File: pclantr.f

package info (click to toggle)
scalapack 1.8.0-9
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 32,664 kB
  • sloc: fortran: 288,069; ansic: 64,035; makefile: 1,958
file content (1031 lines) | stat: -rw-r--r-- 37,271 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
      REAL               FUNCTION PCLANTR( NORM, UPLO, DIAG, M, N, A,
     $                                     IA, JA, DESCA, WORK )
*
*  -- ScaLAPACK auxiliary routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 1, 1997
*
*     .. Scalar Arguments ..
      CHARACTER          DIAG, NORM, UPLO
      INTEGER            IA, JA, M, N
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * )
      REAL               WORK( * )
      COMPLEX            A( * )
*     ..
*
*  Purpose
*  =======
*
*  PCLANTR returns the value of the one norm, or the Frobenius norm,
*  or the infinity norm, or the element of largest absolute value of a
*  trapezoidal or triangular distributed matrix sub( A ) denoting
*  A(IA:IA+M-1, JA:JA+N-1).
*
*  PCLANTR returns the value
*
*     ( max(abs(A(i,j))),  NORM = 'M' or 'm' with ia <= i <= ia+m-1,
*     (                                      and  ja <= j <= ja+n-1,
*     (
*     ( norm1( sub( A ) ), NORM = '1', 'O' or 'o'
*     (
*     ( normI( sub( A ) ), NORM = 'I' or 'i'
*     (
*     ( normF( sub( A ) ), NORM = 'F', 'f', 'E' or 'e'
*
*  where norm1 denotes the  one norm of a matrix (maximum column sum),
*  normI denotes the  infinity norm  of a matrix  (maximum row sum) and
*  normF denotes the  Frobenius norm of a matrix (square root of sum of
*  squares).  Note that  max(abs(A(i,j)))  is not a  matrix norm.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  NORM    (global input) CHARACTER
*          Specifies the value to be returned in PCLANTR as described
*          above.
*
*  UPLO    (global input) CHARACTER
*          Specifies whether the matrix sub( A ) is upper or lower
*          trapezoidal.
*          = 'U':  Upper trapezoidal
*          = 'L':  Lower trapezoidal
*          Note that sub( A ) is triangular instead of trapezoidal
*          if M = N.
*
*  DIAG    (global input) CHARACTER
*          Specifies whether or not the distributed matrix sub( A ) has
*          unit diagonal.
*          = 'N':  Non-unit diagonal
*          = 'U':  Unit diagonal
*
*  M       (global input) INTEGER
*          The number of rows to be operated on i.e the number of rows
*          of the distributed submatrix sub( A ). When M = 0, PCLANTR is
*          set to zero. M >= 0.
*
*  N       (global input) INTEGER
*          The number of columns to be operated on i.e the number of
*          columns of the distributed submatrix sub( A ). When N = 0,
*          PCLANTR is set to zero. N >= 0.
*
*  A       (local input) COMPLEX pointer into the local memory
*          to an array of dimension (LLD_A, LOCc(JA+N-1) ) containing
*          the local pieces of sub( A ).
*
*  IA      (global input) INTEGER
*          The row index in the global array A indicating the first
*          row of sub( A ).
*
*  JA      (global input) INTEGER
*          The column index in the global array A indicating the
*          first column of sub( A ).
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  WORK    (local workspace) REAL array dimension (LWORK)
*          LWORK >=   0 if NORM = 'M' or 'm' (not referenced),
*                   Nq0 if NORM = '1', 'O' or 'o',
*                   Mp0 if NORM = 'I' or 'i',
*                     0 if NORM = 'F', 'f', 'E' or 'e' (not referenced),
*          where
*
*          IROFFA = MOD( IA-1, MB_A ), ICOFFA = MOD( JA-1, NB_A ),
*          IAROW = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW ),
*          IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL ),
*          Mp0 = NUMROC( M+IROFFA, MB_A, MYROW, IAROW, NPROW ),
*          Nq0 = NUMROC( N+ICOFFA, NB_A, MYCOL, IACOL, NPCOL ),
*
*          INDXG2P and NUMROC are ScaLAPACK tool functions; MYROW,
*          MYCOL, NPROW and NPCOL can be determined by calling the
*          subroutine BLACS_GRIDINFO.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UDIAG
      INTEGER            IACOL, IAROW, ICTXT, II, IIA, ICOFF, IOFFA,
     $                   IROFF, J, JB, JJ, JJA, JN, KK, LDA, LL, MP,
     $                   MYCOL, MYROW, NP, NPCOL, NPROW, NQ
      REAL               SCALE, SUM, VALUE
*     ..
