| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 
 |       SUBROUTINE PDSYTTRD( UPLO, N, A, IA, JA, DESCA, D, E, TAU, WORK,
     $                     LWORK, INFO )
*
*  -- ScaLAPACK routine (version 2.0.2) --
*     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver
*     May 1 2012
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            IA, INFO, JA, LWORK, N
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * )
      DOUBLE PRECISION   A( * ), D( * ), E( * ), TAU( * ), WORK( * )
*     ..
*
*     Purpose
*
*     =======
*
*     PDSYTTRD reduces a complex Hermitian matrix sub( A ) to Hermitian
*     tridiagonal form T by an unitary similarity transformation:
*     Q' * sub( A ) * Q = T, where sub( A ) = A(IA:IA+N-1,JA:JA+N-1).
*
*     Notes
*     =====
*
*     Each global data object is described by an associated description
*     vector.  This vector stores the information required to establish
*     the mapping between an object element and its corresponding
*     process and memory location.
*
*     Let A be a generic term for any 2D block cyclicly distributed
*     array.
*     Such a global array has an associated description vector DESCA.
*     In the following comments, the character _ should be read as
*     "of the global array".
*
*     NOTATION        STORED IN      EXPLANATION
*     --------------- -------------- -----------------------------------
*     DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*     DTYPE_A = 1.
*     CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle,
*     indicating the BLACS process grid A is distribu-
*     ted over. The context itself is glo-
*     bal, but the handle (the integer
*     value) may vary.
*     M_A    (global) DESCA( M_ )    The number of rows in the global
*     array A.
*     N_A    (global) DESCA( N_ )    The number of columns in the global
*     array A.
*     MB_A   (global) DESCA( MB_ )   The blocking factor used to
*     distribute the rows of the array.
*     NB_A   (global) DESCA( NB_ )   The blocking factor used to
*     distribute the columns of the array.
*     RSRC_A (global) DESCA( RSRC_ ) The process row over which the
*     first row of the array A is distributed.
*     CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*     first column of the array A is
*     distributed.
*     LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*     array.  LLD_A >= MAX(1,LOCp(M_A)).
*
*     Let K be the number of rows or columns of a distributed matrix,
*     and assume that its process grid has dimension p x q.
*     LOCp( K ) denotes the number of elements of K that a process
*     would receive if K were distributed over the p processes of its
*     process column.
*     Similarly, LOCq( K ) denotes the number of elements of K that a
*     process would receive if K were distributed over the q processes
*     of its process row.
*     The values of LOCp() and LOCq() may be determined via a call to
*     the ScaLAPACK tool function, NUMROC:
*     LOCp( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*     LOCq( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*     An upper bound for these quantities may be computed by:
*     LOCp( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*     LOCq( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*     Arguments
*     =========
*
*     UPLO    (global input) CHARACTER
*     Specifies whether the upper or lower triangular part of the
*     Hermitian matrix sub( A ) is stored:
*     = 'U':  Upper triangular
*     = 'L':  Lower triangular
*
*     N       (global input) INTEGER
*     The number of rows and columns to be operated on, i.e. the
*     order of the distributed submatrix sub( A ). N >= 0.
*
*     A  (local input/local output) DOUBLE PRECISION pointer into the
*     local memory to an array of dimension (LLD_A,LOCq(JA+N-1)).
*     On entry, this array contains the local pieces of the
*     Hermitian distributed matrix sub( A ).  If UPLO = 'U', the
*     leading N-by-N upper triangular part of sub( A ) contains
*     the upper triangular part of the matrix, and its strictly
*     lower triangular part is not referenced. If UPLO = 'L', the
*     leading N-by-N lower triangular part of sub( A ) contains the
*     lower triangular part of the matrix, and its strictly upper
*     triangular part is not referenced. On exit, if UPLO = 'U',
*     the diagonal and first superdiagonal of sub( A ) are over-
*     written by the corresponding elements of the tridiagonal
*     matrix T, and the elements above the first superdiagonal,
*     with the array TAU, represent the unitary matrix Q as a
*     product of elementary reflectors; if UPLO = 'L', the diagonal
*     and first subdiagonal of sub( A ) are overwritten by the
*     corresponding elements of the tridiagonal matrix T, and the
*     elements below the first subdiagonal, with the array TAU,
*     represent the unitary matrix Q as a product of elementary
*     reflectors. See Further Details.
