File: PB_CpaxpbyND.c

package info (click to toggle)
scalapack 1.8.0-6
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 32,240 kB
  • ctags: 29,143
  • sloc: fortran: 288,069; ansic: 64,035; makefile: 1,911
file content (699 lines) | stat: -rw-r--r-- 28,048 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
/* ---------------------------------------------------------------------
*
*  -- PBLAS auxiliary routine (version 2.0) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     April 1, 1998
*
*  ---------------------------------------------------------------------
*/
/*
*  Include files
*/
#include "../pblas.h"
#include "../PBpblas.h"
#include "../PBtools.h"
#include "../PBblacs.h"
#include "../PBblas.h"

#ifdef __STDC__
void PB_CpaxpbyND( PBTYP_T * TYPE, char * CONJUG, int M, int N,
                   char * ALPHA,
                   char * A, int IA, int JA, int * DESCA, char * AROC,
                   char * BETA,
                   char * B, int IB, int JB, int * DESCB, char * BROC )
#else
void PB_CpaxpbyND( TYPE, CONJUG, M, N, ALPHA, A, IA, JA, DESCA, AROC,
                   BETA, B, IB, JB, DESCB, BROC )
/*
*  .. Scalar Arguments ..
*/
   char           * AROC, * BROC, * CONJUG;
   int            IA, IB, JA, JB, M, N;
   char           * ALPHA, * BETA;
   PBTYP_T        * TYPE;
/*
*  .. Array Arguments ..
*/
   int            * DESCA, * DESCB;
   char           * A, * B;
#endif
{
/*
*  Purpose
*  =======
*
*  PB_CpaxpbyND adds one submatrix to another,
*
*     sub( B ) := beta * sub( B ) + alpha * sub( A ), or,
*
*     sub( B ) := beta * sub( B ) + alpha * conjg( sub( A ) ),
*
*  where sub( A ) is not distributed and sub( B ) is distributed.
*
*  sub( A ) always  denotes A(IA:IA+M-1,JA:JA+N-1).  When AROC is 'R' or
*  'r'  sub( A ) resides in a process row, otherwise sub( A ) resides in
*  a process column. When sub( A ) resides in a  process row and BROC is
*  'R' or 'r' or sub( A ) resides in a process column and BROC is 'C' or
*  'c', then sub( B ) denotes  B( IB:IB+M-1, JB:JB+N-1 ), and  otherwise
*  sub( B ) denotes B(IB:IB+N-1,JB:JB+M-1).
*  otherwise.
*
*  Notes
*  =====
*
*  A description  vector  is associated with each 2D block-cyclicly dis-
*  tributed matrix.  This  vector  stores  the  information  required to
*  establish the  mapping  between a  matrix entry and its corresponding
*  process and memory location.
*
*  In  the  following  comments,   the character _  should  be  read  as
*  "of  the  distributed  matrix".  Let  A  be a generic term for any 2D
*  block cyclicly distributed matrix.  Its description vector is DESC_A:
*
*  NOTATION         STORED IN       EXPLANATION
*  ---------------- --------------- ------------------------------------
*  DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type.
*  CTXT_A  (global) DESCA[ CTXT_  ] The BLACS context handle, indicating
*                                   the NPROW x NPCOL BLACS process grid
*                                   A  is  distributed over. The context
*                                   itself  is  global,  but  the handle
*                                   (the integer value) may vary.
*  M_A     (global) DESCA[ M_     ] The  number of rows in the distribu-
*                                   ted matrix A, M_A >= 0.
*  N_A     (global) DESCA[ N_     ] The number of columns in the distri-
*                                   buted matrix A, N_A >= 0.
*  IMB_A   (global) DESCA[ IMB_   ] The number of rows of the upper left
*                                   block of the matrix A, IMB_A > 0.
*  INB_A   (global) DESCA[ INB_   ] The  number  of columns of the upper
*                                   left   block   of   the  matrix   A,
*                                   INB_A > 0.
*  MB_A    (global) DESCA[ MB_    ] The blocking factor used to  distri-
*                                   bute the last  M_A-IMB_A  rows of A,
*                                   MB_A > 0.
*  NB_A    (global) DESCA[ NB_    ] The blocking factor used to  distri-
*                                   bute the last  N_A-INB_A  columns of
*                                   A, NB_A > 0.
*  RSRC_A  (global) DESCA[ RSRC_  ] The process row over which the first
