File: pzaxpy.c

package info (click to toggle)
scalapack 1.8.0-9
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 32,664 kB
  • sloc: fortran: 288,069; ansic: 64,035; makefile: 1,958
file content (426 lines) | stat: -rw-r--r-- 15,722 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
/* ---------------------------------------------------------------------
*
*  Mark R. Fahey
*  August 2000
*  This is a slightly modified version of pzaxpy_ from ScaLAPACK 1.0
*  which fixes a bug in the incx=1 and incy=1 case.
*
*  ---------------------------------------------------------------------
*/
/*
*  Include files
*/
#include "pblas.h"

void pzaxpy_( n, alpha, X, ix, jx, desc_X, incx, Y, iy, jy, desc_Y,
              incy )
/*
*  .. Scalar Arguments ..
*/
   int         * incx, * incy, * ix, * iy, * jx, * jy, * n;
   complex16   * alpha;
/* ..
*  .. Array Arguments ..
*/
   int         desc_X[], desc_Y[];
   complex16   X[], Y[];
{
/*
*  Purpose
*  =======
*
*  PZAXPY adds one distributed vector to another,
*
*     sub( Y ) := sub( Y ) + alpha * sub( X )
*
*  where sub( X ) denotes X(IX,JX:JX+N-1) if INCX = M_X,
*                         X(IX:IX+N-1,JX) if INCX = 1 and INCX <> M_X,
*
*        sub( Y ) denotes Y(IY,JY:JY+N-1) if INCY = M_Y,
*                         Y(IY:IY+N-1,JY) if INCY = 1 and INCY <> M_Y.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector descA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DT_A   (global) descA[ DT_ ]   The descriptor type.  In this case,
*                                 DT_A = 1.
*  CTXT_A (global) descA[ CTXT_ ] The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) descA[ M_ ]    The number of rows in the global
*                                 array A.
*  N_A    (global) descA[ N_ ]    The number of columns in the global
*                                 array A.
*  MB_A   (global) descA[ MB_ ]   The blocking factor used to distribu-
*                                 te the rows of the array.
*  NB_A   (global) descA[ NB_ ]   The blocking factor used to distribu-
*                                 te the columns of the array.
*  RSRC_A (global) descA[ RSRC_ ] The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) descA[ CSRC_ ] The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  descA[ LLD_ ]  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Because vectors may be seen as particular matrices, a distributed
*  vector is considered to be a distributed matrix.
*
*  If INCX = M_X and INCY = M_Y, NB_X must be equal to NB_Y, and the
*  process column having the first entries of sub( Y ) must also contain
*  the first entries of sub( X ). Moreover, the quantity
*  MOD( JX-1, NB_X ) must be equal to MOD( JY-1, NB_Y ).
*
*  If INCX = M_X, INCY = 1 and INCY <> M_Y, NB_X must be equal to MB_Y.
*  Moreover, the quantity MOD( JX-1, NB_X ) must be equal to
*  MOD( IY-1, MB_Y ).
*
*  If INCX = 1, INCX <> M_X and INCY = M_Y, MB_X must be equal to NB_Y.
*  Moreover, the quantity MOD( IX-1, MB_X ) must be equal to
*  MOD( JY-1, NB_Y ).
*
*  If INCX = 1, INCX <> M_X, INCY = 1 and INCY <> M_Y, MB_X must be
*  equal to MB_Y, and the process row having the first entries of
*  sub( Y ) must also contain the first entries of sub( X ). Moreover,
*  the quantity MOD( IX-1, MB_X ) must be equal to MOD( IY-1, MB_Y ).
*
*  Parameters
*  ==========
*
*  N       (global input) pointer to INTEGER.
*          The length of the distributed vectors to be added. N >= 0.
*
*  ALPHA   (global input) pointer to COMPLEX*16
*          The scalar used to multiply each component of sub( X ).
*
*  X       (local input) COMPLEX*16 array containing the local
*          pieces of a distributed matrix of dimension of at least
*              ( (JX-1)*M_X + IX + ( N - 1 )*abs( INCX ) )
*          This array contains the entries of the distributed vector
*          sub( X ).
*
*  IX      (global input) pointer to INTEGER
*          The global row index of the submatrix of the distributed
*          matrix X to operate on.
*
*  JX      (global input) pointer to INTEGER
*          The global column index of the submatrix of the distributed
*          matrix X to operate on.
*
*  DESCX   (global and local input) INTEGER array of dimension 8.
*          The array descriptor of the distributed matrix X.
*
*  INCX    (global input) pointer to INTEGER
*          The global increment for the elements of X. Only two values
*          of INCX are supported in this version, namely 1 and M_X.
*
*  Y       (local input/local output) COMPLEX*16 array
*          containing the local pieces of a distributed matrix of
*          dimension of at least
*                ( (JY-1)*M_Y + IY + ( N - 1 )*abs( INCY ) )
*          This array contains the entries of the distributed vector
*          sub( Y ).
*          On exit sub( Y ) is overwritten by sub( Y ) + alpha*sub( X ).
*
*  IY      (global input) pointer to INTEGER
*          The global row index of the submatrix of the distributed
*          matrix Y to operate on.
*
*  JY      (global input) pointer to INTEGER
*          The global column index of the submatrix of the distributed
*          matrix Y to operate on.
*
*  DESCY   (global and local input) INTEGER array of dimension 8.
*          The array descriptor of the distributed matrix Y.
*
*  INCY    (global input) pointer to INTEGER
*          The global increment for the elements of Y. Only two values
*          of INCY are supported in this version, namely 1 and M_Y.
*
*  =====================================================================
*
*  .. Local Scalars ..
*/
   int         ictxt, info, iix, iiy, ixcol, ixrow, iycol, iyrow, jjx,
               jjy, lcm, lcmp, lcmq, mycol, myrow, nn, np, np0, nprow,
               npcol, nq, nq0, nz, ione=1, tmp1, wksz;
   complex16   one, tmp, zero;
/* ..
*  .. PBLAS Buffer ..
*/
   complex16   * buff;
/* ..
*  .. External Functions ..
*/
   void        blacs_gridinfo_();
   void        zgerv2d_();
   void        zgesd2d_();
   void        pbchkvect();
   void        pberror_();
   char        * getpbbuf();
   F_VOID_FCT  zaxpy_();
   F_VOID_FCT  zcopy_();
   F_VOID_FCT  pbztrnv_();
   F_INTG_FCT  ilcm_();
   F_INTG_FCT  numroc_();
/* ..
*  .. Executable Statements ..
*
*  Get grid parameters
*/
   ictxt = desc_X[CTXT_];
   blacs_gridinfo_( &ictxt, &nprow, &npcol, &myrow, &mycol );
/*
*  Test the input parameters
*/
   info = 0;
   if( nprow == -1 )
      info = -(600+CTXT_+1);
   else
   {
      pbchkvect( *n, 1, *ix, *jx, desc_X, *incx, 6, &iix, &jjx,
                 &ixrow, &ixcol, nprow, npcol, myrow, mycol, &info );
      pbchkvect( *n, 1, *iy, *jy, desc_Y, *incy, 11, &iiy, &jjy,
                 &iyrow, &iycol, nprow, npcol, myrow, mycol, &info );

