1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
SUBROUTINE ZLANV2( A, B, C, D, RT1, RT2, CS, SN )
*
* -- ScaLAPACK routine (version 1.7) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* May 28, 1999
*
* .. Scalar Arguments ..
DOUBLE PRECISION CS
COMPLEX*16 A, B, C, D, RT1, RT2, SN
* ..
*
* Purpose
* =======
*
* ZLANV2 computes the Schur factorization of a complex 2-by-2
* nonhermitian matrix in standard form:
*
* [ A B ] = [ CS -SN ] [ AA BB ] [ CS SN ]
* [ C D ] [ SN CS ] [ 0 DD ] [-SN CS ]
*
* Arguments
* =========
*
* A (input/output) COMPLEX*16
* B (input/output) COMPLEX*16
* C (input/output) COMPLEX*16
* D (input/output) COMPLEX*16
* On entry, the elements of the input matrix.
* On exit, they are overwritten by the elements of the
* standardised Schur form.
*
* RT1 (output) COMPLEX*16
* RT2 (output) COMPLEX*16
* The two eigenvalues.
*
* CS (output) DOUBLE PRECISION
* SN (output) COMPLEX*16
* Parameters of the rotation matrix.
*
* Further Details
* ===============
*
* Implemented by Mark R. Fahey, May 28, 1999
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION RZERO, HALF, RONE
PARAMETER ( RZERO = 0.0D+0, HALF = 0.5D+0,
$ RONE = 1.0D+0 )
COMPLEX*16 ZERO, ONE
PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ),
$ ONE = ( 1.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
COMPLEX*16 AA, BB, DD, T, TEMP, TEMP2, U, X, Y
* ..
* .. External Functions ..
COMPLEX*16 ZLADIV
EXTERNAL ZLADIV
* ..
* .. External Subroutines ..
EXTERNAL ZLARTG
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, DCMPLX, DCONJG, DIMAG, SQRT
* ..
* .. Executable Statements ..
*
* Initialize CS and SN
*
CS = RONE
SN = ZERO
*
IF( C.EQ.ZERO ) THEN
GO TO 10
*
ELSE IF( B.EQ.ZERO ) THEN
*
* Swap rows and columns
*
CS = RZERO
SN = ONE
TEMP = D
D = A
A = TEMP
B = -C
C = ZERO
GO TO 10
ELSE IF( ( A-D ).EQ.ZERO ) THEN
TEMP = SQRT( B*C )
A = A + TEMP
D = D - TEMP
IF( ( B+C ).EQ.ZERO ) THEN
CS = SQRT( HALF )
SN = DCMPLX( RZERO, RONE )*CS
ELSE
TEMP = SQRT( B+C )
TEMP2 = ZLADIV( SQRT( B ), TEMP )
CS = DBLE( TEMP2 )
SN = ZLADIV( SQRT( C ), TEMP )
END IF
B = B - C
C = ZERO
GO TO 10
ELSE
*
* Compute eigenvalue closest to D
*
T = D
U = B*C
X = HALF*( A-T )
Y = SQRT( X*X+U )
IF( DBLE( X )*DBLE( Y )+DIMAG( X )*DIMAG( Y ).LT.RZERO )
$ Y = -Y
T = T - ZLADIV( U, ( X+Y ) )
*
* Do one QR step with exact shift T - resulting 2 x 2 in
* triangular form.
*
CALL ZLARTG( A-T, C, CS, SN, AA )
*
D = D - T
BB = CS*B + SN*D
DD = -DCONJG( SN )*B + CS*D
*
A = AA*CS + BB*DCONJG( SN ) + T
B = -AA*SN + BB*CS
C = ZERO
D = T
*
END IF
*
10 CONTINUE
*
* Store eigenvalues in RT1 and RT2.
*
RT1 = A
RT2 = D
RETURN
*
* End of ZLANV2
*
END
|