*                                   row of the matrix  A is distributed,
*                                   NPROW > RSRC_A >= 0.
*  CSRC_A  (global) DESCA[ CSRC_  ] The  process column  over  which the
*                                   first column of  A  is  distributed.
*                                   NPCOL > CSRC_A >= 0.
*  LLD_A   (local)  DESCA[ LLD_   ] The  leading dimension  of the local
*                                   array  storing  the  local blocks of
*                                   the distributed matrix A,
*                                   IF( Lc( 1, N_A ) > 0 )
*                                      LLD_A >= MAX( 1, Lr( 1, M_A ) )
*                                   ELSE
*                                      LLD_A >= 1.
*
*  Let K be the number of  rows of a matrix A starting at the global in-
*  dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
*  that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
*  receive if these K rows were distributed over NPROW processes.  If  K
*  is the number of columns of a matrix  A  starting at the global index
*  JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number  of co-
*  lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would  receive if
*  these K columns were distributed over NPCOL processes.
*
*  The values of Lr() and Lc() may be determined via a call to the func-
*  tion PB_Cnumroc:
*  Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
*  Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
*
*  Arguments
*  =========
*
*  TYPE    (local input) pointer to a PBTYP_T structure
*          On entry,  TYPE  is a pointer to a structure of type PBTYP_T,
*          that contains type information (See pblas.h).
*
*  CONJUG  (global input) pointer to CHAR
*          On  entry,  CONJUG  specifies  whether  conjg( sub( A ) )  or
*          sub( A ) should be added to sub( B ) as follows:
*             CONJUG = 'N' or 'n':
*                sub( B ) := beta*sub( B ) + alpha*sub( A ),
*             otherwise
*                sub( B ) := beta*sub( B ) + alpha*conjg( sub( A ) ).
*
*  M       (global input) INTEGER
*          On entry,  M  specifies the number of rows of  the  submatrix
*          sub( A ). M  must be at least zero.
*
*  N       (global input) INTEGER
*          On entry, N  specifies the number of columns of the submatrix
*          sub( A ). N must be at least zero.
*
*  ALPHA   (global input) pointer to CHAR
*          On entry, ALPHA specifies the scalar alpha.   When  ALPHA  is
*          supplied as zero then the local entries of the array  A  cor-
*          responding to the entries of the submatrix sub( A ) need  not
*          be set on input.
*
*  A       (local input) pointer to CHAR
*          On entry, A is an array of dimension (LLD_A, Ka), where LLD_A
*          is at least MAX( 1, Lr( 1, IA+M-1 ) ),  and,  Ka is  at least
*          Lc( 1, JA+N-1 ). Before entry, this array contains the  local
*          entries of the matrix A.
*
*  IA      (global input) INTEGER
*          On entry, IA  specifies A's global row index, which points to
*          the beginning of the submatrix sub( A ).
*
*  JA      (global input) INTEGER
*          On entry, JA  specifies A's global column index, which points
*          to the beginning of the submatrix sub( A ).
*
*  DESCA   (global and local input) INTEGER array
*          On entry, DESCA  is an integer array of dimension DLEN_. This
*          is the array descriptor for the matrix A.
*
*  AROC    (global input) pointer to CHAR
*          On entry,  AROC  specifies  the  orientation of the subvector
*          sub( A ). When AROC is 'R' or 'r',  sub( A ) is a row vector,
*          and a column vector otherwise.
*
*  BETA    (global input) pointer to CHAR
*          On entry, BETA specifies the scalar beta. When  BETA  is sup-
*          plied as zero then the local entries of the array  B  corres-
*          ponding to the entries of the submatrix sub( B ) need not  be
*          set on input.
*
*  B       (local input/local output) pointer to CHAR
*          On entry, B is an array of dimension (LLD_B, Kb), where LLD_B