*     .. Local Arrays ..
      REAL               RWORK( 2 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, CLASSQ, INFOG2L, PSTREECOMB,
     $                   SCOMBSSQ, SGEBR2D, SGEBS2D,
     $                   SGAMX2D, SGSUM2D
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ICEIL, ISAMAX, NUMROC
      EXTERNAL           LSAME, ICEIL, ISAMAX, NUMROC
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, MOD, REAL, SQRT
*     ..
*     .. Executable Statements ..
*
*     Get grid parameters
*
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
      UDIAG = LSAME( DIAG, 'U' )
      CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL, IIA, JJA,
     $              IAROW, IACOL )
      IROFF = MOD( IA-1, DESCA( MB_ ) )
      ICOFF = MOD( JA-1, DESCA( NB_ ) )
      MP = NUMROC( M+IROFF, DESCA( MB_ ), MYROW, IAROW, NPROW )
      NQ = NUMROC( N+ICOFF, DESCA( NB_ ), MYCOL, IACOL, NPCOL )
      IF( MYROW.EQ.IAROW )
     $   MP = MP - IROFF
      IF( MYCOL.EQ.IACOL )
     $   NQ = NQ - ICOFF
      LDA = DESCA( LLD_ )
      IOFFA = ( JJA - 1 ) * LDA
*
      IF( MIN( M, N ).EQ.0 ) THEN
*
         VALUE = ZERO
*
      ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
*        Find max(abs(A(i,j))).
*
         IF( UDIAG ) THEN
            VALUE = ONE
         ELSE
            VALUE = ZERO
         END IF
*
         IF( LSAME( UPLO, 'U' ) ) THEN
*
*           Upper triangular matrix
*
            II = IIA
            JJ = JJA
            JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
            JB = JN-JA+1
*
            IF( MYCOL.EQ.IACOL ) THEN
               IF( MYROW.EQ.IAROW ) THEN
                  IF( UDIAG ) THEN
                     DO 20 LL = JJ, JJ + JB -1
                        DO 10 KK = IIA, MIN(II+LL-JJ+1,IIA+MP-1)
                           VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
   10                   CONTINUE
                        IOFFA = IOFFA + LDA
   20                CONTINUE
                  ELSE
                     DO 40 LL = JJ, JJ + JB -1
                        DO 30 KK = IIA, MIN( II+LL-JJ, IIA+MP-1 )
                           VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
   30                   CONTINUE
                        IOFFA = IOFFA + LDA
   40                CONTINUE
                  END IF
               ELSE
                  DO 60 LL = JJ, JJ + JB -1
                     DO 50 KK = IIA, MIN( II-1, IIA+MP-1 )
                        VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
   50                CONTINUE
                     IOFFA = IOFFA + LDA
   60             CONTINUE
               END IF
               JJ = JJ + JB
            END IF
*
            IF( MYROW.EQ.IAROW )
     $         II = II + JB
            IAROW = MOD( IAROW+1, NPROW )
            IACOL = MOD( IACOL+1, NPCOL )
*
*           Loop over remaining block of columns
*
            DO 130 J = JN+1, JA+N-1, DESCA( NB_ )
               JB = MIN( JA+N-J, DESCA( NB_ ) )
*
               IF( MYCOL.EQ.IACOL ) THEN
                  IF( MYROW.EQ.IAROW ) THEN
                     IF( UDIAG ) THEN
                        DO 80 LL = JJ, JJ + JB -1
                           DO 70 KK = IIA, MIN( II+LL-JJ+1, IIA+MP-1 )
                              VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
   70                      CONTINUE
                           IOFFA = IOFFA + LDA
   80                   CONTINUE
                     ELSE
                        DO 100 LL = JJ, JJ + JB -1
                           DO 90 KK = IIA, MIN( II+LL-JJ, IIA+MP-1 )
                              VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
   90                      CONTINUE
                           IOFFA = IOFFA + LDA
  100                   CONTINUE
                     END IF
                  ELSE
                     DO 120 LL = JJ, JJ + JB -1
                        DO 110 KK = IIA, MIN( II-1, IIA+MP-1 )
                           VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
  110                   CONTINUE
                        IOFFA = IOFFA + LDA
  120                CONTINUE
                  END IF
                  JJ = JJ + JB
               END IF
*
               IF( MYROW.EQ.IAROW )
