1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
|
SUBROUTINE CLAREF( TYPE, A, LDA, WANTZ, Z, LDZ, BLOCK, IROW1,
$ ICOL1, ISTART, ISTOP, ITMP1, ITMP2, LILOZ,
$ LIHIZ, VECS, V2, V3, T1, T2, T3 )
*
* -- ScaLAPACK routine (version 1.7) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* May 28, 1999
*
* .. Scalar Arguments ..
LOGICAL BLOCK, WANTZ
CHARACTER TYPE
INTEGER ICOL1, IROW1, ISTART, ISTOP, ITMP1, ITMP2, LDA,
$ LDZ, LIHIZ, LILOZ
COMPLEX T1, T2, T3, V2, V3
* ..
* .. Array Arguments ..
COMPLEX A( LDA, * ), VECS( * ), Z( LDZ, * )
* ..
*
* Purpose
* =======
*
* CLAREF applies one or several Householder reflectors of size 3
* to one or two matrices (if column is specified) on either their
* rows or columns.
*
* Arguments
* =========
*
* TYPE (global input) CHARACTER*1
* If 'R': Apply reflectors to the rows of the matrix
* (apply from left)
* Otherwise: Apply reflectors to the columns of the matrix
* Unchanged on exit.
*
* A (global input/output) COMPLEX array, (LDA,*)
* On entry, the matrix to receive the reflections.
* The updated matrix on exit.
*
* LDA (local input) INTEGER
* On entry, the leading dimension of A. Unchanged on exit.
*
* WANTZ (global input) LOGICAL
* If .TRUE., then apply any column reflections to Z as well.
* If .FALSE., then do no additional work on Z.
*
* Z (global input/output) COMPLEX array, (LDZ,*)
* On entry, the second matrix to receive column reflections.
* This is changed only if WANTZ is set.
*
* LDZ (local input) INTEGER
* On entry, the leading dimension of Z. Unchanged on exit.
*
* BLOCK (global input) LOGICAL
* If .TRUE., then apply several reflectors at once and read
* their data from the VECS array.
* If .FALSE., apply the single reflector given by V2, V3,
* T1, T2, and T3.
*
* IROW1 (local input/output) INTEGER
* On entry, the local row element of A.
* Undefined on output.
*
*
* ICOL1 (local input/output) INTEGER
* On entry, the local column element of A.
* Undefined on output.
*
* ISTART (global input) INTEGER
* Specifies the "number" of the first reflector. This is
* used as an index into VECS if BLOCK is set.
* ISTART is ignored if BLOCK is .FALSE..
*
* ISTOP (global input) INTEGER
* Specifies the "number" of the last reflector. This is
* used as an index into VECS if BLOCK is set.
* ISTOP is ignored if BLOCK is .FALSE..
*
* ITMP1 (local input) INTEGER
* Starting range into A. For rows, this is the local
* first column. For columns, this is the local first row.
*
* ITMP2 (local input) INTEGER
* Ending range into A. For rows, this is the local last
* column. For columns, this is the local last row.
*
* LILOZ
* LIHIZ (local input) INTEGER
* These serve the same purpose as ITMP1,ITMP2 but for Z
* when WANTZ is set.
*
* VECS (global input) COMPLEX array of size 3*N (matrix size)
* This holds the size 3 reflectors one after another and this
* is only accessed when BLOCK is .TRUE.
*
* V2
* V3
* T1
* T2
* T3 (global input/output) COMPLEX
* This holds information on a single size 3 Householder
* reflector and is read when BLOCK is .FALSE., and
* overwritten when BLOCK is .TRUE.
*
* Further Details
* ===============
*
* Implemented by: M. Fahey, May 28, 1999
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER J, K
COMPLEX A1, A11, A2, A22, A3, A4, A5, B1, B2, B3, B4,
$ B5, H11, H22, SUM, SUM1, SUM2, SUM3, T12, T13,
$ T22, T23, T32, T33, TMP1, TMP2, TMP3, V22, V23,
$ V32, V33
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG, MOD
* ..
* .. Executable Statements ..