      if( info == 0 )
      {
         if( *n != 1 )
         {
            if( *incx == desc_X[M_] )
            {                 /* X is distributed along a process row */
               if( *incy == desc_Y[M_] )
               {               /* Y is distributed over a process row */
                  if( ( ixcol != iycol ) ||
                      ( ( (*jx-1) % desc_X[NB_] ) !=
                        ( (*jy-1) % desc_Y[NB_] ) ) )
                     info = -10;
                  else if( desc_Y[NB_] != desc_X[NB_] )
                     info = -(1100+NB_+1);
               }
               else if( ( *incy == 1 ) && ( *incy != desc_Y[M_] ) )
               {            /* Y is distributed over a process column */
                  if( ( (*jx-1) % desc_X[NB_] ) != ( (*iy-1) % desc_Y[MB_] ) )
                     info = -9;
                  else if( desc_Y[MB_] != desc_X[NB_] )
                     info = -(1100+MB_+1);
               }
               else
               {
                  info = -12;
               }
            }
            else if( ( *incx == 1 ) && ( *incx != desc_X[M_] ) )
            {              /* X is distributed along a process column */
               if( *incy == desc_Y[M_] )
               {               /* Y is distributed over a process row */
                  if( ( (*ix-1) % desc_X[MB_] ) != ( (*jy-1) % desc_Y[NB_] ) )
                     info = -10;
                  else if( desc_Y[NB_] != desc_X[MB_] )
                     info = -(1100+NB_+1);
               }
               else if( ( *incy == 1 ) && ( *incy != desc_Y[M_] ) )
               {               /* Y is distributed over a process column */
                  if( ( ixrow != iyrow ) ||
                      ( ( (*ix-1) % desc_X[MB_] ) !=
                        ( (*iy-1) % desc_Y[MB_] ) ) )
                     info = -9;
                  else if( desc_Y[MB_] != desc_X[MB_] )
                     info = -(1100+MB_+1);
               }
               else
               {
                  info = -12;
               }
            }
            else
            {
               info = -7;
            }
         }
         if( ictxt != desc_Y[CTXT_] )
            info = -(1100+CTXT_+1);
      }
   }
   if( info )
   {
      pberror_( &ictxt, "PZAXPY", &info );
      return;
   }
/*
*  Quick return if possible.
*/
   if( *n == 0 )
      return;
/*
*  y <- y + alpha * x
*/
   if( *n == 1 )
   {
      if( ( myrow == iyrow ) && ( mycol == iycol ) )
      {
         if( ( myrow != ixrow ) || ( mycol != ixcol ) )
            zgerv2d_( &ictxt, n, n, &tmp, n, &ixrow, &ixcol );
         else
            tmp = X[iix-1+(jjx-1)*desc_X[LLD_]];
         zaxpy_( n, alpha, &tmp, n, &Y[iiy-1+(jjy-1)*desc_Y[LLD_]], n );
      }
      else if( ( myrow == ixrow ) && ( mycol == ixcol ) )
         zgesd2d_( &ictxt, n, n, &X[iix-1+(jjx-1)*desc_X[LLD_]], n,
                   &iyrow, &iycol );
      return;
   }