*
*     IA      (global input) INTEGER
*     The row index in the global array A indicating the first
*     row of sub( A ).
*
*     JA      (global input) INTEGER
*     The column index in the global array A indicating the
*     first column of sub( A ).
*
*     DESCA   (global and local input) INTEGER array of dimension DLEN_.
*     The array descriptor for the distributed matrix A.
*
*     D       (local output) DOUBLE PRECISION array, dim LOCq(JA+N-1)
*     The diagonal elements of the tridiagonal matrix T:
*     D(i) = A(i,i). D is tied to the distributed matrix A.
*
*     E       (local output) DOUBLE PRECISION array, dim LOCq(JA+N-1)
*     if UPLO = 'U', LOCq(JA+N-2) otherwise. The off-diagonal
*     elements of the tridiagonal matrix T: E(i) = A(i,i+1) if
*     UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. E is tied to the
*     distributed matrix A.
*
*     TAU     (local output) DOUBLE PRECISION array, dimension
*     LOCq(JA+N-1). This array contains the scalar factors TAU of
*     the elementary reflectors. TAU is tied to the distributed
*     matrix A.
*
*     WORK  (local workspace) DOUBLE PRECISION array, dimension (LWORK)
*     On exit, WORK( 1 ) returns the minimal and optimal workspace
*
*     LWORK   (local input) INTEGER
*     The dimension of the array WORK.
*     LWORK >= 2*( ANB+1 )*( 4*NPS+2 ) + NPS
*     Where:
*         NPS = MAX( NUMROC( N, 1, 0, 0, NPROW ), 2*ANB )
*         ANB = PJLAENV( DESCA( CTXT_ ), 3, 'PDSYTTRD', 'L', 0, 0,
*           0, 0 )
*
*         NUMROC is a ScaLAPACK tool function;
*         PJLAENV is a ScaLAPACK envionmental inquiry function
*         MYROW, MYCOL, NPROW and NPCOL can be determined by calling
*         the subroutine BLACS_GRIDINFO.
*
*     INFO    (global output) INTEGER
*     = 0:  successful exit
*     < 0:  If the i-th argument is an array and the j-entry had
*     an illegal value, then INFO = -(i*100+j), if the i-th
*     argument is a scalar and had an illegal value, then
*     INFO = -i.
*
*     Further Details
*     ===============
*
*     If UPLO = 'U', the matrix Q is represented as a product of
*     elementary reflectors
*
*     Q = H(n-1) . . . H(2) H(1).
*
*     Each H(i) has the form
*
*     H(i) = I - tau * v * v'
*
*     where tau is a complex scalar, and v is a complex vector with
*     v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
*     A(ia:ia+i-2,ja+i), and tau in TAU(ja+i-1).
*
*     If UPLO = 'L', the matrix Q is represented as a product of
*     elementary reflectors
*
*     Q = H(1) H(2) . . . H(n-1).
*
*     Each H(i) has the form
*
*     H(i) = I - tau * v * v'
*
*     where tau is a complex scalar, and v is a complex vector with
*     v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in
*     A(ia+i+1:ia+n-1,ja+i-1), and tau in TAU(ja+i-1).
*
*     The contents of sub( A ) on exit are illustrated by the following
*     examples with n = 5:
*
*     if UPLO = 'U':                       if UPLO = 'L':
*
*     (  d   e   v2  v3  v4 )              (  d                  )
*     (      d   e   v3  v4 )              (  e   d              )
*     (          d   e   v4 )              (  v1  e   d          )
*     (              d   e  )              (  v1  v2  e   d      )
*     (                  d  )              (  v1  v2  v3  e   d  )
*
*     where d and e denote diagonal and off-diagonal elements of T, and
*     vi denotes an element of the vector defining H(i).
