II can respectively be written as IMB + (nblocks-1)*NB + IL
* and IMB + (ilocblk-1) * MB + IL. That is II = I + (ilocblk-nblocks)*MB.
* Note that this case cannot happen when ilocblk is zero, since nblocks
* is at least one.
*
* 3) mydist = 0 < nblocks - ilocblk * NPROW, the source process owns
* ilocblk+1 full blocks, and therefore II = IMB + ilocblk * MB. Note
* that when ilocblk is zero, II is just IMB.
*/
if( nblocks < NPROW )
{
*II = imb;
}
else
{
ilocblk = nblocks / NPROW;
if( ilocblk * NPROW >= nblocks )
{
*II = ( ( MYROW == *PROW ) ? I + ( ilocblk - nblocks ) * mb :
imb + ( ilocblk - 1 ) * mb );
}
else
{
*II = imb + ilocblk * mb;
}
}
}
else
{
/*
* I refers to an entry that is not in the first block, find out which process
* has it.
*/
nblocks = ( I -= imb ) / mb + 1;
*PROW += nblocks;
*PROW -= ( *PROW / NPROW ) * NPROW;
/*
* Compute my distance from the source process so that within this process
* coordinate system, the source process is the process such that mydist=0.
*/
if( ( mydist = MYROW - rsrc ) < 0 ) mydist += NPROW;
/*
* When mydist < nblocks - ilocblk * NPROW, I own ilocblk + 1 full blocks of
* size MB since I am not the source process, i.e. II = ( ilocblk + 1 ) * MB.
* When mydist >= nblocks - ilocblk * NPROW and I don't own I, I own ilocblk
* full blocks of size MB, i.e. II = ilocblk * MB, otherwise I own ilocblk
* blocks and I, in which case I can be written as IMB + (nblocks-1)*MB + IL
* and II = ilocblk*MB + IL = I - IMB + ( ilocblk - nblocks + 1 )*MB.
*/
if( nblocks < NPROW )
{
mydist -= nblocks;
*II = ( ( mydist < 0 ) ? mb :
( ( MYROW == *PROW ) ? I + ( 1 - nblocks ) * mb : 0 ) );
}
else
{
ilocblk = nblocks / NPROW;
mydist -= nblocks - ilocblk * NPROW;
*II = ( ( mydist < 0 ) ? ( ilocblk + 1 ) * mb :
( ( MYROW == *PROW ) ?
( ilocblk - nblocks + 1 ) * mb + I : ilocblk * mb ) );
}
}
}
/*
* Idem for the columns
*/
inb = DESC[INB_ ];
*PCOL = DESC[CSRC_];
if( ( *PCOL == -1 ) || ( NPCOL == 1 ) )
{
*JJ = J;
}
else if( J < inb )
{
*JJ = ( MYCOL == *PCOL ? J : 0 );
}
else
{
nb = DESC[NB_];
csrc = *PCOL;
if( MYCOL == csrc )
{
nblocks = ( J - inb ) / nb + 1;
*PCOL += nblocks;
*PCOL -= ( *PCOL / NPCOL ) * NPCOL;
if( nblocks < NPCOL )
{
*JJ = inb;
}
else
{
ilocblk = nblocks / NPCOL;
if( ilocblk * NPCOL >= nblocks )
{
*JJ = ( ( MYCOL == *PCOL ) ? J + ( ilocblk - nblocks ) * nb :
inb + ( ilocblk - 1 ) * nb );
}
else
{
*JJ = inb + ilocblk * nb;
}
}
}
else
{
nblocks = ( J -= inb ) / nb + 1;
*PCOL += nblocks;
*PCOL -= ( *PCOL / NPCOL ) * NPCOL;
if( ( mydist = MYCOL - csrc ) < 0 ) mydist += NPCOL;
if( nblocks < NPCOL )
{
mydist -= nblocks;
*JJ = ( ( mydist < 0 ) ? nb : ( ( MYCOL == *PCOL ) ?
J + ( 1 - nblocks )*nb : 0 ) );
}
else
{
ilocblk = nblocks / NPCOL;
mydist -= nblocks - ilocblk * NPCOL;
*JJ = ( ( mydist < 0 ) ? ( ilocblk + 1 ) * nb :
( ( MYCOL == *PCOL ) ?
( ilocblk - nblocks + 1 ) * nb + J : ilocblk * nb ) );
}
}
}
/*
* End of PB_Cinfog2l
*/
}
|