   one.re = ONE; one.im = ZERO;
   zero.re = ZERO; zero.im = ZERO;
   if( ( *incx == desc_X[M_] ) && ( *incy == desc_Y[M_] ) )
   {               /* X and Y are both distributed over a process row */
      nz = (*jx-1) % desc_Y[NB_];
      nn = *n + nz;
      nq = numroc_( &nn, &desc_X[NB_], &mycol, &ixcol, &npcol );
      if( mycol == ixcol )
         nq -= nz;
      if( ixrow == iyrow )
      {
         if( myrow == ixrow )
            zaxpy_( &nq, alpha,
                    &X[iix-1+(jjx-1)*desc_X[LLD_]], &desc_X[LLD_],
                    &Y[iiy-1+(jjy-1)*desc_Y[LLD_]], &desc_Y[LLD_] );
      }
      else
      {
         if( myrow == ixrow )
            zgesd2d_( &ictxt, &ione, &nq,
                      &X[iix-1+(jjx-1)*desc_X[LLD_]], &desc_X[LLD_],
                      &iyrow, &mycol );
         else if( myrow == iyrow )
         {
            buff = (complex16 *)getpbbuf( "PZAXPY", nq*sizeof(complex16) );
            zgerv2d_( &ictxt, &nq, &ione, buff, &ione, &ixrow,
                      &mycol );
            zaxpy_( &nq, alpha, buff, &ione,
                    &Y[iiy-1+(jjy-1)*desc_Y[LLD_]], &desc_Y[LLD_] );
         }
      }
   }
   else if( ( *incx == 1 ) && ( *incx != desc_X[M_] ) &&
            ( *incy == 1 ) && ( *incy != desc_Y[M_] ) )
   {            /* X and Y are both distributed over a process column */
      nz = (*ix-1) % desc_X[MB_];
      nn = *n + nz;
      np = numroc_( &nn, &desc_X[MB_], &myrow, &ixrow, &nprow );
      if( myrow == ixrow )
         np -= nz;
      if( ixcol == iycol )
      {
         if( mycol == ixcol )
            zaxpy_( &np, alpha,
                    &X[iix-1+(jjx-1)*desc_X[LLD_]], incx,
                    &Y[iiy-1+(jjy-1)*desc_Y[LLD_]], incy );
      }
      else
      {
         if( mycol == ixcol )
            zgesd2d_( &ictxt, &np, &ione,
                      &X[iix-1+(jjx-1)*desc_X[LLD_]], &desc_X[LLD_],
                      &myrow, &iycol );
         else if( mycol == iycol )
         {
            buff = (complex16 *)getpbbuf( "PZAXPY", np*sizeof(complex16) );
            zgerv2d_( &ictxt, &np, &ione, buff, &ione, &myrow,
                      &ixcol );
            zaxpy_( &np, alpha, buff, &ione,
                    &Y[iiy-1+(jjy-1)*desc_Y[LLD_]], incy );
         }
      }
   }
   else       /* X and Y are not distributed along the same direction */
   {
      lcm = ilcm_( &nprow, &npcol );
      if( ( *incx == 1 ) && ( *incx != desc_X[M_] ) )
      {                     /* X is distributed over a process column */
         lcmq = lcm / npcol;
         nz = (*ix-1) % desc_X[MB_];
         nn = *n + nz;
         np = numroc_( &nn, &desc_X[MB_], &myrow, &ixrow, &nprow );
         nz = (*jy-1) % desc_Y[NB_];
         nn = *n + nz;
         tmp1 = nn / desc_Y[NB_];
         nq0 = MYROC0( tmp1, nn, desc_Y[NB_], npcol );
         tmp1 = nq0 / desc_Y[NB_];
         wksz = np + MYROC0( tmp1, nq0, desc_Y[NB_], lcmq );

