1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
SUBROUTINE PSLAED1( N, N1, D, ID, Q, IQ, JQ, DESCQ, RHO, WORK,
$ IWORK, INFO )
*
* -- ScaLAPACK auxiliary routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* December 31, 1998
*
* .. Scalar Arguments ..
INTEGER ID, INFO, IQ, JQ, N, N1
REAL RHO
* ..
* .. Array Arguments ..
INTEGER DESCQ( * ), IWORK( * )
REAL D( * ), Q( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* PSLAED1 computes the updated eigensystem of a diagonal
* matrix after modification by a rank-one symmetric matrix,
* in parallel.
*
* T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out)
*
* where Z = Q'u, u is a vector of length N with ones in the
* N1 and N1 + 1 th elements and zeros elsewhere.
*
* The eigenvectors of the original matrix are stored in Q, and the
* eigenvalues are in D. The algorithm consists of three stages:
*
* The first stage consists of deflating the size of the problem
* when there are multiple eigenvalues or if there is a zero in
* the Z vector. For each such occurence the dimension of the
* secular equation problem is reduced by one. This stage is
* performed by the routine PSLAED2.
*
* The second stage consists of calculating the updated
* eigenvalues. This is done by finding the roots of the secular
* equation via the routine SLAED4 (as called by PSLAED3).
* This routine also calculates the eigenvectors of the current
* problem.
*
* The final stage consists of computing the updated eigenvectors
* directly using the updated eigenvalues. The eigenvectors for
* the current problem are multiplied with the eigenvectors from
* the overall problem.
*
* Arguments
* =========
*
* N (global input) INTEGER
* The order of the tridiagonal matrix T. N >= 0.
*
*
* N1 (input) INTEGER
* The location of the last eigenvalue in the leading
* sub-matrix.
* min(1,N) <= N1 <= N.
*
* D (global input/output) REAL array, dimension (N)
* On entry,the eigenvalues of the rank-1-perturbed matrix.
* On exit, the eigenvalues of the repaired matrix.
*
* ID (global input) INTEGER
* Q's global row/col index, which points to the beginning
* of the submatrix which is to be operated on.
*
* Q (local output) REAL array,
* global dimension (N, N),
* local dimension ( LLD_Q, LOCc(JQ+N-1))
* Q contains the orthonormal eigenvectors of the symmetric
* tridiagonal matrix.
*
* IQ (global input) INTEGER
* Q's global row index, which points to the beginning of the
* submatrix which is to be operated on.
*
* JQ (global input) INTEGER
* Q's global column index, which points to the beginning of
* the submatrix which is to be operated on.
*
* DESCQ (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix Z.
*
* RHO (input) REAL
* The subdiagonal entry used to create the rank-1 modification.
*
* WORK (local workspace/output) REAL array,
* dimension 6*N + 2*NP*NQ
*
* IWORK (local workspace/output) INTEGER array,
* dimension 7*N + 8*NPCOL + 2
*
* INFO (global output) INTEGER
* = 0: successful exit
* < 0: If the i-th argument is an array and the j-entry had
* an illegal value, then INFO = -(i*100+j), if the i-th
* argument is a scalar and had an illegal value, then
* INFO = -i.
* > 0: The algorithm failed to compute the ith eigenvalue.
*
* =====================================================================
*
* .. Parameters ..
*
INTEGER BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
$ MB_, NB_, RSRC_, CSRC_, LLD_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
INTEGER COL, COLTYP, IBUF, ICTOT, ICTXT, IDLMDA, IIQ,
$ INDCOL, INDROW, INDX, INDXC, INDXP, INDXR, INQ,
$ IPQ, IPQ2, IPSM, IPU, IPWORK, IQ1, IQ2, IQCOL,
$ IQQ, IQROW, IW, IZ, J, JC, JJ2C, JJC, JJQ, JNQ,
$ K, LDQ, LDQ2, LDU, MYCOL, MYROW, NB, NN, NN1,
$ NN2, NP, NPCOL, NPROW, NQ
* ..
* .. Local Arrays ..
INTEGER DESCQ2( DLEN_ ), DESCU( DLEN_ )
* ..
* .. External Functions ..
INTEGER NUMROC
EXTERNAL NUMROC
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, DESCINIT, INFOG1L, INFOG2L,
$ PSGEMM, PSLAED2, PSLAED3, PSLAEDZ, PSLASET,
$ PXERBLA, SCOPY
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* This is just to keep ftnchek and toolpack/1 happy
IF( BLOCK_CYCLIC_2D*CSRC_*CTXT_*DLEN_*DTYPE_*LLD_*MB_*M_*NB_*N_*
$ RSRC_.LT.0 )RETURN
*
*
* Test the input parameters.
*
CALL BLACS_GRIDINFO( DESCQ( CTXT_ ), NPROW, NPCOL, MYROW, MYCOL )
INFO = 0
IF( NPROW.EQ.-1 ) THEN
INFO = -( 600+CTXT_ )
ELSE IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( ID.GT.DESCQ( N_ ) ) THEN
INFO = -4
ELSE IF( N1.GE.N ) THEN
INFO = -2
END IF
IF( INFO.NE.0 ) THEN
CALL PXERBLA( DESCQ( CTXT_ ), 'PSLAED1', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* The following values are integer pointers which indicate
* the portion of the workspace used by a particular array
* in PSLAED2 and PSLAED3.
