File: pslaed2.f

package info (click to toggle)
scalapack 1.8.0-9
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 32,664 kB
  • sloc: fortran: 288,069; ansic: 64,035; makefile: 1,958
file content (453 lines) | stat: -rw-r--r-- 14,841 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
      SUBROUTINE PSLAED2( ICTXT, K, N, N1, NB, D, DROW, DCOL, Q, LDQ,
     $                    RHO, Z, W, DLAMDA, Q2, LDQ2, QBUF, CTOT, PSM,
     $                    NPCOL, INDX, INDXC, INDXP, INDCOL, COLTYP, NN,
     $                    NN1, NN2, IB1, IB2 )
*
*  -- ScaLAPACK auxiliary routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     December 31, 1998
*
*     .. Scalar Arguments ..
      INTEGER            DCOL, DROW, IB1, IB2, ICTXT, K, LDQ, LDQ2, N,
     $                   N1, NB, NN, NN1, NN2, NPCOL
      REAL               RHO
*     ..
*     .. Array Arguments ..
      INTEGER            COLTYP( * ), CTOT( 0: NPCOL-1, 4 ),
     $                   INDCOL( N ), INDX( * ), INDXC( * ), INDXP( * ),
     $                   PSM( 0: NPCOL-1, 4 )
      REAL               D( * ), DLAMDA( * ), Q( LDQ, * ),
     $                   Q2( LDQ2, * ), QBUF( * ), W( * ), Z( * )
*     ..
*
*  Purpose
*  =======
*
*  PSLAED2 sorts the two sets of eigenvalues together into a single
*  sorted set.  Then it tries to deflate the size of the problem.
*  There are two ways in which deflation can occur:  when two or more
*  eigenvalues are close together or if there is a tiny entry in the
*  Z vector.  For each such occurrence the order of the related secular
*  equation problem is reduced by one.
*
*  Arguments
*  =========
*
*  ICTXT  (global input) INTEGER
*         The BLACS context handle, indicating the global context of
*         the operation on the matrix. The context itself is global.
*
*  K      (output) INTEGER
*         The number of non-deflated eigenvalues, and the order of the
*         related secular equation. 0 <= K <=N.
*
*  N      (input) INTEGER
*         The dimension of the symmetric tridiagonal matrix.  N >= 0.
*
*  N1     (input) INTEGER
*         The location of the last eigenvalue in the leading sub-matrix.
*         min(1,N) < N1 < N.
*
*  NB      (global input) INTEGER
*          The blocking factor used to distribute the columns of the
*          matrix. NB >= 1.
*
*  D      (input/output) REAL array, dimension (N)
*         On entry, D contains the eigenvalues of the two submatrices to
*         be combined.
*         On exit, D contains the trailing (N-K) updated eigenvalues
*         (those which were deflated) sorted into increasing order.
*
*  DROW   (global input) INTEGER
*          The process row over which the first row of the matrix D is
*          distributed. 0 <= DROW < NPROW.
*
*  DCOL   (global input) INTEGER
*          The process column over which the first column of the
*          matrix D is distributed. 0 <= DCOL < NPCOL.
*
*  Q      (input/output) REAL array, dimension (LDQ, N)
*         On entry, Q contains the eigenvectors of two submatrices in
*         the two square blocks with corners at (1,1), (N1,N1)
*         and (N1+1, N1+1), (N,N).
*         On exit, Q contains the trailing (N-K) updated eigenvectors
*         (those which were deflated) in its last N-K columns.
*
*  LDQ    (input) INTEGER
*         The leading dimension of the array Q.  LDQ >= max(1,NQ).
*
*  RHO    (global input/output) REAL
*         On entry, the off-diagonal element associated with the rank-1
*         cut which originally split the two submatrices which are now
*         being recombined.
*         On exit, RHO has been modified to the value required by
*         PSLAED3.
*
*  Z      (global input) REAL array, dimension (N)
*         On entry, Z contains the updating vector (the last
*         row of the first sub-eigenvector matrix and the first row of
*         the second sub-eigenvector matrix).
*         On exit, the contents of Z have been destroyed by the updating
*         process.
*
*  DLAMDA (global output) REAL array, dimension (N)
*         A copy of the first K eigenvalues which will be used by
*         SLAED3 to form the secular equation.
*
*  W      (global output) REAL array, dimension (N)
*         The first k values of the final deflation-altered z-vector
*         which will be passed to SLAED3.