*
IF( LSAME( TYPE, 'R' ) ) THEN
IF( BLOCK ) THEN
DO 30 K = ISTART, ISTOP - MOD( ISTOP-ISTART+1, 3 ), 3
V2 = VECS( ( K-1 )*3+1 )
V3 = VECS( ( K-1 )*3+2 )
T1 = VECS( ( K-1 )*3+3 )
V22 = VECS( ( K-1 )*3+4 )
V32 = VECS( ( K-1 )*3+5 )
T12 = VECS( ( K-1 )*3+6 )
V23 = VECS( ( K-1 )*3+7 )
V33 = VECS( ( K-1 )*3+8 )
T13 = VECS( ( K-1 )*3+9 )
T2 = T1*V2
T3 = T1*V3
T22 = T12*V22
T32 = T12*V32
T23 = T13*V23
T33 = T13*V33
DO 10 J = ITMP1, ITMP2 - MOD( ITMP2-ITMP1+1, 2 ), 2
A1 = A( IROW1, J )
A2 = A( IROW1+1, J )
A3 = A( IROW1+2, J )
A4 = A( IROW1+3, J )
A5 = A( IROW1+4, J )
B1 = A( IROW1, J+1 )
B2 = A( IROW1+1, J+1 )
B3 = A( IROW1+2, J+1 )
B4 = A( IROW1+3, J+1 )
B5 = A( IROW1+4, J+1 )
SUM1 = CONJG( T1 )*A1 + CONJG( T2 )*A2 +
$ CONJG( T3 )*A3
A( IROW1, J ) = A1 - SUM1
H11 = A2 - SUM1*V2
H22 = A3 - SUM1*V3
TMP1 = CONJG( T1 )*B1 + CONJG( T2 )*B2 +
$ CONJG( T3 )*B3
A( IROW1, J+1 ) = B1 - TMP1
A11 = B2 - TMP1*V2
A22 = B3 - TMP1*V3
SUM2 = CONJG( T12 )*H11 + CONJG( T22 )*H22 +
$ CONJG( T32 )*A4
A( IROW1+1, J ) = H11 - SUM2
H11 = H22 - SUM2*V22
H22 = A4 - SUM2*V32
TMP2 = CONJG( T12 )*A11 + CONJG( T22 )*A22 +
$ CONJG( T32 )*B4
A( IROW1+1, J+1 ) = A11 - TMP2
A11 = A22 - TMP2*V22
A22 = B4 - TMP2*V32
SUM3 = CONJG( T13 )*H11 + CONJG( T23 )*H22 +
$ CONJG( T33 )*A5
A( IROW1+2, J ) = H11 - SUM3
A( IROW1+3, J ) = H22 - SUM3*V23
A( IROW1+4, J ) = A5 - SUM3*V33
TMP3 = CONJG( T13 )*A11 + CONJG( T23 )*A22 +
$ CONJG( T33 )*B5
A( IROW1+2, J+1 ) = A11 - TMP3
A( IROW1+3, J+1 ) = A22 - TMP3*V23
A( IROW1+4, J+1 ) = B5 - TMP3*V33
10 CONTINUE
DO 20 J = ITMP2 - MOD( ITMP2-ITMP1+1, 2 ) + 1, ITMP2
SUM = CONJG( T1 )*A( IROW1, J ) +
$ CONJG( T2 )*A( IROW1+1, J ) +
$ CONJG( T3 )*A( IROW1+2, J )
A( IROW1, J ) = A( IROW1, J ) - SUM
H11 = A( IROW1+1, J ) - SUM*V2
H22 = A( IROW1+2, J ) - SUM*V3
SUM = CONJG( T12 )*H11 + CONJG( T22 )*H22 +
$ CONJG( T32 )*A( IROW1+3, J )
A( IROW1+1, J ) = H11 - SUM
H11 = H22 - SUM*V22
H22 = A( IROW1+3, J ) - SUM*V32
SUM = CONJG( T13 )*H11 + CONJG( T23 )*H22 +
$ CONJG( T33 )*A( IROW1+4, J )
A( IROW1+2, J ) = H11 - SUM
A( IROW1+3, J ) = H22 - SUM*V23
A( IROW1+4, J ) = A( IROW1+4, J ) - SUM*V33
20 CONTINUE
IROW1 = IROW1 + 3
30 CONTINUE
DO 50 K = ISTOP - MOD( ISTOP-ISTART+1, 3 ) + 1, ISTOP
V2 = VECS( ( K-1 )*3+1 )
V3 = VECS( ( K-1 )*3+2 )
T1 = VECS( ( K-1 )*3+3 )
T2 = T1*V2
T3 = T1*V3
DO 40 J = ITMP1, ITMP2
SUM = CONJG( T1 )*A( IROW1, J ) +
$ CONJG( T2 )*A( IROW1+1, J ) +
$ CONJG( T3 )*A( IROW1+2, J )
A( IROW1, J ) = A( IROW1, J ) - SUM
A( IROW1+1, J ) = A( IROW1+1, J ) - SUM*V2
A( IROW1+2, J ) = A( IROW1+2, J ) - SUM*V3
40 CONTINUE
IROW1 = IROW1 + 1
50 CONTINUE
ELSE
DO 60 J = ITMP1, ITMP2
SUM = CONJG( T1 )*A( IROW1, J ) +
$ CONJG( T2 )*A( IROW1+1, J ) +