*
*     Data storage requirements
*     =========================
*
*     PDSYTTRD is not intended to be called directly.  All users are
*     encourage to call PDSYTRD which will then call PDHETTRD if
*     appropriate.  A must be in cyclic format (i.e. MB = NB = 1),
*     the process grid must be square ( i.e. NPROW = NPCOL ) and
*     only lower triangular storage is supported.
*
*     Local variables
*     ===============
*
*     PDSYTTRD uses five local arrays:
*       WORK ( InV ) dimension ( NP, ANB+1): array V
*       WORK ( InH ) dimension ( NP, ANB+1): array H
*       WORK ( InVT ) dimension ( NQ, ANB+1): transpose of the array V
*       WORK ( InHT ) dimension ( NQ, ANB+1): transpose of the array H
*       WORK ( InVTT ) dimension ( NQ, 1): transpose of the array VT
*
*     Arrays V and H are replicated across all processor columns.
*     Arrays V^T and H^T are replicated across all processor rows.
*
*         WORK ( InVT ), or V^T, is stored as a tall skinny
*         array ( NQ x ANB-1 ) for efficiency.  Since only the lower
*         triangular portion of A is updated, Av is computed as:
*         tril(A) * v + v^T * tril(A,-1).  This is performed as
*         two local triangular matrix-vector multiplications (both in
*         MVR2) followed by a transpose and a sum across the columns.
*         In the local computation, WORK( InVT ) is used to compute
*         tril(A) * v and WORK( InV ) is used to compute
*         v^T * tril(A,-1)
*
*     The following variables are global indices into A:
*       INDEX:  The current global row and column number.
*       MAXINDEX:  The global row and column for the first row and
*       column in the trailing block of A.
*       LIIB, LIJB:  The first row, column in
*
*     The following variables point into the arrays A, V, H, V^T, H^T:
*       BINDEX  =INDEX-MININDEX: The column index in V, H, V^T, H^T.
*       LII:  local index I:  The local row number for row INDEX
*       LIJ:  local index J:  The local column number for column INDEX
*       LIIP1:  local index I+1:  The local row number for row INDEX+1
*       LIJP1:  local index J+1:  The local col number for col INDEX+1
*       LTLI: lower triangular local index I:  The local row for the
*         upper left entry in tril( A(INDEX, INDEX) )
*       LTLIP1: lower triangular local index I+1:  The local row for the
*         upper left entry in tril( A(INDEX+1, INDEX+1) )
*
*         Details:  The distinction between LII and LTLI (and between
*         LIIP1 and LTLIP1) is subtle.  Within the current processor
*         column (i.e. MYCOL .eq. CURCOL) they are the same.  However,
*         on some processors, A( LII, LIJ ) points to an element
*         above the diagonal, on these processors, LTLI = LII+1.
*
*     The following variables give the number of rows and/or columns
*     in various matrices:
*       NP:  The number of local rows in A( 1:N, 1:N )
*       NQ:  The number of local columns in A( 1:N, 1:N )
*       NPM0:  The number of local rows in A( INDEX:N, INDEX:N )
*       NQM0:  The number of local columns in A( INDEX:N, INDEX:N )
*       NPM1:  The number of local rows in A( INDEX+1:N, INDEX:N )
*       NQM1:  The number of local columns in A( INDEX+1:N, INDEX:N )
*       LTNM0:  The number of local rows & columns in
*         tril( A( INDEX:N, INDEX:N ) )
*       LTNM1:  The number of local rows & columns in
*         tril( A( INDEX+1:N, INDEX+1:N ) )
*         NOTE:  LTNM0 == LTNM1 on all processors except the diagonal
*         processors, i.e. those where MYCOL == MYROW.
*
*         Invariants:
*           NP = NPM0 + LII - 1
*           NQ = NQM0 + LIJ - 1
*           NP = NPM1 + LIIP1 - 1
*           NQ = NQM1 + LIJP1 - 1
*           NP = LTLI + LTNM0 - 1
*           NP = LTLIP1 + LTNM1 - 1
*
*       Temporary variables.  The following variables are used within
*       a few lines after they are set and do hold state from one loop
*       iteration to the next:
*
*     The matrix A:
*       The matrix A does not hold the same values that it would
*       in an unblocked code nor the values that it would hold in
*       in a blocked code.