*          is  at  least  MAX( 1, Lr( 1, IB+M-1 ) )  when  sub( A )  and
*          sub( B )  are  both  distributed  along a process column or a
*          process row. In that case, Kb is  at  least  Lc( 1, JB+N-1 ).
*          Otherwise,  LLD_B  is at least  MAX( 1, Lr( 1, IB+N-1 ) ) and
*          Kb  is at least Lc( 1, JB+M-1 ).  Before  entry,  this  array
*          contains the local entries of the matrix B. On exit, sub( B )
*          is overwritten with the updated submatrix.
*
*  IB      (global input) INTEGER
*          On entry, IB  specifies B's global row index, which points to
*          the beginning of the submatrix sub( B ).
*
*  JB      (global input) INTEGER
*          On entry, JB  specifies B's global column index, which points
*          to the beginning of the submatrix sub( B ).
*
*  DESCB   (global and local input) INTEGER array
*          On entry, DESCB  is an integer array of dimension DLEN_. This
*          is the array descriptor for the matrix B.
*
*  BROC    (global input) pointer to CHAR
*          On entry,  BROC  specifies  the  orientation of the subvector
*          sub( B ). When BROC is 'R' or 'r',  sub( B ) is a row vector,
*          and a column vector otherwise.
*
*  -- Written on April 1, 1998 by
*     Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
*
*  ---------------------------------------------------------------------
*/
/*
*  .. Local Scalars ..
*/
   char           * one, * top, * zero;
   int            Acol, Aii, AisR, AisRow, Ajj, Ald, AmyprocD, AmyprocR,
                  AnprocsD, AprocR, Aroc, Arow, Bcol, Bii, Binb1D, BisR, BisRow,
                  Bjj, Bld, BmyprocD, BmyprocR, BnD, BnbD, BnpD, BnprocsD,
                  BprocD,  BprocR, Broc, Brow, RRorCC, ctxt, k, kbb, kk, kn,
                  ktmp, mycol, mydist, myproc, myrow, npcol, nprow, p, size;
   MMADD_T        add;
/*
*  .. Local Arrays ..
*/
   char           * buf = NULL;
/* ..
*  .. Executable Statements ..
*
*/
/*
*  Retrieve process grid information
*/
   Cblacs_gridinfo( ( ctxt = DESCA[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
/*
*  Retrieve sub( A )'s local information: Aii, Ajj, Arow, Acol ...
*/
   PB_Cinfog2l( IA, JA, DESCA, nprow, npcol, myrow, mycol, &Aii, &Ajj,
                &Arow, &Acol );
   if( ( AisRow = ( Mupcase( AROC[0] ) == CROW ) ) != 0 )
   {
      BnD      = N;     Ald      = DESCA[LLD_];
      AmyprocD = mycol; AnprocsD = npcol; AmyprocR = myrow; AprocR = Arow;
      AisR     = ( ( Arow == -1 ) || ( nprow == 1 ) );
   }
   else
   {
      BnD      = M;     Ald      = DESCA[LLD_];
      AmyprocD = myrow; AnprocsD = nprow; AmyprocR = mycol; AprocR = Acol;
      AisR     = ( ( Acol == -1 ) || ( npcol == 1 ) );
   }
/*
*  Retrieve sub( B )'s local information: Bii, Bjj, Brow, Bcol ...
*/
   PB_Cinfog2l( IB, JB, DESCB, nprow, npcol, myrow, mycol, &Bii, &Bjj,
                &Brow, &Bcol );
   if( ( BisRow = ( Mupcase( BROC[0] ) == CROW ) ) != 0 )
   {
      BnbD     = DESCB[NB_]; Bld      = DESCB[LLD_];
      BprocD   = Bcol;       BmyprocD = mycol;       BnprocsD = npcol;
      BprocR   = Brow;       BmyprocR = myrow;
      BisR     = ( ( BprocR == -1 ) || ( nprow == 1 ) );
      Binb1D   = PB_Cfirstnb( BnD, JB, DESCB[INB_], BnbD );
   }
   else
   {
      BnbD     = DESCB[MB_]; Bld      = DESCB[LLD_];
      BprocD   = Brow;       BmyprocD = myrow;       BnprocsD = nprow;
      BprocR   = Bcol;       BmyprocR = mycol;
      BisR     = ( ( BprocR == -1 ) || ( npcol == 1 ) );
      Binb1D   = PB_Cfirstnb( BnD, IB, DESCB[IMB_], BnbD );
   }
/*
*  Are sub( A ) and sub( B ) both row or column vectors ?
*/
   RRorCC = ( ( AisRow && BisRow ) || ( !( AisRow ) && !( BisRow ) ) );
/*
*  sub( A ) is not distributed and sub( B ) is distributed
*/
   if( !( AisR ) )
   {
/*
*  sub( A ) is not replicated. Since this operation is local if sub( A ) and
*  sub( B ) are both row or column vectors, choose BprocR = AprocR when RRorCC,
*  and BprocR = 0 otherwise.
*/
      if( BisR ) { BprocR = ( ( RRorCC ) ? AprocR : 0 ); }
/*
*  Now, it is just like sub( B ) is not replicated, this information however is
*  kept in BisR for later use.
*/
      size = TYPE->size;

