1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
|
SUBROUTINE PSLAED2( ICTXT, K, N, N1, NB, D, DROW, DCOL, Q, LDQ,
$ RHO, Z, W, DLAMDA, Q2, LDQ2, QBUF, CTOT, PSM,
$ NPCOL, INDX, INDXC, INDXP, INDCOL, COLTYP, NN,
$ NN1, NN2, IB1, IB2 )
*
* -- ScaLAPACK auxiliary routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* December 31, 1998
*
* .. Scalar Arguments ..
INTEGER DCOL, DROW, IB1, IB2, ICTXT, K, LDQ, LDQ2, N,
$ N1, NB, NN, NN1, NN2, NPCOL
REAL RHO
* ..
* .. Array Arguments ..
INTEGER COLTYP( * ), CTOT( 0: NPCOL-1, 4 ),
$ INDCOL( N ), INDX( * ), INDXC( * ), INDXP( * ),
$ PSM( 0: NPCOL-1, 4 )
REAL D( * ), DLAMDA( * ), Q( LDQ, * ),
$ Q2( LDQ2, * ), QBUF( * ), W( * ), Z( * )
* ..
*
* Purpose
* =======
*
* PSLAED2 sorts the two sets of eigenvalues together into a single
* sorted set. Then it tries to deflate the size of the problem.
* There are two ways in which deflation can occur: when two or more
* eigenvalues are close together or if there is a tiny entry in the
* Z vector. For each such occurrence the order of the related secular
* equation problem is reduced by one.
*
* Arguments
* =========
*
* ICTXT (global input) INTEGER
* The BLACS context handle, indicating the global context of
* the operation on the matrix. The context itself is global.
*
* K (output) INTEGER
* The number of non-deflated eigenvalues, and the order of the
* related secular equation. 0 <= K <=N.
*
* N (input) INTEGER
* The dimension of the symmetric tridiagonal matrix. N >= 0.
*
* N1 (input) INTEGER
* The location of the last eigenvalue in the leading sub-matrix.
* min(1,N) < N1 < N.
*
* NB (global input) INTEGER
* The blocking factor used to distribute the columns of the
* matrix. NB >= 1.
*
* D (input/output) REAL array, dimension (N)
* On entry, D contains the eigenvalues of the two submatrices to
* be combined.
* On exit, D contains the trailing (N-K) updated eigenvalues
* (those which were deflated) sorted into increasing order.
*
* DROW (global input) INTEGER
* The process row over which the first row of the matrix D is
* distributed. 0 <= DROW < NPROW.
*
* DCOL (global input) INTEGER
* The process column over which the first column of the
* matrix D is distributed. 0 <= DCOL < NPCOL.
*
* Q (input/output) REAL array, dimension (LDQ, N)
* On entry, Q contains the eigenvectors of two submatrices in
* the two square blocks with corners at (1,1), (N1,N1)
* and (N1+1, N1+1), (N,N).
* On exit, Q contains the trailing (N-K) updated eigenvectors
* (those which were deflated) in its last N-K columns.
*
* LDQ (input) INTEGER
* The leading dimension of the array Q. LDQ >= max(1,NQ).
*
* RHO (global input/output) REAL
* On entry, the off-diagonal element associated with the rank-1
* cut which originally split the two submatrices which are now
* being recombined.
* On exit, RHO has been modified to the value required by
* PSLAED3.
*
* Z (global input) REAL array, dimension (N)
* On entry, Z contains the updating vector (the last
* row of the first sub-eigenvector matrix and the first row of
* the second sub-eigenvector matrix).
* On exit, the contents of Z have been destroyed by the updating
* process.
*
* DLAMDA (global output) REAL array, dimension (N)
* A copy of the first K eigenvalues which will be used by
* SLAED3 to form the secular equation.
*
* W (global output) REAL array, dimension (N)
* The first k values of the final deflation-altered z-vector
* which will be passed to SLAED3.
*
* Q2 (output) REAL array, dimension (LDQ2, NQ)
* A copy of the first K eigenvectors which will be used by
*
* LDQ2 (input) INTEGER
* The leading dimension of the array Q2.