*
*  Q2     (output) REAL array, dimension (LDQ2, NQ)
*         A copy of the first K eigenvectors which will be used by
*
*  LDQ2    (input) INTEGER
*         The leading dimension of the array Q2.
*
*  QBUF   (workspace) REAL array, dimension 3*N
*
*  CTOT   (workspace) INTEGER array, dimension( NPCOL, 4)
*
*  PSM    (workspace) INTEGER array, dimension( NPCOL, 4)
*
*  NPCOL   (global input) INTEGER
*          The total number of columns over which the distributed
*           submatrix is distributed.
*
*  INDX   (workspace) INTEGER array, dimension (N)
*         The permutation used to sort the contents of DLAMDA into
*         ascending order.
*
*  INDXC  (output) INTEGER array, dimension (N)
*         The permutation used to arrange the columns of the deflated
*         Q matrix into three groups:  the first group contains non-zero
*         elements only at and above N1, the second contains
*         non-zero elements only below N1, and the third is dense.
*
*  INDXP  (workspace) INTEGER array, dimension (N)
*         The permutation used to place deflated values of D at the end
*         of the array.  INDXP(1:K) points to the nondeflated D-values
*         and INDXP(K+1:N) points to the deflated eigenvalues.
*
*  INDCOL (workspace) INTEGER array, dimension (N)
*
*  COLTYP (workspace/output) INTEGER array, dimension (N)
*         During execution, a label which will indicate which of the
*         following types a column in the Q2 matrix is:
*         1 : non-zero in the upper half only;
*         2 : dense;
*         3 : non-zero in the lower half only;
*         4 : deflated.
*
*  NN     (global output) INTEGER, the order of matrix U, (PSLAED1).
*  NN1    (global output) INTEGER, the order of matrix Q1, (PSLAED1).
*  NN2    (global output) INTEGER, the order of matrix Q2, (PSLAED1).
*  IB1    (global output) INTEGER, pointeur on Q1, (PSLAED1).
*  IB2    (global output) INTEGER, pointeur on Q2, (PSLAED1).
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               MONE, ZERO, ONE, TWO, EIGHT
      PARAMETER          ( MONE = -1.0E0, ZERO = 0.0E0, ONE = 1.0E0,
     $                   TWO = 2.0E0, EIGHT = 8.0E0 )
*     ..
*     .. Local Scalars ..
      INTEGER            COL, CT, I, IAM, IE1, IE2, IMAX, INFO, J, JJQ2,
     $                   JJS, JMAX, JS, K2, MYCOL, MYROW, N1P1, N2, NJ,
     $                   NJCOL, NJJ, NP, NPROCS, NPROW, PJ, PJCOL, PJJ
      REAL               C, EPS, S, T, TAU, TOL
*     ..
*     .. External Functions ..
      INTEGER            INDXG2L, INDXL2G, ISAMAX, NUMROC
      REAL               PSLAMCH, SLAPY2
      EXTERNAL           INDXG2L, INDXL2G, ISAMAX, NUMROC, PSLAMCH,
     $                   SLAPY2
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, BLACS_PINFO, INFOG1L, SCOPY,
     $                   SGERV2D, SGESD2D, SLAPST, SROT, SSCAL
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, MOD, SQRT
*     ..
*     .. External Functions ..
*     ..
*     .. Local Arrays ..
      INTEGER            PTT( 4 )
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      CALL BLACS_PINFO( IAM, NPROCS )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
      NP = NUMROC( N, NB, MYROW, DROW, NPROW )
*
      N2 = N - N1
      N1P1 = N1 + 1
*
      IF( RHO.LT.ZERO ) THEN
         CALL SSCAL( N2, MONE, Z( N1P1 ), 1 )
      END IF
*
*     Normalize z so that norm(z) = 1.  Since z is the concatenation of
*     two normalized vectors, norm2(z) = sqrt(2).
*
      T = ONE / SQRT( TWO )
      CALL SSCAL( N, T, Z, 1 )
*
*     RHO = ABS( norm(z)**2 * RHO )
*
      RHO = ABS( TWO*RHO )
*
*     Calculate the allowable deflation tolerance
*
      IMAX = ISAMAX( N, Z, 1 )
      JMAX = ISAMAX( N, D, 1 )
      EPS = PSLAMCH( ICTXT, 'Epsilon' )
      TOL = EIGHT*EPS*MAX( ABS( D( JMAX ) ), ABS( Z( IMAX ) ) )
*
*     If the rank-1 modifier is small enough, no more needs to be done
*     except to reorganize Q so that its columns correspond with the
*     elements in D.