     $            II = II + JB
               IAROW = MOD( IAROW+1, NPROW )
               IACOL = MOD( IACOL+1, NPCOL )
*
  130       CONTINUE
*
         ELSE
*
*           Lower triangular matrix
*
            II = IIA
            JJ = JJA
            JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
            JB = JN-JA+1
*
            IF( MYCOL.EQ.IACOL ) THEN
               IF( MYROW.EQ.IAROW ) THEN
                  IF( UDIAG ) THEN
                     DO 150 LL = JJ, JJ + JB -1
                        DO 140 KK = II+LL-JJ+1, IIA+MP-1
                           VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
  140                   CONTINUE
                        IOFFA = IOFFA + LDA
  150                CONTINUE
                  ELSE
                     DO 170 LL = JJ, JJ + JB -1
                        DO 160 KK = II+LL-JJ, IIA+MP-1
                           VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
  160                   CONTINUE
                        IOFFA = IOFFA + LDA
  170                CONTINUE
                  END IF
               ELSE
                  DO 190 LL = JJ, JJ + JB -1
                     DO 180 KK = II, IIA+MP-1
                        VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
  180                CONTINUE
                     IOFFA = IOFFA + LDA
  190             CONTINUE
               END IF
               JJ = JJ + JB
            END IF
*
            IF( MYROW.EQ.IAROW )
     $         II = II + JB
            IAROW = MOD( IAROW+1, NPROW )
            IACOL = MOD( IACOL+1, NPCOL )
*
*           Loop over remaining block of columns
*
            DO 260 J = JN+1, JA+N-1, DESCA( NB_ )
               JB = MIN( JA+N-J, DESCA( NB_ ) )
*
               IF( MYCOL.EQ.IACOL ) THEN
                  IF( MYROW.EQ.IAROW ) THEN
                     IF( UDIAG ) THEN
                        DO 210 LL = JJ, JJ + JB -1
                           DO 200 KK = II+LL-JJ+1, IIA+MP-1
                              VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
  200                      CONTINUE
                           IOFFA = IOFFA + LDA
  210                   CONTINUE
                     ELSE
                        DO 230 LL = JJ, JJ + JB -1
                           DO 220 KK = II+LL-JJ, IIA+MP-1
                              VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
  220                      CONTINUE
                           IOFFA = IOFFA + LDA
  230                   CONTINUE
                     END IF
                  ELSE
                     DO 250 LL = JJ, JJ + JB -1
                        DO 240 KK = II, IIA+MP-1
                           VALUE = MAX( VALUE, ABS( A( IOFFA+KK ) ) )
  240                   CONTINUE
                        IOFFA = IOFFA + LDA
  250                CONTINUE
                  END IF
                  JJ = JJ + JB
               END IF
*
               IF( MYROW.EQ.IAROW )
     $            II = II + JB
               IAROW = MOD( IAROW+1, NPROW )
               IACOL = MOD( IACOL+1, NPCOL )
*
  260       CONTINUE
*
         END IF
*
*        Gather the intermediate results to process (0,0).
*
         CALL SGAMX2D( ICTXT, 'All', ' ', 1, 1, VALUE, 1, KK, LL, -1,
     $                 0, 0 )
*
      ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' ) THEN
*
         VALUE = ZERO
*
         IF( LSAME( UPLO, 'U' ) ) THEN
*
*           Upper triangular matrix
*
            II = IIA
            JJ = JJA
            JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
            JB = JN-JA+1
*
            IF( MYCOL.EQ.IACOL ) THEN
               IF( MYROW.EQ.IAROW ) THEN
                  IF( UDIAG ) THEN
                     DO 280 LL = JJ, JJ + JB -1
                        SUM = ONE
                        DO 270 KK = IIA, MIN( II+LL-JJ, IIA+MP-1 )
                           SUM = SUM + ABS( A( IOFFA+KK ) )
  270                   CONTINUE
                        IOFFA = IOFFA + LDA
                        WORK( LL-JJA+1 ) = SUM
  280                CONTINUE
                  ELSE
                     DO 300 LL = JJ, JJ + JB -1
                        SUM = ZERO
                        DO 290 KK = IIA, MIN( II+LL-JJ+1, IIA+MP-1 )
                           SUM = SUM + ABS( A( IOFFA+KK ) )
