1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
|
/* ---------------------------------------------------------------------
*
* -- PBLAS auxiliary routine (version 2.0) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* April 1, 1998
*
* ---------------------------------------------------------------------
*/
/*
* Include files
*/
#include "../pblas.h"
#include "../PBpblas.h"
#include "../PBtools.h"
#include "../PBblacs.h"
#include "../PBblas.h"
#ifdef __STDC__
void PB_CpaxpbyDN( PBTYP_T * TYPE, char * CONJUG, int M, int N,
char * ALPHA,
char * A, int IA, int JA, int * DESCA, char * AROC,
char * BETA,
char * B, int IB, int JB, int * DESCB, char * BROC )
#else
void PB_CpaxpbyDN( TYPE, CONJUG, M, N, ALPHA, A, IA, JA, DESCA, AROC,
BETA, B, IB, JB, DESCB, BROC )
/*
* .. Scalar Arguments ..
*/
char * AROC, * BROC, * CONJUG;
int IA, IB, JA, JB, M, N;
char * ALPHA, * BETA;
PBTYP_T * TYPE;
/*
* .. Array Arguments ..
*/
int * DESCA, * DESCB;
char * A, * B;
#endif
{
/*
* Purpose
* =======
*
* PB_CpaxpbyDN adds one submatrix to another,
*
* sub( B ) := beta * sub( B ) + alpha * sub( A ), or,
*
* sub( B ) := beta * sub( B ) + alpha * conjg( sub( A ) ),
*
* where sub( A ) is distributed and sub( B ) is not distributed.
*
* sub( A ) always denotes A(IA:IA+M-1,JA:JA+N-1). When AROC is 'R' or
* 'r' sub( A ) resides in a process row, otherwise sub( A ) resides in
* a process column. When sub( A ) resides in a process row and BROC is
* 'R' or 'r' or sub( A ) resides in a process column and BROC is 'C' or
* 'c', then sub( B ) denotes B( IB:IB+M-1, JB:JB+N-1 ), and otherwise
* sub( B ) denotes B(IB:IB+N-1,JB:JB+M-1).
* otherwise.
*
* Notes
* =====
*
* A description vector is associated with each 2D block-cyclicly dis-
* tributed matrix. This vector stores the information required to
* establish the mapping between a matrix entry and its corresponding
* process and memory location.
*
* In the following comments, the character _ should be read as
* "of the distributed matrix". Let A be a generic term for any 2D
* block cyclicly distributed matrix. Its description vector is DESC_A:
*
* NOTATION STORED IN EXPLANATION
* ---------------- --------------- ------------------------------------
* DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type.
* CTXT_A (global) DESCA[ CTXT_ ] The BLACS context handle, indicating
* the NPROW x NPCOL BLACS process grid
* A is distributed over. The context
* itself is global, but the handle
* (the integer value) may vary.
* M_A (global) DESCA[ M_ ] The number of rows in the distribu-
* ted matrix A, M_A >= 0.
* N_A (global) DESCA[ N_ ] The number of columns in the distri-
* buted matrix A, N_A >= 0.
* IMB_A (global) DESCA[ IMB_ ] The number of rows of the upper left
* block of the matrix A, IMB_A > 0.
* INB_A (global) DESCA[ INB_ ] The number of columns of the upper
* left block of the matrix A,
* INB_A > 0.
* MB_A (global) DESCA[ MB_ ] The blocking factor used to distri-
* bute the last M_A-IMB_A rows of A,
* MB_A > 0.
* NB_A (global) DESCA[ NB_ ] The blocking factor used to distri-
* bute the last N_A-INB_A columns of
* A, NB_A > 0.
* RSRC_A (global) DESCA[ RSRC_ ] The process row over which the first
* row of the matrix A is distributed,
* NPROW > RSRC_A >= 0.
* CSRC_A (global) DESCA[ CSRC_ ] The process column over which the
* first column of A is distributed.
* NPCOL > CSRC_A >= 0.
* LLD_A (local) DESCA[ LLD_ ] The leading dimension of the local
* array storing the local blocks of
* the distributed matrix A,
* IF( Lc( 1, N_A ) > 0 )
* LLD_A >= MAX( 1, Lr( 1, M_A ) )
* ELSE
* LLD_A >= 1.