*
*       The value of A is confusing.  It is easiest to state the
*       difference between trueA and A at the point that MVR2 is called,
*       so we will start there.
*
*       Let trueA be the value that A would
*       have at a given point in an unblocked code and A
*       be the value that A has in this code at the same point.
*
*       At the time of the call to MVR2,
*       trueA = A + V' * H + H' * V
*       where H = H( MAXINDEX:N, 1:BINDEX ) and
*       V = V( MAXINDEX:N, 1:BINDEX ).
*
*       At the bottom of the inner loop,
*       trueA = A +  V' * H + H' * V + v' * h + h' * v
*       where H = H( MAXINDEX:N, 1:BINDEX ) and
*       V = V( MAXINDEX:N, 1:BINDEX ) and
*       v = V( liip1:N, BINDEX+1 ) and
*       h = H( liip1:N, BINDEX+1 )
*
*       At the top of the loop, BINDEX gets incremented, hence:
*       trueA = A +  V' * H + H' * V + v' * h + h' * v
*       where H = H( MAXINDEX:N, 1:BINDEX-1 ) and
*       V = V( MAXINDEX:N, 1:BINDEX-1 ) and
*       v = V( liip1:N, BINDEX ) and
*       h = H( liip1:N, BINDEX )
*
*
*       A gets updated at the bottom of the outer loop
*       After this update, trueA = A + v' * h + h' * v
*       where v = V( liip1:N, BINDEX ) and
*       h = H( liip1:N, BINDEX ) and BINDEX = 0
*       Indeed, the previous loop invariant as stated above for the
*       top of the loop still holds, but with BINDEX = 0, H and V
*       are null matrices.
*
*       After the current column of A is updated,
*         trueA( INDEX, INDEX:N ) = A( INDEX, INDEX:N )
*       the rest of A is untouched.
*
*       After the current block column of A is updated,
*       trueA = A + V' * H + H' * V
*       where H = H( MAXINDEX:N, 1:BINDEX ) and
*       V = V( MAXINDEX:N, 1:BINDEX )
*
*       This brings us back to the point at which mvr2 is called.
*
*
*     Details of the parallelization:
*
*       We delay spreading v across to all processor columns (which
*       would naturally happen at the bottom of the loop) in order to
*       combine the spread of v( : , i-1 ) with the spread of h( : , i )
*
*       In order to compute h( :, i ), we must update A( :, i )
*       which means that the processor column owning A( :, i ) must
*       have: c, tau, v( i, i ) and h( i, i ).
*
*       The traditional
*       way of computing v (and the one used in pzlatrd.f and
*       zlatrd.f) is:
*         v = tau * v
*         c = v' * h
*         alpha = - tau * c / 2
*         v = v + alpha * h
*       However, the traditional way of computing v requires that tau
*       be broadcast to all processors in the current column (to compute
*       v = tau * v) and then a sum-to-all is required (to
*       compute v' * h ).  We use the following formula instead:
*         c = v' * h
*         v = tau * ( v - c * tau' * h / 2 )
*       The above formula allows tau to be spread down in the
*       same call to DGSUM2D which performs the sum-to-all of c.
*
*       The computation of v, which could be performed in any processor
*       column (or other procesor subsets), is performed in the
*       processor column that owns A( :, i+1 ) so that A( :, i+1 )
*       can be updated prior to spreading v across.
*
*       We keep the block column of A up-to-date to minimize the
*       work required in updating the current column of A.  Updating
*       the block column of A is reasonably load balanced whereas
*       updating the current column of A is not (only the current
*       processor column is involved).
*
*     In the following overview of the steps performed, M in the
*     margin indicates message traffic and C indicates O(n^2 nb/sqrt(p))
*     or more flops per processor.