  290                   CONTINUE
                        IOFFA = IOFFA + LDA
                        WORK( LL-JJA+1 ) = SUM
  300                CONTINUE
                  END IF
               ELSE
                  DO 320 LL = JJ, JJ + JB -1
                     SUM = ZERO
                     DO 310 KK = IIA, MIN( II-1, IIA+MP-1 )
                        SUM = SUM + ABS( A( IOFFA+KK ) )
  310                CONTINUE
                     IOFFA = IOFFA + LDA
                     WORK( LL-JJA+1 ) = SUM
  320             CONTINUE
               END IF
               JJ = JJ + JB
            END IF
*
            IF( MYROW.EQ.IAROW )
     $         II = II + JB
            IAROW = MOD( IAROW+1, NPROW )
            IACOL = MOD( IACOL+1, NPCOL )
*
*           Loop over remaining block of columns
*
            DO 390 J = JN+1, JA+N-1, DESCA( NB_ )
               JB = MIN( JA+N-J, DESCA( NB_ ) )
*
               IF( MYCOL.EQ.IACOL ) THEN
                  IF( MYROW.EQ.IAROW ) THEN
                     IF( UDIAG ) THEN
                        DO 340 LL = JJ, JJ + JB -1
                           SUM = ONE
                           DO 330 KK = IIA, MIN( II+LL-JJ+1, IIA+MP-1 )
                              SUM = SUM + ABS( A( IOFFA+KK ) )
  330                      CONTINUE
                           IOFFA = IOFFA + LDA
                           WORK( LL-JJA+1 ) = SUM
  340                   CONTINUE
                     ELSE
                        DO 360 LL = JJ, JJ + JB -1
                           SUM = ZERO
                           DO 350 KK = IIA, MIN( II+LL-JJ, IIA+MP-1 )
                              SUM = SUM + ABS( A( IOFFA+KK ) )
  350                      CONTINUE
                           IOFFA = IOFFA + LDA
                           WORK( LL-JJA+1 ) = SUM
  360                   CONTINUE
                     END IF
                  ELSE
                     DO 380 LL = JJ, JJ + JB -1
                        SUM = ZERO
                        DO 370 KK = IIA, MIN( II-1, IIA+MP-1 )
                           SUM = SUM + ABS( A( IOFFA+KK ) )
  370                   CONTINUE
                        IOFFA = IOFFA + LDA
                        WORK( LL-JJA+1 ) = SUM
  380                CONTINUE
                  END IF
                  JJ = JJ + JB
               END IF
*
               IF( MYROW.EQ.IAROW )
     $            II = II + JB
               IAROW = MOD( IAROW+1, NPROW )
               IACOL = MOD( IACOL+1, NPCOL )
*
  390       CONTINUE
*
         ELSE
*
*           Lower triangular matrix
*
            II = IIA
            JJ = JJA
            JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
            JB = JN-JA+1
*
            IF( MYCOL.EQ.IACOL ) THEN
               IF( MYROW.EQ.IAROW ) THEN
                  IF( UDIAG ) THEN
                     DO 410 LL = JJ, JJ + JB -1
                        SUM = ONE
                        DO 400 KK = II+LL-JJ+1, IIA+MP-1
                           SUM = SUM + ABS( A( IOFFA+KK ) )
  400                   CONTINUE
                        IOFFA = IOFFA + LDA
                        WORK( LL-JJA+1 ) = SUM
  410                CONTINUE
                  ELSE
                     DO 430 LL = JJ, JJ + JB -1
                        SUM = ZERO
                        DO 420 KK = II+LL-JJ, IIA+MP-1
                           SUM = SUM + ABS( A( IOFFA+KK ) )
  420                   CONTINUE
                        IOFFA = IOFFA + LDA
                        WORK( LL-JJA+1 ) = SUM
  430                CONTINUE
                  END IF
               ELSE
                  DO 450 LL = JJ, JJ + JB -1
                     SUM = ZERO
                     DO 440 KK = II, IIA+MP-1
                        SUM = SUM + ABS( A( IOFFA+KK ) )
  440                CONTINUE
                     IOFFA = IOFFA + LDA
                     WORK( LL-JJA+1 ) = SUM
  450             CONTINUE
               END IF
               JJ = JJ + JB
            END IF
*
            IF( MYROW.EQ.IAROW )
     $         II = II + JB
            IAROW = MOD( IAROW+1, NPROW )
            IACOL = MOD( IACOL+1, NPCOL )
*
*           Loop over remaining block of columns
*
            DO 520 J = JN+1, JA+N-1, DESCA( NB_ )