*
      IF( RHO*ABS( Z( IMAX ) ).LE.TOL ) THEN
         K = 0
         GO TO 220
      END IF
*
*     If there are multiple eigenvalues then the problem deflates.  Here
*     the number of equal eigenvalues are found.  As each equal
*     eigenvalue is found, an elementary reflector is computed to rotate
*     the corresponding eigensubspace so that the corresponding
*     components of Z are zero in this new basis.
*
*
      CALL SLAPST( 'I', N, D, INDX, INFO )
*
      DO 10 I = 1, N1
         COLTYP( I ) = 1
   10 CONTINUE
      DO 20 I = N1P1, N
         COLTYP( I ) = 3
   20 CONTINUE
      COL = DCOL
      DO 40 I = 1, N, NB
         DO 30 J = 0, NB - 1
            IF( I+J.LE.N )
     $         INDCOL( I+J ) = COL
   30    CONTINUE
         COL = MOD( COL+1, NPCOL )
   40 CONTINUE
*
      K = 0
      K2 = N + 1
      DO 50 J = 1, N
         NJ = INDX( J )
         IF( RHO*ABS( Z( NJ ) ).LE.TOL ) THEN
*
*           Deflate due to small z component.
*
            K2 = K2 - 1
            COLTYP( NJ ) = 4
            INDXP( K2 ) = NJ
            IF( J.EQ.N )
     $         GO TO 80
         ELSE
            PJ = NJ
            GO TO 60
         END IF
   50 CONTINUE
   60 CONTINUE
      J = J + 1
      NJ = INDX( J )
      IF( J.GT.N )
     $   GO TO 80
      IF( RHO*ABS( Z( NJ ) ).LE.TOL ) THEN
*
*        Deflate due to small z component.
*
         K2 = K2 - 1
         COLTYP( NJ ) = 4
         INDXP( K2 ) = NJ
      ELSE
*
*        Check if eigenvalues are close enough to allow deflation.
*
         S = Z( PJ )
         C = Z( NJ )
*
*        Find sqrt(a**2+b**2) without overflow or
*        destructive underflow.
*
         TAU = SLAPY2( C, S )
         T = D( NJ ) - D( PJ )
         C = C / TAU
         S = -S / TAU
         IF( ABS( T*C*S ).LE.TOL ) THEN
*
*           Deflation is possible.
*
            Z( NJ ) = TAU
            Z( PJ ) = ZERO
            IF( COLTYP( NJ ).NE.COLTYP( PJ ) )
     $         COLTYP( NJ ) = 2
            COLTYP( PJ ) = 4
            CALL INFOG1L( NJ, NB, NPCOL, MYCOL, DCOL, NJJ, NJCOL )
            CALL INFOG1L( PJ, NB, NPCOL, MYCOL, DCOL, PJJ, PJCOL )
            IF( INDCOL( PJ ).EQ.INDCOL( NJ ) .AND. MYCOL.EQ.NJCOL ) THEN
               CALL SROT( NP, Q( 1, PJJ ), 1, Q( 1, NJJ ), 1, C, S )
            ELSE IF( MYCOL.EQ.PJCOL ) THEN
               CALL SGESD2D( ICTXT, NP, 1, Q( 1, PJJ ), NP, MYROW,
     $                       NJCOL )
               CALL SGERV2D( ICTXT, NP, 1, QBUF, NP, MYROW, NJCOL )
               CALL SROT( NP, Q( 1, PJJ ), 1, QBUF, 1, C, S )
            ELSE IF( MYCOL.EQ.NJCOL ) THEN
               CALL SGESD2D( ICTXT, NP, 1, Q( 1, NJJ ), NP, MYROW,
     $                       PJCOL )
               CALL SGERV2D( ICTXT, NP, 1, QBUF, NP, MYROW, PJCOL )
               CALL SROT( NP, QBUF, 1, Q( 1, NJJ ), 1, C, S )
            END IF
            T = D( PJ )*C**2 + D( NJ )*S**2
            D( NJ ) = D( PJ )*S**2 + D( NJ )*C**2
            D( PJ ) = T
            K2 = K2 - 1
            I = 1
   70       CONTINUE
            IF( K2+I.LE.N ) THEN
               IF( D( PJ ).LT.D( INDXP( K2+I ) ) ) THEN
                  INDXP( K2+I-1 ) = INDXP( K2+I )
                  INDXP( K2+I ) = PJ
                  I = I + 1
                  GO TO 70
               ELSE
                  INDXP( K2+I-1 ) = PJ
               END IF
            ELSE
               INDXP( K2+I-1 ) = PJ
            END IF
            PJ = NJ
         ELSE
            K = K + 1
            DLAMDA( K ) = D( PJ )
            W( K ) = Z( PJ )
            INDXP( K ) = PJ
            PJ = NJ
         END IF
      END IF
      GO TO 60
   80 CONTINUE
*
*     Record the last eigenvalue.