*
* Let K be the number of rows of a matrix A starting at the global in-
* dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
* that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
* receive if these K rows were distributed over NPROW processes. If K
* is the number of columns of a matrix A starting at the global index
* JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co-
* lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if
* these K columns were distributed over NPCOL processes.
*
* The values of Lr() and Lc() may be determined via a call to the func-
* tion PB_Cnumroc:
* Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
* Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
*
* Arguments
* =========
*
* TYPE (local input) pointer to a PBTYP_T structure
* On entry, TYPE is a pointer to a structure of type PBTYP_T,
* that contains type information (See pblas.h).
*
* CONJUG (global input) pointer to CHAR
* On entry, CONJUG specifies whether conjg( sub( A ) ) or
* sub( A ) should be added to sub( B ) as follows:
* CONJUG = 'N' or 'n':
* sub( B ) := beta*sub( B ) + alpha*sub( A ),
* otherwise
* sub( B ) := beta*sub( B ) + alpha*conjg( sub( A ) ).
*
* M (global input) INTEGER
* On entry, M specifies the number of rows of the submatrix
* sub( A ). M must be at least zero.
*
* N (global input) INTEGER
* On entry, N specifies the number of columns of the submatrix
* sub( A ). N must be at least zero.
*
* ALPHA (global input) pointer to CHAR
* On entry, ALPHA specifies the scalar alpha. When ALPHA is
* supplied as zero then the local entries of the array A cor-
* responding to the entries of the submatrix sub( A ) need not
* be set on input.
*
* A (local input) pointer to CHAR
* On entry, A is an array of dimension (LLD_A, Ka), where LLD_A
* is at least MAX( 1, Lr( 1, IA+M-1 ) ), and, Ka is at least
* Lc( 1, JA+N-1 ). Before entry, this array contains the local
* entries of the matrix A.
*
* IA (global input) INTEGER
* On entry, IA specifies A's global row index, which points to
* the beginning of the submatrix sub( A ).
*
* JA (global input) INTEGER
* On entry, JA specifies A's global column index, which points
* to the beginning of the submatrix sub( A ).
*
* DESCA (global and local input) INTEGER array
* On entry, DESCA is an integer array of dimension DLEN_. This
* is the array descriptor for the matrix A.
*
* AROC (global input) pointer to CHAR
* On entry, AROC specifies the orientation of the subvector
* sub( A ). When AROC is 'R' or 'r', sub( A ) is a row vector,
* and a column vector otherwise.
*
* BETA (global input) pointer to CHAR
* On entry, BETA specifies the scalar beta. When BETA is sup-
* plied as zero then the local entries of the array B corres-
* ponding to the entries of the submatrix sub( B ) need not be
* set on input.
*
* B (local input/local output) pointer to CHAR
* On entry, B is an array of dimension (LLD_B, Kb), where LLD_B
* is at least MAX( 1, Lr( 1, IB+M-1 ) ) when sub( A ) and
* sub( B ) are both distributed along a process column or a
* process row. In that case, Kb is at least Lc( 1, JB+N-1 ).
* Otherwise, LLD_B is at least MAX( 1, Lr( 1, IB+N-1 ) ) and
* Kb is at least Lc( 1, JB+M-1 ). Before entry, this array
* contains the local entries of the matrix B. On exit, sub( B )
* is overwritten with the updated submatrix.
*
* IB (global input) INTEGER
* On entry, IB specifies B's global row index, which points to
* the beginning of the submatrix sub( B ).
*
* JB (global input) INTEGER
* On entry, JB specifies B's global column index, which points
* to the beginning of the submatrix sub( B ).
*
* DESCB (global and local input) INTEGER array
* On entry, DESCB is an integer array of dimension DLEN_. This
* is the array descriptor for the matrix B.
*
* BROC (global input) pointer to CHAR
* On entry, BROC specifies the orientation of the subvector
* sub( B ). When BROC is 'R' or 'r', sub( B ) is a row vector,
* and a column vector otherwise.
*
* -- Written on April 1, 1998 by
* Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
*
* ---------------------------------------------------------------------
*/
/*
* .. Local Scalars ..