               JB = MIN( JA+N-J, DESCA( NB_ ) )
*
               IF( MYCOL.EQ.IACOL ) THEN
                  IF( MYROW.EQ.IAROW ) THEN
                     IF( UDIAG ) THEN
                        DO 470 LL = JJ, JJ + JB -1
                           SUM = ONE
                           DO 460 KK = II+LL-JJ+1, IIA+MP-1
                              SUM = SUM + ABS( A( IOFFA+KK ) )
  460                      CONTINUE
                           IOFFA = IOFFA + LDA
                           WORK( LL-JJA+1 ) = SUM
  470                   CONTINUE
                     ELSE
                        DO 490 LL = JJ, JJ + JB -1
                           SUM = ZERO
                           DO 480 KK = II+LL-JJ, IIA+MP-1
                              SUM = SUM + ABS( A( IOFFA+KK ) )
  480                      CONTINUE
                           IOFFA = IOFFA + LDA
                           WORK( LL-JJA+1 ) = SUM
  490                   CONTINUE
                     END IF
                  ELSE
                     DO 510 LL = JJ, JJ + JB -1
                        SUM = ZERO
                        DO 500 KK = II, IIA+MP-1
                           SUM = SUM + ABS( A( IOFFA+KK ) )
  500                   CONTINUE
                        IOFFA = IOFFA + LDA
                        WORK( LL-JJA+1 ) = SUM
  510                CONTINUE
                  END IF
                  JJ = JJ + JB
               END IF
*
               IF( MYROW.EQ.IAROW )
     $            II = II + JB
               IAROW = MOD( IAROW+1, NPROW )
               IACOL = MOD( IACOL+1, NPCOL )
*
  520       CONTINUE
*
         END IF
*
*        Find sum of global matrix columns and store on row 0 of
*        process grid
*
         CALL SGSUM2D( ICTXT, 'Columnwise', ' ', 1, NQ, WORK, 1,
     $                 0, MYCOL )
*
*        Find maximum sum of columns for 1-norm
*
         IF( MYROW.EQ.0 ) THEN
            IF( NQ.GT.0 ) THEN
               VALUE = WORK( ISAMAX( NQ, WORK, 1 ) )
            ELSE
               VALUE = ZERO
            END IF
            CALL SGAMX2D( ICTXT, 'Rowwise', ' ', 1, 1, VALUE, 1, KK, LL,
     $                    -1, 0, 0 )
         END IF
*
      ELSE IF( LSAME( NORM, 'I' ) ) THEN
*
         IF( LSAME( UPLO, 'U' ) ) THEN
            IF( UDIAG ) THEN
               DO 530 KK = IIA, IIA+MP-1
                  WORK( KK ) = ONE
  530          CONTINUE
            ELSE
               DO 540 KK = IIA, IIA+MP-1
                  WORK( KK ) = ZERO
  540          CONTINUE
            END IF
         ELSE
            IF( UDIAG ) THEN
               NP = NUMROC( N+IROFF, DESCA( MB_ ), MYROW, IAROW, NPROW )
               IF( MYROW.EQ.IAROW )
     $            NP = NP - IROFF
               DO 550 KK = IIA, IIA+NP-1
                  WORK( KK ) = ONE
  550          CONTINUE
               DO 560 KK = IIA+NP, IIA+MP-1
                  WORK( KK ) = ZERO
  560          CONTINUE
            ELSE
               DO 570 KK = IIA, IIA+MP-1
                  WORK( KK ) = ZERO
  570          CONTINUE
            END IF
         END IF
*
         IF( LSAME( UPLO, 'U' ) ) THEN
*
*           Upper triangular matrix
*
            II = IIA
            JJ = JJA
            JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
            JB = JN-JA+1
*
            IF( MYCOL.EQ.IACOL ) THEN
               IF( MYROW.EQ.IAROW ) THEN
                  IF( UDIAG ) THEN
                     DO 590 LL = JJ, JJ + JB -1
                        DO 580 KK = IIA, MIN( II+LL-JJ, IIA+MP-1 )
                           WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
     $                                        ABS( A( IOFFA+KK ) )
  580                   CONTINUE
                        IOFFA = IOFFA + LDA
  590                CONTINUE
                  ELSE
                     DO 610 LL = JJ, JJ + JB -1
                        DO 600 KK = IIA, MIN(II+LL-JJ+1,IIA+MP-1)
                           WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
     $                                        ABS( A( IOFFA+KK ) )
  600                   CONTINUE
                        IOFFA = IOFFA + LDA
  610                CONTINUE
                  END IF
               ELSE
                  DO 630 LL = JJ, JJ + JB -1