      if( ( AmyprocR == AprocR ) || ( BmyprocR == BprocR ) )
      {
         zero = TYPE->zero; one = TYPE->one;
/*
*  sub( A ) and sub( B ) are both row or column vectors
*/
         if( RRorCC )
         {
            if( Mupcase( CONJUG[0] ) != CNOCONJG ) add = TYPE->Fmmcadd;
            else                                   add = TYPE->Fmmadd;

            BnpD = PB_Cnumroc( BnD, 0, Binb1D, BnbD, BmyprocD, BprocD,
                               BnprocsD );
/*
*  sub( A ) and sub( B ) are in the same process row or column
*/
            if( AprocR == BprocR )
            {
/*
*  In each process, the non distributed part of sub( A ) is added to sub( B ).
*/
               if( BnpD > 0 )
               {
                  Broc = BprocD;
                  if( AisRow ) { kk = Bjj; ktmp = JA + N; kn = JA + Binb1D; }
                  else         { kk = Bii; ktmp = IA + M; kn = IA + Binb1D; }

                  if( BmyprocD == Broc )
                  {
                     if( AisRow )
                        add( &M, &Binb1D, ALPHA, Mptr( A, Aii, Ajj, Ald, size ),
                             &Ald, BETA, Mptr( B, Bii, Bjj, Bld, size ), &Bld );
                     else
                        add( &Binb1D, &N, ALPHA, Mptr( A, Aii, Ajj, Ald, size ),
                             &Ald, BETA, Mptr( B, Bii, Bjj, Bld, size ), &Bld );
                     kk += Binb1D;
                  }
                  Broc = MModAdd1( Broc, BnprocsD );

                  for( k = kn; k < ktmp; k += BnbD )
                  {
                     kbb = ktmp - k; kbb = MIN( kbb, BnbD );

                     if( BmyprocD == Broc )
                     {
                        if( AisRow )
                           add( &M, &kbb, ALPHA, Mptr( A, Aii, k, Ald, size ),
                                &Ald, BETA, Mptr( B, Bii, kk, Bld, size ),
                                &Bld );
                        else
                           add( &kbb, &N, ALPHA, Mptr( A, k, Ajj, Ald, size ),
                                &Ald, BETA, Mptr( B, kk, Bjj, Bld, size ),
                                &Bld );
                        kk += kbb;
                     }
                     Broc = MModAdd1( Broc, BnprocsD );
                  }
               }
            }
            else
            {
/*
*  sub( A ) and sub( B ) are in a different process row or column
*/
               if( BmyprocR == BprocR )
               {
/*
*  If I own a piece of sub( B ), then receive the relevant piece of sub( A )
*  from the corresponding process row or column where it resides.
*/
                  if( BnpD > 0 )
                  {
                     if( BisRow )
                     {
                        buf = PB_Cmalloc( M * BnpD * size );
                        TYPE->Cgerv2d( ctxt, M, BnpD, buf, M, AprocR,
                                       BmyprocD );
                        add( &M, &BnpD, ALPHA, buf, &M, BETA, Mptr( B, Bii, Bjj,
                             Bld, size ), &Bld );
                        if( buf ) free( buf );
                     }
                     else
                     {
                        buf = PB_Cmalloc( BnpD * N * size );
                        TYPE->Cgerv2d( ctxt, BnpD, N, buf, BnpD, BmyprocD,
                                       AprocR );
                        add( &BnpD, &N, ALPHA, buf, &BnpD, BETA, Mptr( B, Bii,
                             Bjj, Bld, size ), &Bld );
                        if( buf ) free( buf );
                     }
                  }
               }