*/
char scope, * top, * zero;
int Acol, Aii, Ainb1D, AisR, AisRow, Ajj, Ald, AmyprocD, AmyprocR,
AnD, AnbD, AnpD, AnprocsD, AprocD, AprocR, Aroc, Arow, Bcol,
Bii, BisR, BisRow, Bjj, Bld, Bm, BmyprocD, BmyprocR, Bn,
BnprocsD, BprocR, Broc, Brow, RRorCC, ctxt, izero=0, k, kbb,
kk, kn, ktmp, mycol, mydist, myproc, myrow, npcol, nprow, p,
size;
MMADD_T add;
TZPAD_T pad;
/*
* .. Local Arrays ..
*/
char * buf = NULL;
/* ..
* .. Executable Statements ..
*
*/
/*
* Retrieve process grid information
*/
Cblacs_gridinfo( ( ctxt = DESCA[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
/*
* Retrieve sub( A )'s local information: Aii, Ajj, Arow, Acol ...
*/
PB_Cinfog2l( IA, JA, DESCA, nprow, npcol, myrow, mycol, &Aii, &Ajj,
&Arow, &Acol );
if( ( AisRow = ( Mupcase( AROC[0] ) == CROW ) ) != 0 )
{
AnD = N; AnbD = DESCA[NB_]; Ald = DESCA[LLD_];
AprocD = Acol; AprocR = Arow;
AmyprocD = mycol; AmyprocR = myrow; AnprocsD = npcol;
AisR = ( ( Arow == -1 ) || ( nprow == 1 ) );
Ainb1D = PB_Cfirstnb( AnD, JA, DESCA[INB_], AnbD );
}
else
{
AnD = M; AnbD = DESCA[MB_]; Ald = DESCA[LLD_];
AprocD = Arow; AprocR = Acol;
AmyprocD = myrow; AmyprocR = mycol; AnprocsD = nprow;
AisR = ( ( Acol == -1 ) || ( npcol == 1 ) );
Ainb1D = PB_Cfirstnb( AnD, IA, DESCA[IMB_], AnbD );
}
/*
* Retrieve sub( B )'s local information: Bii, Bjj, Brow, Bcol ...
*/
PB_Cinfog2l( IB, JB, DESCB, nprow, npcol, myrow, mycol, &Bii, &Bjj,
&Brow, &Bcol );
if( ( BisRow = ( Mupcase( BROC[0] ) == CROW ) ) != 0 )
{
Bld = DESCB[LLD_];
BmyprocD = mycol; BnprocsD = npcol;
BprocR = Brow; BmyprocR = myrow;
BisR = ( ( BprocR == -1 ) || ( nprow == 1 ) );
}
else
{
Bld = DESCB[LLD_];
BmyprocD = myrow; BnprocsD = nprow;
BprocR = Bcol; BmyprocR = mycol;
BisR = ( ( BprocR == -1 ) || ( npcol == 1 ) );
}
/*
* Are sub( A ) and sub( B ) both row or column vectors ?
*/
RRorCC = ( ( AisRow && BisRow ) || ( !( AisRow ) && !( BisRow ) ) );
/*
* Select the local add routine accordingly
*/
size = TYPE->size;
/*
* sub( A ) is distributed and sub( B ) is not distributed
*/
if( !( BisR ) )
{
/*
* sub( B ) is not replicated. Since this operation is local if sub( B ) and
* sub( A ) are both row or column vectors, choose AprocR = BprocR when RRorCC,
* and AprocR = 0 otherwise.
*/
if( AisR ) { AprocR = ( ( RRorCC ) ? BprocR : 0 ); }
/*
* Now, it is just like sub( A ) is not replicated, this information however is
* kept in AisR for later use.
*/
if( ( AmyprocR == AprocR ) || ( BmyprocR == BprocR ) )
{
if( RRorCC )
{
/*
* sub( A ) and sub( B ) are both row or column vectors
*/
zero = TYPE->zero;
if( Mupcase( CONJUG[0] ) != CNOCONJG ) add = TYPE->Fmmcadd;
else add = TYPE->Fmmadd;
pad = TYPE->Ftzpad;
AnpD = PB_Cnumroc( AnD, 0, Ainb1D, AnbD, AmyprocD, AprocD,
AnprocsD );
/*
* sub( A ) and sub( B ) are in the same process row or column
*/
if( AprocR == BprocR )
{
/*
* In each process, the distributed part of sub( A ) is added to sub( B ). In
* the other processes, this replicated of sub( B ) is set to zero for later
* reduction.