                     DO 620 KK = IIA, MIN( II-1, IIA+MP-1 )
                        WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
     $                                     ABS( A( IOFFA+KK ) )
  620                CONTINUE
                     IOFFA = IOFFA + LDA
  630             CONTINUE
               END IF
               JJ = JJ + JB
            END IF
*
            IF( MYROW.EQ.IAROW )
     $         II = II + JB
            IAROW = MOD( IAROW+1, NPROW )
            IACOL = MOD( IACOL+1, NPCOL )
*
*           Loop over remaining block of columns
*
            DO 700 J = JN+1, JA+N-1, DESCA( NB_ )
               JB = MIN( JA+N-J, DESCA( NB_ ) )
*
               IF( MYCOL.EQ.IACOL ) THEN
                  IF( MYROW.EQ.IAROW ) THEN
                     IF( UDIAG ) THEN
                        DO 650 LL = JJ, JJ + JB -1
                           DO 640 KK = IIA, MIN( II+LL-JJ+1, IIA+MP-1 )
                              WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
     $                                           ABS( A( IOFFA+KK ) )
  640                      CONTINUE
                           IOFFA = IOFFA + LDA
  650                   CONTINUE
                     ELSE
                        DO 670 LL = JJ, JJ + JB -1
                           DO 660 KK = IIA, MIN( II+LL-JJ, IIA+MP-1 )
                              WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
     $                                           ABS( A( IOFFA+KK ) )
  660                      CONTINUE
                           IOFFA = IOFFA + LDA
  670                   CONTINUE
                     END IF
                  ELSE
                     DO 690 LL = JJ, JJ + JB -1
                        DO 680 KK = IIA, MIN( II-1, IIA+MP-1 )
                           WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
     $                                        ABS( A( IOFFA+KK ) )
  680                   CONTINUE
                        IOFFA = IOFFA + LDA
  690                CONTINUE
                  END IF
                  JJ = JJ + JB
               END IF
*
               IF( MYROW.EQ.IAROW )
     $            II = II + JB
               IAROW = MOD( IAROW+1, NPROW )
               IACOL = MOD( IACOL+1, NPCOL )
*
  700       CONTINUE
*
         ELSE
*
*           Lower triangular matrix
*
            II = IIA
            JJ = JJA
            JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
            JB = JN-JA+1
*
            IF( MYCOL.EQ.IACOL ) THEN
               IF( MYROW.EQ.IAROW ) THEN
                  IF( UDIAG ) THEN
                     DO 720 LL = JJ, JJ + JB -1
                        DO 710 KK = II+LL-JJ+1, IIA+MP-1
                           WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
     $                                        ABS( A( IOFFA+KK ) )
  710                   CONTINUE
                        IOFFA = IOFFA + LDA
  720                CONTINUE
                  ELSE
                     DO 740 LL = JJ, JJ + JB -1
                        DO 730 KK = II+LL-JJ, IIA+MP-1
                           WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
     $                                        ABS( A( IOFFA+KK ) )
  730                   CONTINUE
                        IOFFA = IOFFA + LDA
  740                CONTINUE
                  END IF
               ELSE
                  DO 760 LL = JJ, JJ + JB -1
                     DO 750 KK = II, IIA+MP-1
                        WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
     $                                     ABS( A( IOFFA+KK ) )
  750                CONTINUE
                     IOFFA = IOFFA + LDA
  760             CONTINUE
               END IF
               JJ = JJ + JB
            END IF
*
            IF( MYROW.EQ.IAROW )
     $         II = II + JB
            IAROW = MOD( IAROW+1, NPROW )
            IACOL = MOD( IACOL+1, NPCOL )
*
*           Loop over remaining block of columns
*
            DO 830 J = JN+1, JA+N-1, DESCA( NB_ )
               JB = MIN( JA+N-J, DESCA( NB_ ) )
*
               IF( MYCOL.EQ.IACOL ) THEN
                  IF( MYROW.EQ.IAROW ) THEN
                     IF( UDIAG ) THEN
                        DO 780 LL = JJ, JJ + JB -1
                           DO 770 KK = II+LL-JJ+1, IIA+MP-1
