File: psgetri.f

package info (click to toggle)
scalapack 1.8.0-9
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 32,664 kB
  • sloc: fortran: 288,069; ansic: 64,035; makefile: 1,958
file content (374 lines) | stat: -rw-r--r-- 14,965 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
      SUBROUTINE PSGETRI( N, A, IA, JA, DESCA, IPIV, WORK, LWORK,
     $                    IWORK, LIWORK, INFO )
*
*  -- ScaLAPACK routine (version 1.7.4) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     v1.7.4: May 10, 2006 
*     v1.7:   May 1,  1997
*
*     .. Scalar Arguments ..
      INTEGER            IA, INFO, JA, LIWORK, LWORK, N
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * ), IPIV( * ), IWORK( * )
      REAL               A( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  PSGETRI computes the inverse of a distributed matrix using the LU
*  factorization computed by PSGETRF. This method inverts U and then
*  computes the inverse of sub( A ) = A(IA:IA+N-1,JA:JA+N-1) denoted
*  InvA by solving the system InvA*L = inv(U) for InvA.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  N       (global input) INTEGER
*          The number of rows and columns to be operated on, i.e. the
*          order of the distributed submatrix sub( A ). N >= 0.
*
*  A       (local input/local output) REAL pointer into the
*          local memory to an array of dimension (LLD_A,LOCc(JA+N-1)).
*          On entry, the local pieces of the L and U obtained by the
*          factorization sub( A ) = P*L*U computed by PSGETRF. On
*          exit, if INFO = 0, sub( A ) contains the inverse of the
*          original distributed matrix sub( A ).
*
*  IA      (global input) INTEGER
*          The row index in the global array A indicating the first
*          row of sub( A ).
*
*  JA      (global input) INTEGER
*          The column index in the global array A indicating the
*          first column of sub( A ).
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  IPIV    (local input) INTEGER array, dimension LOCr(M_A)+MB_A
*          keeps track of the pivoting information. IPIV(i) is the
*          global row index the local row i was swapped with.  This
*          array is tied to the distributed matrix A.
*
*  WORK    (local workspace/local output) REAL array,
*                                                     dimension (LWORK)
*          On exit, WORK(1) returns the minimal and optimal LWORK.
*
*  LWORK   (local or global input) INTEGER
*          The dimension of the array WORK.
*          LWORK is local input and must be at least
*          LWORK = LOCr(N+MOD(IA-1,MB_A))*NB_A. WORK is used to keep a
*          copy of at most an entire column block of sub( A ).
*
*          If LWORK = -1, then LWORK is global input and a workspace
*          query is assumed; the routine only calculates the minimum
*          and optimal size for all work arrays. Each of these
*          values is returned in the first entry of the corresponding
*          work array, and no error message is issued by PXERBLA.
*
*  IWORK   (local workspace/local output) INTEGER array,
*                                                    dimension (LIWORK)
*          On exit, IWORK(1) returns the minimal and optimal LIWORK.
*
*  LIWORK  (local or global input) INTEGER
*          The dimension of the array IWORK used as workspace for
*          physically transposing the pivots.
*          LIWORK is local input and must be at least
*          if NPROW == NPCOL then
*            LIWORK = LOCc( N_A + MOD(JA-1, NB_A) ) + NB_A,
*          else
*            LIWORK =  LOCc( N_A + MOD(JA-1, NB_A) ) +
*                      MAX( CEIL(CEIL(LOCr(M_A)/MB_A)/(LCM/NPROW)),
*                           NB_A )
*              where LCM is the least common multiple of process
*              rows and columns (NPROW and NPCOL).
*          end if
*
*          If LIWORK = -1, then LIWORK is global input and a workspace
*          query is assumed; the routine only calculates the minimum
*          and optimal size for all work arrays. Each of these
*          values is returned in the first entry of the corresponding
*          work array, and no error message is issued by PXERBLA.
*
*  INFO    (global output) INTEGER
*          = 0:  successful exit
*          < 0:  If the i-th argument is an array and the j-entry had
*                an illegal value, then INFO = -(i*100+j), if the i-th
*                argument is a scalar and had an illegal value, then
*                INFO = -i.
*            > 0:  If INFO = K, U(IA+K-1,IA+K-1) is exactly zero; the
*                  matrix is singular and its inverse could not be
*                  computed.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY
      INTEGER            I, IACOL, IAROW, ICOFF, ICTXT, IROFF, IW, J,
     $                   JB, JN, LCM, LIWMIN, LWMIN, MP, MYCOL, MYROW,
     $                   NN, NP, NPCOL, NPROW, NQ
*     ..