*/
if( AnpD > 0 )
{
Aroc = AprocD;
if( BisRow ) { kk = Ajj; ktmp = JB + N; kn = JB + Ainb1D; }
else { kk = Aii; ktmp = IB + M; kn = IB + Ainb1D; }
if( AmyprocD == Aroc )
{
if( BisRow )
add( &M, &Ainb1D, ALPHA, Mptr( A, Aii, Ajj, Ald, size ),
&Ald, BETA, Mptr( B, Bii, Bjj, Bld, size ), &Bld );
else
add( &Ainb1D, &N, ALPHA, Mptr( A, Aii, Ajj, Ald, size ),
&Ald, BETA, Mptr( B, Bii, Bjj, Bld, size ), &Bld );
kk += Ainb1D;
}
else
{
if( BisRow )
pad( C2F_CHAR( ALL ), C2F_CHAR( NOCONJG ), &M, &Ainb1D,
&izero, zero, zero, Mptr( B, Bii, Bjj, Bld, size ),
&Bld );
else
pad( C2F_CHAR( ALL ), C2F_CHAR( NOCONJG ), &Ainb1D, &N,
&izero, zero, zero, Mptr( B, Bii, Bjj, Bld, size ),
&Bld );
}
Aroc = MModAdd1( Aroc, AnprocsD );
for( k = kn; k < ktmp; k += AnbD )
{
kbb = ktmp - k; kbb = MIN( kbb, AnbD );
if( AmyprocD == Aroc )
{
if( BisRow )
add( &M, &kbb, ALPHA, Mptr( A, Aii, kk, Ald, size ),
&Ald, BETA, Mptr( B, Bii, k, Bld, size ),
&Bld );
else
add( &kbb, &N, ALPHA, Mptr( A, kk, Ajj, Ald, size ),
&Ald, BETA, Mptr( B, k, Bjj, Bld, size ),
&Bld );
kk += kbb;
}
else
{
if( BisRow )
pad( C2F_CHAR( ALL ), C2F_CHAR( NOCONJG ), &M, &kbb,
&izero, zero, zero, Mptr( B, Bii, k, Bld,
size ), &Bld );
else
pad( C2F_CHAR( ALL ), C2F_CHAR( NOCONJG ), &kbb, &N,
&izero, zero, zero, Mptr( B, k, Bjj, Bld,
size ), &Bld );
}
Aroc = MModAdd1( Aroc, AnprocsD );
}
}
else
{
/*
* If I don't own any entries of sub( A ), then zero the entire sub( B )
* residing in this process.
*/
pad( C2F_CHAR( ALL ), C2F_CHAR( NOCONJG ), &M, &N, &izero,
zero, zero, Mptr( B, Bii, Bjj, Bld, size ), &Bld );
}
/*
* Replicate locally scattered sub( B ) by reducing it
*/
scope = ( BisRow ? CROW : CCOLUMN );
top = PB_Ctop( &ctxt, COMBINE, &scope, TOP_GET );
TYPE->Cgsum2d( ctxt, &scope, top, M, N, Mptr( B, Bii, Bjj, Bld,
size ), Bld, -1, 0 );
}
else
{
/*
* sub( A ) and sub( B ) are in a different process row or column
*/
if( AmyprocR == AprocR )
{
/*
* If I own a piece of sub( A ), then send it to the corresponding process row
* or column where sub( B ) resides.
*/
if( AnpD > 0 )
{
if( AisRow )
TYPE->Cgesd2d( ctxt, M, AnpD, Mptr( A, Aii, Ajj, Ald,
size ), Ald, BprocR, BmyprocD );
else
TYPE->Cgesd2d( ctxt, AnpD, N, Mptr( A, Aii, Ajj, Ald,
size ), Ald, BmyprocD, BprocR );
}
}
if( BmyprocR == BprocR )
{
/*
* If I own sub( B ), then receive and unpack distributed part of sub( A ) that
* should be added to sub( B ). Combine the results.