*
      K = K + 1
      DLAMDA( K ) = D( PJ )
      W( K ) = Z( PJ )
      INDXP( K ) = PJ
*
*     Count up the total number of the various types of columns, then
*     form a permutation which positions the four column types into
*     four uniform groups (although one or more of these groups may be
*     empty).
*
      DO 100 J = 1, 4
         DO 90 I = 0, NPCOL - 1
            CTOT( I, J ) = 0
   90    CONTINUE
         PTT( J ) = 0
  100 CONTINUE
      DO 110 J = 1, N
         CT = COLTYP( J )
         COL = INDCOL( J )
         CTOT( COL, CT ) = CTOT( COL, CT ) + 1
  110 CONTINUE
*
*     PSM(*) = Position in SubMatrix (of types 1 through 4)
*
      DO 120 COL = 0, NPCOL - 1
         PSM( COL, 1 ) = 1
         PSM( COL, 2 ) = 1 + CTOT( COL, 1 )
         PSM( COL, 3 ) = PSM( COL, 2 ) + CTOT( COL, 2 )
         PSM( COL, 4 ) = PSM( COL, 3 ) + CTOT( COL, 3 )
  120 CONTINUE
      PTT( 1 ) = 1
      DO 140 I = 2, 4
         CT = 0
         DO 130 J = 0, NPCOL - 1
            CT = CT + CTOT( J, I-1 )
  130    CONTINUE
         PTT( I ) = PTT( I-1 ) + CT
  140 CONTINUE
*
*     Fill out the INDXC array so that the permutation which it induces
*     will place all type-1 columns first, all type-2 columns next,
*     then all type-3's, and finally all type-4's.
*
      DO 150 J = 1, N
         JS = INDXP( J )
         COL = INDCOL( JS )
         CT = COLTYP( JS )
         I = INDXL2G( PSM( COL, CT ), NB, COL, DCOL, NPCOL )
         INDX( J ) = I
         INDXC( PTT( CT ) ) = I
         PSM( COL, CT ) = PSM( COL, CT ) + 1
         PTT( CT ) = PTT( CT ) + 1
  150 CONTINUE
      DO 160 J = 1, N
         JS = INDXP( J )
         JJS = INDXG2L( JS, NB, J, J, NPCOL )
         COL = INDCOL( JS )
         IF( COL.EQ.MYCOL ) THEN
            I = INDX( J )
            JJQ2 = INDXG2L( I, NB, J, J, NPCOL )
            CALL SCOPY( NP, Q( 1, JJS ), 1, Q2( 1, JJQ2 ), 1 )
         END IF
  160 CONTINUE
*
*
*     The deflated eigenvalues and their corresponding vectors go back
*     into the last N - K slots of D and Q respectively.
*
      CALL SCOPY( N, D, 1, Z, 1 )
      DO 170 J = K + 1, N
         JS = INDXP( J )
         I = INDX( J )
         D( I ) = Z( JS )
  170 CONTINUE
*
      PTT( 1 ) = 1
      DO 190 I = 2, 4
         CT = 0
         DO 180 J = 0, NPCOL - 1
            CT = CT + CTOT( J, I-1 )
  180    CONTINUE
         PTT( I ) = PTT( I-1 ) + CT
  190 CONTINUE
*
*
      IB1 = INDXC( 1 )
      IE1 = IB1
      IB2 = INDXC( PTT( 2 ) )
      IE2 = IB2
      DO 200 I = 2, PTT( 3 ) - 1
         IB1 = MIN( IB1, INDXC( I ) )
         IE1 = MAX( IE1, INDXC( I ) )
  200 CONTINUE
      DO 210 I = PTT( 2 ), PTT( 4 ) - 1
         IB2 = MIN( IB2, INDXC( I ) )
         IE2 = MAX( IE2, INDXC( I ) )
  210 CONTINUE
      NN1 = IE1 - IB1 + 1
      NN2 = IE2 - IB2 + 1
      NN = MAX( IE1, IE2 ) - MIN( IB1, IB2 ) + 1
  220 CONTINUE
      RETURN
*
*     End of PSLAED2
*
      END