               if( AmyprocR == AprocR )
               {
/*
*  If I own sub( A ), then pack and send the distributed part that should be
*  added to the distributed part of sub( B ) that resides in my row or column.
*/
                  if( BnpD > 0 )
                  {
                     if( AisRow )
                     {
                        ktmp = JA + N;
                        kn   = JA + Binb1D;
                        buf = PB_Cmalloc( M * BnpD * size );
                     }
                     else
                     {
                        ktmp = IA + M;
                        kn   = IA + Binb1D;
                        buf = PB_Cmalloc( BnpD * N * size );
                     }
                     Broc = BprocD;
                     kk   = 0;

                     if( BmyprocD == Broc )
                     {
                        if( AisRow )
                           add( &M, &Binb1D, one, Mptr( A, Aii, Ajj, Ald,
                                size ), &Ald, zero, buf, &M );
                        else
                           add( &Binb1D, &N, one, Mptr( A, Aii, Ajj, Ald,
                                size ), &Ald, zero, buf, &BnpD );
                        kk += Binb1D;
                     }

                     Broc = MModAdd1( Broc, BnprocsD );
                     for( k = kn; k < ktmp; k += BnbD )
                     {
                        kbb = ktmp - k; kbb = MIN( kbb, BnbD );

                        if( BmyprocD == Broc )
                        {
                           if( AisRow )
                              add( &M, &kbb, one, Mptr( A, Aii, k, Ald, size ),
                                   &Ald, zero, Mptr( buf, 0, kk, M, size ),
                                   &M );
                           else
                              add( &kbb, &N, one, Mptr( A, k, Ajj, Ald, size ),
                                   &Ald, zero, Mptr( buf, kk, 0, BnpD, size ),
                                   &BnpD );
                           kk += kbb;
                        }
                        Broc = MModAdd1( Broc, BnprocsD );
                     }

                     if( AisRow )
                        TYPE->Cgesd2d( ctxt, M, BnpD, buf,    M, BprocR,
                                       AmyprocD );
                     else
                        TYPE->Cgesd2d( ctxt, BnpD, N, buf, BnpD, AmyprocD,
                                       BprocR );
                     if( buf ) free( buf );
                  }
               }
            }
         }
         else
         {
/*
*  sub( A ) and sub( B ) are not both row or column vectors
*/
            if( Mupcase( CONJUG[0] ) != CNOCONJG ) add = TYPE->Fmmtcadd;
            else                                   add = TYPE->Fmmtadd;

            Aroc = 0;
            if( AisRow ) { ktmp = JA + N; kn = JA + Binb1D; }
            else         { ktmp = IA + M; kn = IA + Binb1D; }
/*
*  Loop over the processes in which sub( B ) resides, for each process find the
*  next process Xroc. Exchange and add the data.
*/
            for( p = 0; p < BnprocsD; p++ )
            {
               mydist = MModSub(      p, BprocD, BnprocsD );
               myproc = MModAdd( BprocD, mydist, BnprocsD );

               if( ( AprocR == p ) && ( BprocR == Aroc ) )
               {
                  if( ( AmyprocR == p ) && ( AmyprocD == Aroc ) )
                  {
/*
*  local add at the intersection of the process cross
*/
                     BnpD = PB_Cnumroc( BnD, 0, Binb1D, BnbD, p, BprocD,
                                        BnprocsD );
                     if( BnpD > 0 )
                     {
                        Broc = BprocD;
                        kk   = ( AisRow ? Bii : Bjj );