*/
if( AnpD > 0 )
{
if( BisRow )
{
ktmp = JB + N;
kn = JB + Ainb1D;
buf = PB_Cmalloc( M * AnpD * size );
TYPE->Cgerv2d( ctxt, M, AnpD, buf, M, AprocR,
AmyprocD );
}
else
{
ktmp = IB + M;
kn = IB + Ainb1D;
buf = PB_Cmalloc( AnpD * N * size );
TYPE->Cgerv2d( ctxt, AnpD, N, buf, AnpD, AmyprocD,
AprocR );
}
Aroc = AprocD;
kk = 0;
if( AmyprocD == Aroc )
{
if( BisRow )
add( &M, &Ainb1D, ALPHA, buf, &M, BETA, Mptr( B,
Bii, Bjj, Bld, size ), &Bld );
else
add( &Ainb1D, &N, ALPHA, buf, &AnpD, BETA, Mptr( B,
Bii, Bjj, Bld, size ), &Bld );
kk += Ainb1D;
}
else
{
if( BisRow )
pad( C2F_CHAR( ALL ), C2F_CHAR( NOCONJG ), &M,
&Ainb1D, &izero, zero, zero, Mptr( B, Bii, Bjj,
Bld, size ), &Bld );
else
pad( C2F_CHAR( ALL ), C2F_CHAR( NOCONJG ), &Ainb1D,
&N, &izero, zero, zero, Mptr( B, Bii, Bjj, Bld,
size ), &Bld );
}
Aroc = MModAdd1( Aroc, AnprocsD );
for( k = kn; k < ktmp; k += AnbD )
{
kbb = ktmp - k; kbb = MIN( kbb, AnbD );
if( AmyprocD == Aroc )
{
if( BisRow )
add( &M, &kbb, ALPHA, Mptr( buf, 0, kk, M, size ),
&M, BETA, Mptr( B, Bii, k, Bld, size ),
&Bld );
else
add( &kbb, &N, ALPHA, Mptr( buf, kk, 0, AnpD,
size ), &AnpD, BETA, Mptr( B, k, Bjj, Bld,
size ), &Bld );
kk += kbb;
}
else
{
if( BisRow )
pad( C2F_CHAR( ALL ), C2F_CHAR( NOCONJG ), &M,
&kbb, &izero, zero, zero, Mptr( B, Bii, k,
Bld, size ), &Bld );
else
pad( C2F_CHAR( ALL ), C2F_CHAR( NOCONJG ), &kbb,
&N, &izero, zero, zero, Mptr( B, k, Bjj, Bld,
size ), &Bld );
}
Aroc = MModAdd1( Aroc, AnprocsD );
}
if( buf ) free( buf );
}
else
{
/*
* If I don't own any entries of sub( A ), then zero the entire sub( B )
* residing in this process.
*/
pad( C2F_CHAR( ALL ), C2F_CHAR( NOCONJG ), &M, &N, &izero,
zero, zero, Mptr( B, Bii, Bjj, Bld, size ), &Bld );
}
/*
* Replicate locally scattered sub( B ) by reducing it
*/
scope = ( BisRow ? CROW : CCOLUMN );
top = PB_Ctop( &ctxt, COMBINE, &scope, TOP_GET );
TYPE->Cgsum2d( ctxt, &scope, top, M, N, Mptr( B, Bii, Bjj,
Bld, size ), Bld, -1, 0 );
}
}
}
else
{
/*
* sub( A ) and sub( B ) are not both row or column vectors
*/
zero = TYPE->zero;
if( Mupcase( CONJUG[0] ) != CNOCONJG ) add = TYPE->Fmmtcadd;
else add = TYPE->Fmmtadd;
pad = TYPE->Ftzpad;
Broc = 0;
if( BisRow ) { ktmp = JB + M; kn = JB + Ainb1D; }
else { ktmp = IB + N; kn = IB + Ainb1D; }
/*
* Loop over the processes in which sub( A ) resides, for each process find the
* next process Xroc. Exchange and add the data.