                              WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
     $                                           ABS( A( IOFFA+KK ) )
  770                      CONTINUE
                           IOFFA = IOFFA + LDA
  780                   CONTINUE
                     ELSE
                        DO 800 LL = JJ, JJ + JB -1
                           DO 790 KK = II+LL-JJ, IIA+MP-1
                              WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
     $                                           ABS( A( IOFFA+KK ) )
  790                      CONTINUE
                           IOFFA = IOFFA + LDA
  800                   CONTINUE
                     END IF
                  ELSE
                     DO 820 LL = JJ, JJ + JB -1
                        DO 810 KK = II, IIA+MP-1
                           WORK( KK-IIA+1 ) = WORK( KK-IIA+1 ) +
     $                                        ABS( A( IOFFA+KK ) )
  810                   CONTINUE
                        IOFFA = IOFFA + LDA
  820                CONTINUE
                  END IF
                  JJ = JJ + JB
               END IF
*
               IF( MYROW.EQ.IAROW )
     $            II = II + JB
               IAROW = MOD( IAROW+1, NPROW )
               IACOL = MOD( IACOL+1, NPCOL )
*
  830       CONTINUE
*
         END IF
*
*        Find sum of global matrix rows and store on column 0 of
*        process grid
*
         CALL SGSUM2D( ICTXT, 'Rowwise', ' ', MP, 1, WORK, MAX( 1, MP ),
     $                 MYROW, 0 )
*
*        Find maximum sum of rows for Infinity-norm
*
         IF( MYCOL.EQ.0 ) THEN
            IF( MP.GT.0 ) THEN
               VALUE = WORK( ISAMAX( MP, WORK, 1 ) )
            ELSE
               VALUE = ZERO
            END IF
            CALL SGAMX2D( ICTXT, 'Columnwise', ' ', 1, 1, VALUE, 1, KK,
     $                    LL, -1, 0, 0 )
         END IF
*
      ELSE IF( LSAME( NORM, 'F' ) .OR. LSAME( NORM, 'E' ) ) THEN
*
         IF( UDIAG ) THEN
            SCALE = ONE
            SUM = REAL( MIN( M, N ) ) / REAL( NPROW*NPCOL )
         ELSE
            SCALE = ZERO
            SUM = ONE
         END IF
*
         IF( LSAME( UPLO, 'U' ) ) THEN
*
*           Upper triangular matrix
*
            II = IIA
            JJ = JJA
            JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
            JB = JN-JA+1
*
            IF( MYCOL.EQ.IACOL ) THEN
               IF( MYROW.EQ.IAROW ) THEN
                  IF( UDIAG ) THEN
                     DO 840 LL = JJ, JJ + JB -1
                        CALL CLASSQ( MIN( II+LL-JJ, IIA+MP-1 )-IIA+1,
     $                               A( IIA+IOFFA ), 1, SCALE, SUM )
                        IOFFA = IOFFA + LDA
  840                CONTINUE
                  ELSE
                     DO 850 LL = JJ, JJ + JB -1
                        CALL CLASSQ( MIN( II+LL-JJ+1, IIA+MP-1 )-IIA+1,
     $                               A( IIA+IOFFA ), 1, SCALE, SUM )
                        IOFFA = IOFFA + LDA
  850                CONTINUE
                  END IF
               ELSE
                  DO 860 LL = JJ, JJ + JB -1
                     CALL CLASSQ( MIN( II-1, IIA+MP-1 )-IIA+1,
     $                            A( IIA+IOFFA ), 1, SCALE, SUM )
                     IOFFA = IOFFA + LDA
  860             CONTINUE
               END IF
               JJ = JJ + JB
            END IF
*
            IF( MYROW.EQ.IAROW )
     $         II = II + JB
            IAROW = MOD( IAROW+1, NPROW )
            IACOL = MOD( IACOL+1, NPCOL )
*
*           Loop over remaining block of columns
*
            DO 900 J = JN+1, JA+N-1, DESCA( NB_ )
               JB = MIN( JA+N-J, DESCA( NB_ ) )
*
               IF( MYCOL.EQ.IACOL ) THEN
                  IF( MYROW.EQ.IAROW ) THEN
                     IF( UDIAG ) THEN
                        DO 870 LL = JJ, JJ + JB -1
                           CALL CLASSQ( MIN( II+LL-JJ+1, IIA+MP-1 )-
     $                                  IIA+1, A( IIA+IOFFA ), 1, SCALE,
     $                                  SUM )
                           IOFFA = IOFFA + LDA
  870                   CONTINUE
                     ELSE
                        DO 880 LL = JJ, JJ + JB -1