*     .. Local Arrays ..
      INTEGER            DESCW( DLEN_ ), IDUM1( 2 ), IDUM2( 2 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, CHK1MAT, DESCSET, PCHK1MAT,
     $                   PSGEMM, PSLACPY, PSLASET, PSLAPIV,
     $                   PSTRSM, PSTRTRI, PXERBLA
*     ..
*     .. External Functions ..
      INTEGER            ICEIL, ILCM, INDXG2P, NUMROC
      EXTERNAL           ICEIL, ILCM, INDXG2P, NUMROC
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, MOD, REAL
*     ..
*     .. Executable Statements ..
*
*     Get grid parameters
*
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
*     Test the input parameters
*
      INFO = 0
      IF( NPROW.EQ.-1 ) THEN
         INFO = -(500+CTXT_)
      ELSE
         CALL CHK1MAT( N, 1, N, 1, IA, JA, DESCA, 5, INFO )
         IF( INFO.EQ.0 ) THEN
            IROFF = MOD( IA-1, DESCA( MB_ ) )
            ICOFF = MOD( JA-1, DESCA( NB_ ) )
            IAROW = INDXG2P( IA, DESCA( MB_ ), MYROW, DESCA( RSRC_ ),
     $                       NPROW )
            NP = NUMROC( N+IROFF, DESCA( MB_ ), MYROW, IAROW, NPROW )
            LWMIN = NP * DESCA( NB_ )
*
            MP = NUMROC( DESCA( M_ ), DESCA( MB_ ), MYROW,
     $                   DESCA( RSRC_ ), NPROW )
            NQ = NUMROC( DESCA( N_ ), DESCA( NB_ ), MYCOL,
     $                   DESCA( CSRC_ ), NPCOL )
            IF( NPROW.EQ.NPCOL ) THEN
               LIWMIN = NQ + DESCA( NB_ )
            ELSE
*
* Use the formula for the workspace given in PxLAPIV
* to compute the minimum size LIWORK for IWORK
*
* The formula in PxLAPIV is
*   LDW = LOCc( M_P + MOD(IP-1, MB_P) ) +
*         MB_P * CEIL( CEIL(LOCr(M_P)/MB_P) / (LCM/NPROW) )
*
* where 
*   M_P     is the global length of the pivot vector
*           MP = DESCA( M_ ) + DESCA( MB_ ) * NPROW
*   I_P     is IA
*           I_P = IA
*   MB_P    is the block size use for the block cyclic distribution of the 
*           pivot vector
*           MB_P = DESCA (MB_ )
*   LOCc ( . ) 
*           NUMROC ( . , DESCA ( NB_ ), MYCOL, DESCA ( CSRC_ ), NPCOL )
*   LOCr ( . )
*           NUMROC ( . , DESCA ( MB_ ), MYROW, DESCA ( RSRC_ ), NPROW )
*   CEIL ( X / Y )
*           ICEIL( X, Y )
*   LCM 
*           LCM = ILCM( NPROW, NPCOL )
*
               LCM = ILCM( NPROW, NPCOL )
               LIWMIN = NUMROC( DESCA( M_ ) + DESCA( MB_ ) * NPROW
     $                  + MOD ( IA - 1, DESCA( MB_ ) ), DESCA ( NB_ ),
     $                  MYCOL, DESCA( CSRC_ ), NPCOL ) +
     $                  MAX ( DESCA( MB_ ) * ICEIL ( ICEIL(
     $                  NUMROC( DESCA( M_ ) + DESCA( MB_ ) * NPROW,
     $                  DESCA( MB_ ), MYROW, DESCA( RSRC_ ), NPROW ),
     $                  DESCA( MB_ ) ), LCM / NPROW ), DESCA( NB_ ) )
*
            END IF
*
            WORK( 1 ) = REAL( LWMIN )
            IWORK( 1 ) = LIWMIN
            LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
            IF( IROFF.NE.ICOFF .OR. IROFF.NE.0 ) THEN
               INFO = -4
            ELSE IF( DESCA( MB_ ).NE.DESCA( NB_ ) ) THEN
               INFO = -(500+NB_)
            ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
               INFO = -8
            ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
               INFO = -10
            END IF
         END IF
         IF( LWORK.EQ.-1 ) THEN
            IDUM1( 1 ) = -1
         ELSE
            IDUM1( 1 ) = 1
         END IF
         IDUM2( 1 ) = 8
         IF( LIWORK.EQ.-1 ) THEN
            IDUM1( 2 ) = -1
         ELSE
            IDUM1( 2 ) = 1
         END IF
         IDUM2( 2 ) = 10
         CALL PCHK1MAT( N, 1, N, 1, IA, JA, DESCA, 5, 2, IDUM1, IDUM2,
     $                  INFO )
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL PXERBLA( ICTXT, 'PSGETRI', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Form inv(U).  If INFO > 0 from PSTRTRI, then U is singular,
*     and the inverse is not computed.