*
* QBUF (workspace) REAL array, dimension 3*N
*
* CTOT (workspace) INTEGER array, dimension( NPCOL, 4)
*
* PSM (workspace) INTEGER array, dimension( NPCOL, 4)
*
* NPCOL (global input) INTEGER
* The total number of columns over which the distributed
* submatrix is distributed.
*
* INDX (workspace) INTEGER array, dimension (N)
* The permutation used to sort the contents of DLAMDA into
* ascending order.
*
* INDXC (output) INTEGER array, dimension (N)
* The permutation used to arrange the columns of the deflated
* Q matrix into three groups: the first group contains non-zero
* elements only at and above N1, the second contains
* non-zero elements only below N1, and the third is dense.
*
* INDXP (workspace) INTEGER array, dimension (N)
* The permutation used to place deflated values of D at the end
* of the array. INDXP(1:K) points to the nondeflated D-values
* and INDXP(K+1:N) points to the deflated eigenvalues.
*
* INDCOL (workspace) INTEGER array, dimension (N)
*
* COLTYP (workspace/output) INTEGER array, dimension (N)
* During execution, a label which will indicate which of the
* following types a column in the Q2 matrix is:
* 1 : non-zero in the upper half only;
* 2 : dense;
* 3 : non-zero in the lower half only;
* 4 : deflated.
*
* NN (global output) INTEGER, the order of matrix U, (PSLAED1).
* NN1 (global output) INTEGER, the order of matrix Q1, (PSLAED1).
* NN2 (global output) INTEGER, the order of matrix Q2, (PSLAED1).
* IB1 (global output) INTEGER, pointeur on Q1, (PSLAED1).
* IB2 (global output) INTEGER, pointeur on Q2, (PSLAED1).
*
* =====================================================================
*
* .. Parameters ..
REAL MONE, ZERO, ONE, TWO, EIGHT
PARAMETER ( MONE = -1.0E0, ZERO = 0.0E0, ONE = 1.0E0,
$ TWO = 2.0E0, EIGHT = 8.0E0 )
* ..
* .. Local Scalars ..
INTEGER COL, CT, I, IAM, IE1, IE2, IMAX, INFO, J, JJQ2,
$ JJS, JMAX, JS, K2, MYCOL, MYROW, N1P1, N2, NJ,
$ NJCOL, NJJ, NP, NPROCS, NPROW, PJ, PJCOL, PJJ
REAL C, EPS, S, T, TAU, TOL
* ..
* .. External Functions ..
INTEGER INDXG2L, INDXL2G, ISAMAX, NUMROC
REAL PSLAMCH, SLAPY2
EXTERNAL INDXG2L, INDXL2G, ISAMAX, NUMROC, PSLAMCH,
$ SLAPY2
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, BLACS_PINFO, INFOG1L, SCOPY,
$ SGERV2D, SGESD2D, SLAPST, SROT, SSCAL
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, MOD, SQRT
* ..
* .. External Functions ..
* ..
* .. Local Arrays ..
INTEGER PTT( 4 )
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
CALL BLACS_PINFO( IAM, NPROCS )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
NP = NUMROC( N, NB, MYROW, DROW, NPROW )
*
N2 = N - N1
N1P1 = N1 + 1
*
IF( RHO.LT.ZERO ) THEN
CALL SSCAL( N2, MONE, Z( N1P1 ), 1 )
END IF
*
* Normalize z so that norm(z) = 1. Since z is the concatenation of
* two normalized vectors, norm2(z) = sqrt(2).
*
T = ONE / SQRT( TWO )
CALL SSCAL( N, T, Z, 1 )
*
* RHO = ABS( norm(z)**2 * RHO )
*
RHO = ABS( TWO*RHO )
*
* Calculate the allowable deflation tolerance
*
IMAX = ISAMAX( N, Z, 1 )
JMAX = ISAMAX( N, D, 1 )
EPS = PSLAMCH( ICTXT, 'Epsilon' )
TOL = EIGHT*EPS*MAX( ABS( D( JMAX ) ), ABS( Z( IMAX ) ) )
*
* If the rank-1 modifier is small enough, no more needs to be done
* except to reorganize Q so that its columns correspond with the
* elements in D.