                           CALL CLASSQ( MIN( II+LL-JJ, IIA+MP-1 )-
     $                                  IIA+1, A( IIA+IOFFA ), 1, SCALE,
     $                                  SUM )
                           IOFFA = IOFFA + LDA
  880                   CONTINUE
                     END IF
                  ELSE
                     DO 890 LL = JJ, JJ + JB -1
                        CALL CLASSQ( MIN( II-1, IIA+MP-1 )-IIA+1,
     $                               A( IIA+IOFFA ), 1, SCALE, SUM )
                        IOFFA = IOFFA + LDA
  890                CONTINUE
                  END IF
                  JJ = JJ + JB
               END IF
*
               IF( MYROW.EQ.IAROW )
     $            II = II + JB
               IAROW = MOD( IAROW+1, NPROW )
               IACOL = MOD( IACOL+1, NPCOL )
*
  900       CONTINUE
*
         ELSE
*
*           Lower triangular matrix
*
            II = IIA
            JJ = JJA
            JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
            JB = JN-JA+1
*
            IF( MYCOL.EQ.IACOL ) THEN
               IF( MYROW.EQ.IAROW ) THEN
                  IF( UDIAG ) THEN
                     DO 910 LL = JJ, JJ + JB -1
                        CALL CLASSQ( IIA+MP-(II+LL-JJ+1),
     $                               A( II+LL-JJ+IOFFA ), 1, SCALE,
     $                               SUM )
                        IOFFA = IOFFA + LDA
  910                CONTINUE
                  ELSE
                     DO 920 LL = JJ, JJ + JB -1
                        CALL CLASSQ( IIA+MP-(II+LL-JJ),
     $                               A( II+LL-JJ+IOFFA ), 1, SCALE,
     $                               SUM )
                        IOFFA = IOFFA + LDA
  920                CONTINUE
                  END IF
               ELSE
                  DO 930 LL = JJ, JJ + JB -1
                     CALL CLASSQ( IIA+MP-II, A( II+IOFFA ), 1, SCALE,
     $                            SUM )
                     IOFFA = IOFFA + LDA
  930             CONTINUE
               END IF
               JJ = JJ + JB
            END IF
*
            IF( MYROW.EQ.IAROW )
     $         II = II + JB
            IAROW = MOD( IAROW+1, NPROW )
            IACOL = MOD( IACOL+1, NPCOL )
*
*           Loop over remaining block of columns
*
            DO 970 J = JN+1, JA+N-1, DESCA( NB_ )
               JB = MIN( JA+N-J, DESCA( NB_ ) )
*
               IF( MYCOL.EQ.IACOL ) THEN
                  IF( MYROW.EQ.IAROW ) THEN
                     IF( UDIAG ) THEN
                        DO 940 LL = JJ, JJ + JB -1
                           CALL CLASSQ( IIA+MP-(II+LL-JJ+1),
     $                                  A( II+LL-JJ+IOFFA ), 1, SCALE,
     $                                  SUM )
                           IOFFA = IOFFA + LDA
  940                   CONTINUE
                     ELSE
                        DO 950 LL = JJ, JJ + JB -1
                           CALL CLASSQ( IIA+MP-(II+LL-JJ),
     $                                  A( II+LL-JJ+IOFFA ), 1, SCALE,
     $                                  SUM )
                           IOFFA = IOFFA + LDA
  950                   CONTINUE
                     END IF
                  ELSE
                     DO 960 LL = JJ, JJ + JB -1
                        CALL CLASSQ( IIA+MP-II, A( II+IOFFA ), 1, SCALE,
     $                               SUM )
                        IOFFA = IOFFA + LDA
  960                CONTINUE
                  END IF
                  JJ = JJ + JB
               END IF
*
               IF( MYROW.EQ.IAROW )
     $            II = II + JB
               IAROW = MOD( IAROW+1, NPROW )
               IACOL = MOD( IACOL+1, NPCOL )
*
  970       CONTINUE
*
         END IF
*
*        Perform the global scaled sum
*
         RWORK( 1 ) = SCALE
         RWORK( 2 ) = SUM
         CALL PSTREECOMB( ICTXT, 'All', 2, RWORK, 0, 0, SCOMBSSQ )
         VALUE = RWORK( 1 ) * SQRT( RWORK( 2 ) )
*
      END IF
*
*     Broadcast the result to every process in the grid.
*
      IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
         CALL SGEBS2D( ICTXT, 'All', ' ', 1, 1, VALUE, 1 )
      ELSE
         CALL SGEBR2D( ICTXT, 'All', ' ', 1, 1, VALUE, 1, 0, 0 )
      END IF
*
      PCLANTR = VALUE
*
      RETURN
*
*     End of PCLANTR
*
      END