                        if( myproc == Broc )
                        {
                           if( AisRow )
                              add( &M, &Binb1D, ALPHA, Mptr( A, Aii, Ajj, Ald,
                                   size ), &Ald, BETA, Mptr( B, Bii, Bjj, Bld,
                                   size ), &Bld );
                           else
                              add( &Binb1D, &N, ALPHA, Mptr( A, Aii, Ajj, Ald,
                                   size ), &Ald, BETA, Mptr( B, Bii, Bjj, Bld,
                                   size ), &Bld );
                           kk += Binb1D;
                        }
                        Broc = MModAdd1( Broc, BnprocsD );

                        for( k = kn; k < ktmp; k += BnbD )
                        {
                           kbb = ktmp - k; kbb = MIN( kbb, BnbD );
                           if( myproc == Broc )
                           {
                              if( AisRow )
                                 add( &M, &kbb, ALPHA, Mptr( A, Aii, k, Ald,
                                      size ), &Ald, BETA, Mptr( B, kk, Bjj, Bld,
                                      size ), &Bld );
                              else
                                 add( &kbb, &N, ALPHA, Mptr( A, k, Ajj, Ald,
                                      size ), &Ald, BETA, Mptr( B, Bii, kk, Bld,
                                      size ), &Bld );
                              kk += kbb;
                           }
                           Broc = MModAdd1( Broc, BnprocsD );
                        }
                     }
                  }
               }
               else
               {
/*
*  Message exchange
*/
                  if( ( BmyprocR == BprocR ) && ( BmyprocD == p ) )
                  {
                     BnpD = PB_Cnumroc( BnD, 0, Binb1D, BnbD, p, BprocD,
                                        BnprocsD );
                     if( BnpD > 0 )
                     {
                        if( AisRow )
                        {
                           buf = PB_Cmalloc( M * BnpD * size );
                           TYPE->Cgerv2d( ctxt, BnpD, M, buf, BnpD, AprocR,
                                          Aroc );
                           TYPE->Fmmadd( &BnpD, &M, ALPHA, buf, &BnpD, BETA,
                                         Mptr( B, Bii, Bjj, Bld, size ), &Bld );
                        }
                        else
                        {
                           buf = PB_Cmalloc( BnpD * N * size );
                           TYPE->Cgerv2d( ctxt, N, BnpD, buf, N, Aroc, AprocR );
                           TYPE->Fmmadd( &N, &BnpD, ALPHA, buf, &N, BETA,
                                         Mptr( B, Bii, Bjj, Bld, size ), &Bld );
                        }
                        if( buf ) free( buf );
                     }
                  }

                  if( ( AmyprocR == AprocR ) && ( AmyprocD == Aroc ) )
                  {
                     BnpD = PB_Cnumroc( BnD, 0, Binb1D, BnbD, p, BprocD,
                                        BnprocsD );
                     if( BnpD > 0 )
                     {
                        if( AisRow )
                           buf = PB_Cmalloc( M * BnpD * size );
                        else
                           buf = PB_Cmalloc( BnpD * N * size );
                        Broc = BprocD;
                        kk   = 0;

                        if( myproc == Broc )
                        {
                           if( AisRow )
                              add( &M, &Binb1D, one, Mptr( A, Aii, Ajj, Ald,
                                   size ), &Ald, zero, buf, &BnpD );
                           else
                              add( &Binb1D, &N, one, Mptr( A, Aii, Ajj, Ald,
                                   size ), &Ald, zero, buf, &N );
                           kk += Binb1D;
                        }
                        Broc = MModAdd1( Broc, BnprocsD );

                        for( k = kn; k < ktmp; k += BnbD )
                        {
                           kbb = ktmp - k; kbb = MIN( kbb, BnbD );
                           if( myproc == Broc )
                           {
                              if( AisRow )
                                 add( &M, &kbb, one, Mptr( A, Aii, k, Ald,
                                      size ), &Ald, zero, Mptr( buf, kk, 0,
                                      BnpD, size ), &BnpD );
                              else
                                 add( &kbb, &N, one, Mptr( A, k, Ajj, Ald,
                                      size ), &Ald, zero, Mptr( buf, 0, kk,
                                      N, size ), &N );
                              kk += kbb;
                           }
                           Broc = MModAdd1( Broc, BnprocsD );
                        }
                        if( AisRow )
                           TYPE->Cgesd2d( ctxt, BnpD, M, buf, BnpD, p, BprocR );
                        else
                           TYPE->Cgesd2d( ctxt, N, BnpD, buf,    N, BprocR, p );
                        if( buf ) free( buf );
                     }
                  }
               }
               Aroc = MModAdd1( Aroc, AnprocsD );
            }
         }
      }