$ CONJG( T3 )*A( IROW1+2, J )
A( IROW1, J ) = A( IROW1, J ) - SUM
A( IROW1+1, J ) = A( IROW1+1, J ) - SUM*V2
A( IROW1+2, J ) = A( IROW1+2, J ) - SUM*V3
60 CONTINUE
END IF
ELSE
*
* Do column transforms
*
IF( BLOCK ) THEN
DO 90 K = ISTART, ISTOP - MOD( ISTOP-ISTART+1, 3 ), 3
V2 = VECS( ( K-1 )*3+1 )
V3 = VECS( ( K-1 )*3+2 )
T1 = VECS( ( K-1 )*3+3 )
V22 = VECS( ( K-1 )*3+4 )
V32 = VECS( ( K-1 )*3+5 )
T12 = VECS( ( K-1 )*3+6 )
V23 = VECS( ( K-1 )*3+7 )
V33 = VECS( ( K-1 )*3+8 )
T13 = VECS( ( K-1 )*3+9 )
T2 = T1*V2
T3 = T1*V3
T22 = T12*V22
T32 = T12*V32
T23 = T13*V23
T33 = T13*V33
DO 70 J = ITMP1, ITMP2
SUM = T1*A( J, ICOL1 ) + T2*A( J, ICOL1+1 ) +
$ T3*A( J, ICOL1+2 )
A( J, ICOL1 ) = A( J, ICOL1 ) - SUM
H11 = A( J, ICOL1+1 ) - SUM*CONJG( V2 )
H22 = A( J, ICOL1+2 ) - SUM*CONJG( V3 )
SUM = T12*H11 + T22*H22 + T32*A( J, ICOL1+3 )
A( J, ICOL1+1 ) = H11 - SUM
H11 = H22 - SUM*CONJG( V22 )
H22 = A( J, ICOL1+3 ) - SUM*CONJG( V32 )
SUM = T13*H11 + T23*H22 + T33*A( J, ICOL1+4 )
A( J, ICOL1+2 ) = H11 - SUM
A( J, ICOL1+3 ) = H22 - SUM*CONJG( V23 )
A( J, ICOL1+4 ) = A( J, ICOL1+4 ) - SUM*CONJG( V33 )
70 CONTINUE
IF( WANTZ ) THEN
DO 80 J = LILOZ, LIHIZ
SUM = T1*Z( J, ICOL1 ) + T2*Z( J, ICOL1+1 ) +
$ T3*Z( J, ICOL1+2 )
Z( J, ICOL1 ) = Z( J, ICOL1 ) - SUM
H11 = Z( J, ICOL1+1 ) - SUM*CONJG( V2 )
H22 = Z( J, ICOL1+2 ) - SUM*CONJG( V3 )
SUM = T12*H11 + T22*H22 + T32*Z( J, ICOL1+3 )
Z( J, ICOL1+1 ) = H11 - SUM
H11 = H22 - SUM*CONJG( V22 )
H22 = Z( J, ICOL1+3 ) - SUM*CONJG( V32 )
SUM = T13*H11 + T23*H22 + T33*Z( J, ICOL1+4 )
Z( J, ICOL1+2 ) = H11 - SUM
Z( J, ICOL1+3 ) = H22 - SUM*CONJG( V23 )
Z( J, ICOL1+4 ) = Z( J, ICOL1+4 ) -
$ SUM*CONJG( V33 )
80 CONTINUE
END IF
ICOL1 = ICOL1 + 3
90 CONTINUE
DO 120 K = ISTOP - MOD( ISTOP-ISTART+1, 3 ) + 1, ISTOP
V2 = VECS( ( K-1 )*3+1 )
V3 = VECS( ( K-1 )*3+2 )
T1 = VECS( ( K-1 )*3+3 )
T2 = T1*V2
T3 = T1*V3
DO 100 J = ITMP1, ITMP2
SUM = T1*A( J, ICOL1 ) + T2*A( J, ICOL1+1 ) +
$ T3*A( J, ICOL1+2 )
A( J, ICOL1 ) = A( J, ICOL1 ) - SUM
A( J, ICOL1+1 ) = A( J, ICOL1+1 ) - SUM*CONJG( V2 )
A( J, ICOL1+2 ) = A( J, ICOL1+2 ) - SUM*CONJG( V3 )
100 CONTINUE
IF( WANTZ ) THEN
DO 110 J = LILOZ, LIHIZ
SUM = T1*Z( J, ICOL1 ) + T2*Z( J, ICOL1+1 ) +
$ T3*Z( J, ICOL1+2 )
Z( J, ICOL1 ) = Z( J, ICOL1 ) - SUM
Z( J, ICOL1+1 ) = Z( J, ICOL1+1 ) -
$ SUM*CONJG( V2 )
Z( J, ICOL1+2 ) = Z( J, ICOL1+2 ) -
$ SUM*CONJG( V3 )
110 CONTINUE
END IF
ICOL1 = ICOL1 + 1
120 CONTINUE
ELSE
DO 130 J = ITMP1, ITMP2
SUM = T1*A( J, ICOL1 ) + T2*A( J, ICOL1+1 ) +
$ T3*A( J, ICOL1+2 )
A( J, ICOL1 ) = A( J, ICOL1 ) - SUM
A( J, ICOL1+1 ) = A( J, ICOL1+1 ) - SUM*CONJG( V2 )
A( J, ICOL1+2 ) = A( J, ICOL1+2 ) - SUM*CONJG( V3 )
130 CONTINUE
END IF
END IF
RETURN
*
* End of CLAREF
*
END
|