*
      CALL PSTRTRI( 'Upper', 'Non-unit', N, A, IA, JA, DESCA, INFO )
      IF( INFO.GT.0 )
     $   RETURN
*
*     Define array descriptor for working array WORK
*
      JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
      NN = ( ( JA+N-2 ) / DESCA( NB_ ) ) * DESCA( NB_ ) + 1
      IACOL = INDXG2P( NN, DESCA( NB_ ), MYCOL, DESCA( CSRC_ ), NPCOL )
      CALL DESCSET( DESCW, N+IROFF, DESCA( NB_ ), DESCA( MB_ ),
     $              DESCA( NB_ ), IAROW, IACOL, ICTXT, MAX( 1, NP ) )
      IW = IROFF + 1
*
*     Solve the equation inv(A)*L=inv(U) for inv(A) using blocked code.
*
      DO 10 J = NN, JN+1, -DESCA( NB_ )
         JB = MIN( DESCA( NB_ ), JA+N-J )
         I = IA + J - JA
*
*        Copy current block column of L to WORK and replace with zeros.
*
         CALL PSLACPY( 'Lower', JA+N-1-J, JB, A, I+1, J, DESCA,
     $                 WORK, IW+J-JA+1, 1, DESCW )
         CALL PSLASET( 'Lower', JA+N-1-J, JB, ZERO, ZERO, A, I+1, J,
     $                 DESCA )
*
*        Compute current block column of inv(A).
*
         IF( J+JB.LE.JA+N-1 )
     $      CALL PSGEMM( 'No transpose', 'No transpose', N, JB,
     $                   JA+N-J-JB, -ONE, A, IA, J+JB, DESCA, WORK,
     $                   IW+J+JB-JA, 1, DESCW, ONE, A, IA, J, DESCA )
         CALL PSTRSM( 'Right', 'Lower', 'No transpose', 'Unit', N, JB,
     $                ONE, WORK, IW+J-JA, 1, DESCW, A, IA, J, DESCA )
         DESCW( CSRC_ ) = MOD( DESCW( CSRC_ ) + NPCOL - 1, NPCOL )
*
   10 CONTINUE
*
*     Handle the last block of columns separately
*
      JB = JN-JA+1
*
*     Copy current block column of L to WORK and replace with zeros.
*
      CALL PSLACPY( 'Lower', N-1, JB, A, IA+1, JA, DESCA, WORK, IW+1,
     $              1, DESCW )
      CALL PSLASET( 'Lower', N-1, JB, ZERO, ZERO, A, IA+1, JA, DESCA )
*
*     Compute current block column of inv(A).
*
      IF( JA+JB.LE.JA+N-1 )
     $   CALL PSGEMM( 'No transpose', 'No transpose', N, JB,
     $                N-JB, -ONE, A, IA, JA+JB, DESCA, WORK, IW+JB, 1,
     $                DESCW, ONE, A, IA, JA, DESCA )
      CALL PSTRSM( 'Right', 'Lower', 'No transpose', 'Unit', N, JB,
     $             ONE, WORK, IW, 1, DESCW, A, IA, JA, DESCA )
*
*     Use the row pivots and apply them to the columns of the global
*     matrix.
*
      CALL DESCSET( DESCW, DESCA( M_ ) + DESCA( MB_ )*NPROW, 1,
     $              DESCA( MB_ ), 1, DESCA( RSRC_ ), MYCOL, ICTXT,
     $              MP+DESCA( MB_ ) )
      CALL PSLAPIV( 'Backward', 'Columns', 'Column', N, N, A, IA,
     $              JA, DESCA, IPIV, IA, 1, DESCW, IWORK )
*
      WORK( 1 ) = REAL( LWMIN )
      IWORK( 1 ) = LIWMIN
*
      RETURN
*
*     End of PSGETRI
*
      END