*
IF( RHO*ABS( Z( IMAX ) ).LE.TOL ) THEN
K = 0
GO TO 220
END IF
*
* If there are multiple eigenvalues then the problem deflates. Here
* the number of equal eigenvalues are found. As each equal
* eigenvalue is found, an elementary reflector is computed to rotate
* the corresponding eigensubspace so that the corresponding
* components of Z are zero in this new basis.
*
*
CALL SLAPST( 'I', N, D, INDX, INFO )
*
DO 10 I = 1, N1
COLTYP( I ) = 1
10 CONTINUE
DO 20 I = N1P1, N
COLTYP( I ) = 3
20 CONTINUE
COL = DCOL
DO 40 I = 1, N, NB
DO 30 J = 0, NB - 1
IF( I+J.LE.N )
$ INDCOL( I+J ) = COL
30 CONTINUE
COL = MOD( COL+1, NPCOL )
40 CONTINUE
*
K = 0
K2 = N + 1
DO 50 J = 1, N
NJ = INDX( J )
IF( RHO*ABS( Z( NJ ) ).LE.TOL ) THEN
*
* Deflate due to small z component.
*
K2 = K2 - 1
COLTYP( NJ ) = 4
INDXP( K2 ) = NJ
IF( J.EQ.N )
$ GO TO 80
ELSE
PJ = NJ
GO TO 60
END IF
50 CONTINUE
60 CONTINUE
J = J + 1
NJ = INDX( J )
IF( J.GT.N )
$ GO TO 80
IF( RHO*ABS( Z( NJ ) ).LE.TOL ) THEN
*
* Deflate due to small z component.
*
K2 = K2 - 1
COLTYP( NJ ) = 4
INDXP( K2 ) = NJ
ELSE
*
* Check if eigenvalues are close enough to allow deflation.
*
S = Z( PJ )
C = Z( NJ )
*
* Find sqrt(a**2+b**2) without overflow or
* destructive underflow.
*
TAU = SLAPY2( C, S )
T = D( NJ ) - D( PJ )
C = C / TAU
S = -S / TAU
IF( ABS( T*C*S ).LE.TOL ) THEN
*
* Deflation is possible.
*
Z( NJ ) = TAU
Z( PJ ) = ZERO
IF( COLTYP( NJ ).NE.COLTYP( PJ ) )
$ COLTYP( NJ ) = 2
COLTYP( PJ ) = 4
CALL INFOG1L( NJ, NB, NPCOL, MYCOL, DCOL, NJJ, NJCOL )
CALL INFOG1L( PJ, NB, NPCOL, MYCOL, DCOL, PJJ, PJCOL )
IF( INDCOL( PJ ).EQ.INDCOL( NJ ) .AND. MYCOL.EQ.NJCOL ) THEN
CALL SROT( NP, Q( 1, PJJ ), 1, Q( 1, NJJ ), 1, C, S )
ELSE IF( MYCOL.EQ.PJCOL ) THEN
CALL SGESD2D( ICTXT, NP, 1, Q( 1, PJJ ), NP, MYROW,
$ NJCOL )
CALL SGERV2D( ICTXT, NP, 1, QBUF, NP, MYROW, NJCOL )
CALL SROT( NP, Q( 1, PJJ ), 1, QBUF, 1, C, S )
ELSE IF( MYCOL.EQ.NJCOL ) THEN
CALL SGESD2D( ICTXT, NP, 1, Q( 1, NJJ ), NP, MYROW,
$ PJCOL )
CALL SGERV2D( ICTXT, NP, 1, QBUF, NP, MYROW, PJCOL )
CALL SROT( NP, QBUF, 1, Q( 1, NJJ ), 1, C, S )
END IF
T = D( PJ )*C**2 + D( NJ )*S**2
D( NJ ) = D( PJ )*S**2 + D( NJ )*C**2
D( PJ ) = T
K2 = K2 - 1
I = 1
70 CONTINUE
IF( K2+I.LE.N ) THEN
IF( D( PJ ).LT.D( INDXP( K2+I ) ) ) THEN
INDXP( K2+I-1 ) = INDXP( K2+I )
INDXP( K2+I ) = PJ
I = I + 1
GO TO 70
ELSE
INDXP( K2+I-1 ) = PJ
END IF
ELSE
INDXP( K2+I-1 ) = PJ
END IF
PJ = NJ
ELSE
K = K + 1
DLAMDA( K ) = D( PJ )
W( K ) = Z( PJ )
INDXP( K ) = PJ
PJ = NJ
END IF
END IF
GO TO 60
80 CONTINUE
*
* Record the last eigenvalue.