*/
for( p = 0; p < AnprocsD; p++ )
{
mydist = MModSub( p, AprocD, AnprocsD );
myproc = MModAdd( AprocD, mydist, AnprocsD );
if( ( BprocR == p ) && ( AprocR == Broc ) )
{
if( BmyprocR == p )
{
/*
* local add at the intersection of the process cross
*/
AnpD = PB_Cnumroc( AnD, 0, Ainb1D, AnbD, p, AprocD,
AnprocsD );
if( AnpD > 0 )
{
Aroc = AprocD;
kk = ( BisRow ? Aii : Ajj );
if( myproc == Aroc )
{
if( BmyprocD == Broc )
{
if( AisRow )
add( &M, &Ainb1D, ALPHA, Mptr( A, Aii, Ajj,
Ald, size ), &Ald, BETA, Mptr( B, Bii,
Bjj, Bld, size ), &Bld );
else
add( &Ainb1D, &N, ALPHA, Mptr( A, Aii, Ajj,
Ald, size ), &Ald, BETA, Mptr( B, Bii,
Bjj, Bld, size ), &Bld );
kk += Ainb1D;
}
else
{
if( BisRow )
pad( C2F_CHAR( ALL ), C2F_CHAR( NOCONJG ), &N,
&Ainb1D, &izero, zero, zero, Mptr( B, Bii,
Bjj, Bld, size ), &Bld );
else
pad( C2F_CHAR( ALL ), C2F_CHAR( NOCONJG ),
&Ainb1D, &M, &izero, zero, zero, Mptr( B,
Bii, Bjj, Bld, size ), &Bld );
}
}
Aroc = MModAdd1( Aroc, AnprocsD );
for( k = kn; k < ktmp; k += AnbD )
{
kbb = ktmp - k; kbb = MIN( kbb, AnbD );
if( myproc == Aroc )
{
if( BmyprocD == Broc )
{
if( AisRow )
add( &M, &kbb, ALPHA, Mptr( A, Aii, kk, Ald,
size ), &Ald, BETA, Mptr( B, k, Bjj,
Bld, size ), &Bld );
else
add( &kbb, &N, ALPHA, Mptr( A, kk, Ajj, Ald,
size ), &Ald, BETA, Mptr( B, Bii, k,
Bld, size ), &Bld );
kk += kbb;
}
else
{
if( BisRow )
pad( C2F_CHAR( ALL ), C2F_CHAR( NOCONJG ),
&N, &kbb, &izero, zero, zero, Mptr( B,
Bii, k, Bld, size ), &Bld );
else
pad( C2F_CHAR( ALL ), C2F_CHAR( NOCONJG ),
&kbb, &M, &izero, zero, zero, Mptr( B,
k, Bjj, Bld, size ), &Bld );
}
}
Aroc = MModAdd1( Aroc, AnprocsD );
}
}
}
}
else
{
/*
* Message exchange
*/
if( ( AmyprocR == AprocR ) && ( AmyprocD == p ) )
{
AnpD = PB_Cnumroc( AnD, 0, Ainb1D, AnbD, p, AprocD,
AnprocsD );
if( AnpD > 0 )
{
if( AisRow )
TYPE->Cgesd2d( ctxt, M, AnpD, Mptr( A, Aii, Ajj, Ald,
size ), Ald, Broc, BprocR );
else
TYPE->Cgesd2d( ctxt, AnpD, N, Mptr( A, Aii, Ajj, Ald,
size ), Ald, BprocR, Broc );
}
}
if( BmyprocR == BprocR )
{
AnpD = PB_Cnumroc( AnD, 0, Ainb1D, AnbD, p, AprocD,
AnprocsD );
if( AnpD > 0 )
{
Aroc = AprocD;
kk = 0;
if( BmyprocD == Broc )
{
if( AisRow )
{
buf = PB_Cmalloc( M * AnpD * size );
TYPE->Cgerv2d( ctxt, M, AnpD, buf, M, AprocR, p );
}
else
{
buf = PB_Cmalloc( AnpD * N * size );
TYPE->Cgerv2d( ctxt, AnpD, N, buf, AnpD, p,
AprocR );
}
}
if( myproc == Aroc )
{