      if( BisR )
      {
/*
*  Replicate sub( B )
*/
         BnpD = PB_Cnumroc( BnD, 0, Binb1D, BnbD, BmyprocD, BprocD, BnprocsD );
         if( BnpD > 0 )
         {
            if( BisRow )
            {
               top = PB_Ctop( &ctxt, BCAST, COLUMN, TOP_GET );
               if( BmyprocR == BprocR )
                  TYPE->Cgebs2d( ctxt, COLUMN, top, ( AisRow ? M : N ), BnpD,
                                 Mptr( B, Bii, Bjj, Bld, size ), Bld );
               else
                  TYPE->Cgebr2d( ctxt, COLUMN, top, ( AisRow ? M : N ), BnpD,
                                 Mptr( B, Bii, Bjj, Bld, size ), Bld, BprocR,
                                 BmyprocD );
            }
            else
            {
               top = PB_Ctop( &ctxt, BCAST, ROW,    TOP_GET );
               if( BmyprocR == BprocR )
                  TYPE->Cgebs2d( ctxt, ROW,    top, BnpD, ( AisRow ? M : N ),
                                 Mptr( B, Bii, Bjj, Bld, size ), Bld );
               else
                  TYPE->Cgebr2d( ctxt, ROW,    top, BnpD, ( AisRow ? M : N ),
                                 Mptr( B, Bii, Bjj, Bld, size ), Bld, BmyprocD,
                                 BprocR );
            }
         }
      }
   }
   else
   {
/*
*  sub( A ) is replicated in every process. Add the data in process row or
*  column BprocR when sub( B ) is not replicated and in every process otherwise.
*/
      if( !( BisR ) && ( BmyprocR != BprocR ) ) return;

      size = TYPE->size;

      if( RRorCC )
      {
         if( Mupcase( CONJUG[0] ) != CNOCONJG ) add = TYPE->Fmmcadd;
         else                                   add = TYPE->Fmmadd;
      }
      else
      {
         if( Mupcase( CONJUG[0] ) != CNOCONJG ) add = TYPE->Fmmtcadd;
         else                                   add = TYPE->Fmmtadd;
      }

      Broc = BprocD;
      kk   = ( BisRow ? Bjj : Bii );
      if( AisRow ) { ktmp = JA + N; kn = JA + Binb1D; }
      else         { ktmp = IA + M; kn = IA + Binb1D; }

      if( BmyprocD == Broc )
      {
         if( AisRow )
            add( &M, &Binb1D, ALPHA, Mptr( A, Aii, Ajj, Ald, size ), &Ald, BETA,
                 Mptr( B, Bii, Bjj, Bld, size ), &Bld );
         else
            add( &Binb1D, &N, ALPHA, Mptr( A, Aii, Ajj, Ald, size ), &Ald, BETA,
                 Mptr( B, Bii, Bjj, Bld, size ), &Bld );
         kk += Binb1D;
      }
      Broc = MModAdd1( Broc, BnprocsD );

      for( k = kn; k < ktmp; k += BnbD )
      {
         kbb = ktmp - k; kbb = MIN( kbb, BnbD );
         if( BmyprocD == Broc )
         {
            if( BisRow ) { buf = Mptr( B, Bii, kk, Bld, size ); }
            else         { buf = Mptr( B, kk, Bjj, Bld, size ); }
            if( AisRow )
               add( &M, &kbb, ALPHA, Mptr( A, Aii, k, Ald, size ), &Ald, BETA,
                    buf, &Bld );
            else
               add( &kbb, &N, ALPHA, Mptr( A, k, Ajj, Ald, size ), &Ald, BETA,
                    buf, &Bld );
            kk += kbb;
         }
         Broc = MModAdd1( Broc, BnprocsD );
      }
   }
/*
*  End of PB_CpaxpbyND
*/
}