*
K = K + 1
DLAMDA( K ) = D( PJ )
W( K ) = Z( PJ )
INDXP( K ) = PJ
*
* Count up the total number of the various types of columns, then
* form a permutation which positions the four column types into
* four uniform groups (although one or more of these groups may be
* empty).
*
DO 100 J = 1, 4
DO 90 I = 0, NPCOL - 1
CTOT( I, J ) = 0
90 CONTINUE
PTT( J ) = 0
100 CONTINUE
DO 110 J = 1, N
CT = COLTYP( J )
COL = INDCOL( J )
CTOT( COL, CT ) = CTOT( COL, CT ) + 1
110 CONTINUE
*
* PSM(*) = Position in SubMatrix (of types 1 through 4)
*
DO 120 COL = 0, NPCOL - 1
PSM( COL, 1 ) = 1
PSM( COL, 2 ) = 1 + CTOT( COL, 1 )
PSM( COL, 3 ) = PSM( COL, 2 ) + CTOT( COL, 2 )
PSM( COL, 4 ) = PSM( COL, 3 ) + CTOT( COL, 3 )
120 CONTINUE
PTT( 1 ) = 1
DO 140 I = 2, 4
CT = 0
DO 130 J = 0, NPCOL - 1
CT = CT + CTOT( J, I-1 )
130 CONTINUE
PTT( I ) = PTT( I-1 ) + CT
140 CONTINUE
*
* Fill out the INDXC array so that the permutation which it induces
* will place all type-1 columns first, all type-2 columns next,
* then all type-3's, and finally all type-4's.
*
DO 150 J = 1, N
JS = INDXP( J )
COL = INDCOL( JS )
CT = COLTYP( JS )
I = INDXL2G( PSM( COL, CT ), NB, COL, DCOL, NPCOL )
INDX( J ) = I
INDXC( PTT( CT ) ) = I
PSM( COL, CT ) = PSM( COL, CT ) + 1
PTT( CT ) = PTT( CT ) + 1
150 CONTINUE
DO 160 J = 1, N
JS = INDXP( J )
JJS = INDXG2L( JS, NB, J, J, NPCOL )
COL = INDCOL( JS )
IF( COL.EQ.MYCOL ) THEN
I = INDX( J )
JJQ2 = INDXG2L( I, NB, J, J, NPCOL )
CALL SCOPY( NP, Q( 1, JJS ), 1, Q2( 1, JJQ2 ), 1 )
END IF
160 CONTINUE
*
*
* The deflated eigenvalues and their corresponding vectors go back
* into the last N - K slots of D and Q respectively.
*
CALL SCOPY( N, D, 1, Z, 1 )
DO 170 J = K + 1, N
JS = INDXP( J )
I = INDX( J )
D( I ) = Z( JS )
170 CONTINUE
*
PTT( 1 ) = 1
DO 190 I = 2, 4
CT = 0
DO 180 J = 0, NPCOL - 1
CT = CT + CTOT( J, I-1 )
180 CONTINUE
PTT( I ) = PTT( I-1 ) + CT
190 CONTINUE
*
*
IB1 = INDXC( 1 )
IE1 = IB1
IB2 = INDXC( PTT( 2 ) )
IE2 = IB2
DO 200 I = 2, PTT( 3 ) - 1
IB1 = MIN( IB1, INDXC( I ) )
IE1 = MAX( IE1, INDXC( I ) )
200 CONTINUE
DO 210 I = PTT( 2 ), PTT( 4 ) - 1
IB2 = MIN( IB2, INDXC( I ) )
IE2 = MAX( IE2, INDXC( I ) )
210 CONTINUE
NN1 = IE1 - IB1 + 1
NN2 = IE2 - IB2 + 1
NN = MAX( IE1, IE2 ) - MIN( IB1, IB2 ) + 1
220 CONTINUE
RETURN
*
* End of PSLAED2
*
END
|