if( BmyprocD == Broc )
{
if( AisRow )
add( &M, &Ainb1D, ALPHA, buf, &M, BETA,
Mptr( B, Bii, Bjj, Bld, size ), &Bld );
else
add( &Ainb1D, &N, ALPHA, buf, &AnpD, BETA,
Mptr( B, Bii, Bjj, Bld, size ), &Bld );
kk += Ainb1D;
}
else
{
if( BisRow )
pad( C2F_CHAR( ALL ), C2F_CHAR( NOCONJG ), &N,
&Ainb1D, &izero, zero, zero, Mptr( B, Bii,
Bjj, Bld, size ), &Bld );
else
pad( C2F_CHAR( ALL ), C2F_CHAR( NOCONJG ),
&Ainb1D, &M, &izero, zero, zero, Mptr( B,
Bii, Bjj, Bld, size ), &Bld );
}
}
Aroc = MModAdd1( Aroc, AnprocsD );
for( k = kn; k < ktmp; k += AnbD )
{
kbb = ktmp - k; kbb = MIN( kbb, AnbD );
if( myproc == Aroc )
{
if( BmyprocD == Broc )
{
if( AisRow )
add( &M, &kbb, ALPHA, Mptr( buf, 0, kk, M,
size ), &M, BETA, Mptr( B, k, Bjj,
Bld, size ), &Bld );
else
add( &kbb, &N, ALPHA, Mptr( buf, kk, 0,
AnpD, size ), &AnpD, BETA, Mptr( B,
Bii, k, Bld, size ), &Bld );
kk += kbb;
}
else
{
if( BisRow )
pad( C2F_CHAR( ALL ), C2F_CHAR( NOCONJG ),
&N, &kbb, &izero, zero, zero, Mptr( B,
Bii, k, Bld, size ), &Bld );
else
pad( C2F_CHAR( ALL ), C2F_CHAR( NOCONJG ),
&kbb, &M, &izero, zero, zero, Mptr( B,
k, Bjj, Bld, size ), &Bld );
}
}
Aroc = MModAdd1( Aroc, AnprocsD );
}
if( ( BmyprocD == Broc ) && ( buf ) ) free( buf );
}
}
}
Broc = MModAdd1( Broc, BnprocsD );
}
if( BmyprocR == BprocR )
{
/*
* Replicate locally scattered sub( B ) by reducing it
*/
scope = ( BisRow ? CROW : CCOLUMN );
top = PB_Ctop( &ctxt, COMBINE, &scope, TOP_GET );
TYPE->Cgsum2d( ctxt, &scope, top, N, M, Mptr( B, Bii, Bjj, Bld,
size ), Bld, -1, 0 );
}
}
}
if( BisR )
{
/*
* Replicate sub( B )
*/
if( BisRow )
{
if( AisRow ) { Bm = M; Bn = N; }
else { Bm = N; Bn = M; }
top = PB_Ctop( &ctxt, BCAST, COLUMN, TOP_GET );
if( BmyprocR == BprocR )
TYPE->Cgebs2d( ctxt, COLUMN, top, Bm, Bn, Mptr( B, Bii, Bjj, Bld,
size ), Bld );
else
TYPE->Cgebr2d( ctxt, COLUMN, top, Bm, Bn, Mptr( B, Bii, Bjj, Bld,
size ), Bld, BprocR, BmyprocD );
}
else
{
if( AisRow ) { Bm = N; Bn = M; }
else { Bm = M; Bn = N; }
top = PB_Ctop( &ctxt, BCAST, ROW, TOP_GET );
if( BmyprocR == BprocR )
TYPE->Cgebs2d( ctxt, ROW, top, Bm, Bn, Mptr( B, Bii, Bjj, Bld,
size ), Bld );
else
TYPE->Cgebr2d( ctxt, ROW, top, Bm, Bn, Mptr( B, Bii, Bjj, Bld,
size ), Bld, BmyprocD, BprocR );
}
}
}
else
{
/*
* sub( B ) is replicated in every process. Add the data in process row or
* column AprocR when sub( A ) is not replicated and in every process otherwise.