         buff = (complex16 *)getpbbuf( "PZAXPY", wksz*sizeof(complex16) );

         if( myrow == ixrow )
            np -= nz;

         if( mycol == ixcol )
         {
            zcopy_( &np, &X[iix-1+(jjx-1)*desc_X[LLD_]], incx,
                    buff, incx );
            zscal_( &np, alpha, buff, incx );
         }
         pbztrnv_( &ictxt, C2F_CHAR( "C" ), C2F_CHAR( "T" ), n,
                   &desc_X[MB_], &nz, buff, incx, &one,
                   &Y[iiy-1+(jjy-1)*desc_Y[LLD_]], &desc_Y[LLD_],
                   &ixrow, &ixcol, &iyrow, &iycol, buff+np );
      }
      else                  /* Y is distributed over a process column */
      {
         lcmp = lcm / nprow;
         nz = (*iy-1) % desc_Y[MB_];
         nn = *n + nz;
         tmp1 = nn / desc_Y[MB_];
         np = numroc_( &nn, &desc_Y[MB_], &myrow, &iyrow, &nprow );
         np0 = MYROC0( tmp1, nn, desc_Y[MB_], nprow );
         tmp1 = np0 / desc_Y[MB_];
         wksz = MYROC0( tmp1, np0, desc_Y[MB_], lcmp );
         wksz = np + wksz;

         buff = (complex16 *)getpbbuf( "PZAXPY", wksz*sizeof(complex16) );

         pbztrnv_( &ictxt, C2F_CHAR( "R" ), C2F_CHAR( "T" ), n,
                   &desc_X[NB_], &nz, &X[iix-1+(jjx-1)*desc_X[LLD_]],
                   &desc_X[LLD_], &zero, buff, &ione, &ixrow, &ixcol,
                   &iyrow, &iycol, buff+np );
         if( mycol == iycol )
         {
            if( myrow == iyrow )
               np -= nz;
            zaxpy_( &np, alpha, buff, &ione,
                    &Y[iiy-1+(jjy-1)*desc_Y[LLD_]], incy );
         }
      }
   }
}