*
ICTXT = DESCQ( CTXT_ )
NB = DESCQ( NB_ )
LDQ = DESCQ( LLD_ )
*
CALL INFOG2L( IQ-1+ID, JQ-1+ID, DESCQ, NPROW, NPCOL, MYROW, MYCOL,
$ IIQ, JJQ, IQROW, IQCOL )
*
NP = NUMROC( N, DESCQ( MB_ ), MYROW, IQROW, NPROW )
NQ = NUMROC( N, DESCQ( NB_ ), MYCOL, IQCOL, NPCOL )
*
LDQ2 = MAX( NP, 1 )
LDU = LDQ2
*
IZ = 1
IDLMDA = IZ + N
IW = IDLMDA + N
IPQ2 = IW + N
IPU = IPQ2 + LDQ2*NQ
IBUF = IPU + LDU*NQ
* (IBUF est de taille 3*N au maximum)
*
ICTOT = 1
IPSM = ICTOT + NPCOL*4
INDX = IPSM + NPCOL*4
INDXC = INDX + N
INDXP = INDXC + N
INDCOL = INDXP + N
COLTYP = INDCOL + N
INDROW = COLTYP + N
INDXR = INDROW + N
*
CALL DESCINIT( DESCQ2, N, N, NB, NB, IQROW, IQCOL, ICTXT, LDQ2,
$ INFO )
CALL DESCINIT( DESCU, N, N, NB, NB, IQROW, IQCOL, ICTXT, LDU,
$ INFO )
*
* Form the z-vector which consists of the last row of Q_1 and the
* first row of Q_2.
*
IPWORK = IDLMDA
CALL PSLAEDZ( N, N1, ID, Q, IQ, JQ, LDQ, DESCQ, WORK( IZ ),
$ WORK( IPWORK ) )
*
* Deflate eigenvalues.
*
IPQ = IIQ + ( JJQ-1 )*LDQ
CALL PSLAED2( ICTXT, K, N, N1, NB, D, IQROW, IQCOL, Q( IPQ ), LDQ,
$ RHO, WORK( IZ ), WORK( IW ), WORK( IDLMDA ),
$ WORK( IPQ2 ), LDQ2, WORK( IBUF ), IWORK( ICTOT ),
$ IWORK( IPSM ), NPCOL, IWORK( INDX ), IWORK( INDXC ),
$ IWORK( INDXP ), IWORK( INDCOL ), IWORK( COLTYP ),
$ NN, NN1, NN2, IQ1, IQ2 )
*
* Solve Secular Equation.
*
IF( K.NE.0 ) THEN
CALL PSLASET( 'A', N, N, ZERO, ONE, WORK( IPU ), 1, 1, DESCU )
CALL PSLAED3( ICTXT, K, N, NB, D, IQROW, IQCOL, RHO,
$ WORK( IDLMDA ), WORK( IW ), WORK( IZ ),
$ WORK( IPU ), LDQ2, WORK( IBUF ), IWORK( INDX ),
$ IWORK( INDCOL ), IWORK( INDROW ), IWORK( INDXR ),
$ IWORK( INDXC ), IWORK( ICTOT ), NPCOL, INFO )
*
* Compute the updated eigenvectors.
*
IQQ = MIN( IQ1, IQ2 )
IF( NN1.GT.0 ) THEN
INQ = IQ - 1 + ID
JNQ = JQ - 1 + ID + IQQ - 1
CALL PSGEMM( 'N', 'N', N1, NN, NN1, ONE, WORK( IPQ2 ), 1,
$ IQ1, DESCQ2, WORK( IPU ), IQ1, IQQ, DESCU,
$ ZERO, Q, INQ, JNQ, DESCQ )
END IF
IF( NN2.GT.0 ) THEN
INQ = IQ - 1 + ID + N1
JNQ = JQ - 1 + ID + IQQ - 1
CALL PSGEMM( 'N', 'N', N-N1, NN, NN2, ONE, WORK( IPQ2 ),
$ N1+1, IQ2, DESCQ2, WORK( IPU ), IQ2, IQQ,
$ DESCU, ZERO, Q, INQ, JNQ, DESCQ )
END IF
*
DO 10 J = K + 1, N
JC = IWORK( INDX+J-1 )
CALL INFOG1L( JQ-1+JC, NB, NPCOL, MYCOL, IQCOL, JJC, COL )
CALL INFOG1L( JC, NB, NPCOL, MYCOL, IQCOL, JJ2C, COL )
IF( MYCOL.EQ.COL ) THEN
IQ2 = IPQ2 + ( JJ2C-1 )*LDQ2
INQ = IPQ + ( JJC-1 )*LDQ
CALL SCOPY( NP, WORK( IQ2 ), 1, Q( INQ ), 1 )
END IF
10 CONTINUE
END IF
*
20 CONTINUE
RETURN
*
* End of PSLAED1
*
END
|