*/
if( AisR || ( AmyprocR == AprocR ) )
{
zero = TYPE->zero;
if( RRorCC )
{
if( Mupcase( CONJUG[0] ) != CNOCONJG ) add = TYPE->Fmmcadd;
else add = TYPE->Fmmadd;
}
else
{
if( Mupcase( CONJUG[0] ) != CNOCONJG ) add = TYPE->Fmmtcadd;
else add = TYPE->Fmmtadd;
}
pad = TYPE->Ftzpad;
AnpD = PB_Cnumroc( AnD, 0, Ainb1D, AnbD, AmyprocD, AprocD, AnprocsD );
if( AnpD > 0 )
{
Aroc = AprocD;
kk = ( AisRow ? Ajj : Aii );
if( BisRow ) { ktmp = JB + ( RRorCC ? N : M ); kn = JB + Ainb1D; }
else { ktmp = IB + ( RRorCC ? M : N ); kn = IB + Ainb1D; }
if( AmyprocD == Aroc )
{
if( AisRow )
add( &M, &Ainb1D, ALPHA, Mptr( A, Aii, Ajj, Ald, size ), &Ald,
BETA, Mptr( B, Bii, Bjj, Bld, size ), &Bld );
else
add( &Ainb1D, &N, ALPHA, Mptr( A, Aii, Ajj, Ald, size ), &Ald,
BETA, Mptr( B, Bii, Bjj, Bld, size ), &Bld );
kk += Ainb1D;
}
else
{
if( RRorCC )
{
if( AisRow ) { Bm = M; Bn = Ainb1D; }
else { Bm = Ainb1D; Bn = N; }
}
else
{
if( AisRow ) { Bm = Ainb1D; Bn = M; }
else { Bm = N; Bn = Ainb1D; }
}
pad( C2F_CHAR( ALL ), C2F_CHAR( NOCONJG ), &Bm, &Bn, &izero,
zero, zero, Mptr( B, Bii, Bjj, Bld, size ), &Bld );
}
Aroc = MModAdd1( Aroc, AnprocsD );
for( k = kn; k < ktmp; k += AnbD )
{
kbb = ktmp - k; kbb = MIN( kbb, AnbD );
if( BisRow ) { buf = Mptr( B, Bii, k, Bld, size ); }
else { buf = Mptr( B, k, Bjj, Bld, size ); }
if( AmyprocD == Aroc )
{
if( AisRow )
add( &M, &kbb, ALPHA, Mptr( A, Aii, kk, Ald, size ), &Ald,
BETA, buf, &Bld );
else
add( &kbb, &N, ALPHA, Mptr( A, kk, Ajj, Ald, size ), &Ald,
BETA, buf, &Bld );
kk += kbb;
}
else
{
if( RRorCC )
{
if( AisRow ) { Bm = M; Bn = kbb; }
else { Bm = kbb; Bn = N; }
}
else
{
if( AisRow ) { Bm = kbb; Bn = M; }
else { Bm = N; Bn = kbb; }
}
pad( C2F_CHAR( ALL ), C2F_CHAR( NOCONJG ), &Bm, &Bn, &izero,
zero, zero, buf, &Bld );
}
Aroc = MModAdd1( Aroc, AnprocsD );
}
}
else
{
if( RRorCC )
pad( C2F_CHAR( ALL ), C2F_CHAR( NOCONJG ), &M, &N, &izero, zero,
zero, Mptr( B, Bii, Bjj, Bld, size ), &Bld );
else
pad( C2F_CHAR( ALL ), C2F_CHAR( NOCONJG ), &N, &M, &izero, zero,
zero, Mptr( B, Bii, Bjj, Bld, size ), &Bld );
}
/*
* Replicate locally scattered sub( B ) by reducing it in the process scope of
* sub( A )
*/
scope = ( AisRow ? CROW : CCOLUMN );
top = PB_Ctop( &ctxt, COMBINE, &scope, TOP_GET );
if( RRorCC )
TYPE->Cgsum2d( ctxt, &scope, top, M, N, Mptr( B, Bii, Bjj, Bld,
size ), Bld, -1, 0 );
else
TYPE->Cgsum2d( ctxt, &scope, top, N, M, Mptr( B, Bii, Bjj, Bld,
size ), Bld, -1, 0 );
}
if( !AisR )
{
/*
* If sub( A ) is not replicated, then broadcast the result to the other pro-
* cesses that own a piece of sub( B ), but were not involved in the above
* addition operation.
*/
if( RRorCC ) { Bm = M; Bn = N; }
else { Bm = N; Bn = M; }
if( AisRow )
{
top = PB_Ctop( &ctxt, BCAST, COLUMN, TOP_GET );
if( AmyprocR == AprocR )
TYPE->Cgebs2d( ctxt, COLUMN, top, Bm, Bn, Mptr( B, Bii, Bjj, Bld,
size ), Bld );
else
TYPE->Cgebr2d( ctxt, COLUMN, top, Bm, Bn, Mptr( B, Bii, Bjj, Bld,
size ), Bld, AprocR, AmyprocD );
}
else
{
top = PB_Ctop( &ctxt, BCAST, ROW, TOP_GET );
if( AmyprocR == AprocR )
TYPE->Cgebs2d( ctxt, ROW, top, Bm, Bn, Mptr( B, Bii, Bjj, Bld,
size ), Bld );
else
TYPE->Cgebr2d( ctxt, ROW, top, Bm, Bn, Mptr( B, Bii, Bjj, Bld,
size ), Bld, AmyprocD, AprocR );
}
}
}
/*
* End of PB_CpaxpbyDN
*/
}
|