*
*     Inner loop:
*       A( index:n, index ) -= ( v * ht(bindex) + h * vt( bindex) )
*M      h = house( A(index:n, index) )
*M      Spread v, h across
*M      vt = v^T; ht = h^T
*       A( index+1:n, index+1:maxindex ) -=
*         ( v * ht(index+1:maxindex) + h *vt(index+1:maxindex) )
*C      v = tril(A) * h; vt = ht * tril(A,-1)
*MorC   v = v - H*V*h - V*H*h
*M      v = v + vt^T
*M      c = v' * h
*       v = tau * ( v - c * tau' * h / 2 )
*C    A = A - H*V - V*H
*
*
*
*     =================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
     $                   MB_, NB_, RSRC_, CSRC_, LLD_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                   CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                   RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      DOUBLE PRECISION   ONE
      PARAMETER          ( ONE = 1.0D0 )
      DOUBLE PRECISION   Z_ONE, Z_NEGONE, Z_ZERO
      PARAMETER          ( Z_ONE = 1.0D0, Z_NEGONE = -1.0D0,
     $                   Z_ZERO = 0.0D0 )
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0D+0 )
*     ..
*
*
*     .. Local Scalars ..
*
*
      LOGICAL            BALANCED, INTERLEAVE, TWOGEMMS, UPPER
      INTEGER            ANB, BINDEX, CURCOL, CURROW, I, ICTXT, INDEX,
     $                   INDEXA, INDEXINH, INDEXINV, INH, INHB, INHT,
     $                   INHTB, INTMP, INV, INVB, INVT, INVTB, J, LDA,
     $                   LDV, LDZG, LII, LIIB, LIIP1, LIJ, LIJB, LIJP1,
     $                   LTLIP1, LTNM1, LWMIN, MAXINDEX, MININDEX,
     $                   MYCOL, MYFIRSTROW, MYROW, MYSETNUM, NBZG, NP,
     $                   NPB, NPCOL, NPM0, NPM1, NPROW, NPS, NPSET, NQ,
     $                   NQB, NQM1, NUMROWS, NXTCOL, NXTROW, PBMAX,
     $                   PBMIN, PBSIZE, PNB, ROWSPERPROC
      DOUBLE PRECISION   ALPHA, BETA, C, CONJTOPH, CONJTOPV, NORM,
     $                   ONEOVERBETA, SAFMAX, SAFMIN, TOPH, TOPNV,
     $                   TOPTAU, TOPV
*     ..
*     .. Local Arrays ..
*
*
*
*
      INTEGER            IDUM1( 1 ), IDUM2( 1 )
      DOUBLE PRECISION   CC( 3 ), DTMP( 5 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, CHK1MAT, DCOMBNRM2, DGEBR2D,
     $                   DGEBS2D, DGEMM, DGEMV, DGERV2D, DGESD2D,
     $                   DGSUM2D, DLAMOV, DSCAL, DTRMVT, PCHK1MAT,
     $                   PDTREECOMB, PXERBLA
*     ..
*     .. External Functions ..
*
      LOGICAL            LSAME
      INTEGER            ICEIL, NUMROC, PJLAENV
      DOUBLE PRECISION   DNRM2, PDLAMCH
      EXTERNAL           LSAME, ICEIL, NUMROC, PJLAENV, DNRM2, PDLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, ICHAR, MAX, MIN, MOD, SIGN, SQRT
*     ..
*
*
*     .. Executable Statements ..
*       This is just to keep ftnchek and toolpack/1 happy
      IF( BLOCK_CYCLIC_2D*CSRC_*CTXT_*DLEN_*DTYPE_*LLD_*MB_*M_*NB_*N_*
     $    RSRC_.LT.0 )RETURN
*
*
*
*     Further details
*     ===============
*
*     At the top of the loop, v and nh have been computed but not
*     spread across.  Hence, A is out-of-date even after the
*     rank 2k update.  Furthermore, we compute the next v before
*     nh is spread across.
*
*     I claim that if we used a sum-to-all on NV, by summing CC within
*     each column, that we could compute NV locally and could avoid
*     spreading V across.  Bruce claims that sum-to-all can be made
*     to cost no more than sum-to-one on the Paragon.  If that is
*     true, this would be a win.  But,
*     the BLACS sum-to-all is just a sum-to-one followed by a broadcast,
*     and hence the present scheme is better for now.
*
*     Get grid parameters
*
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
      SAFMAX = SQRT( PDLAMCH( ICTXT, 'O' ) ) / N
      SAFMIN = SQRT( PDLAMCH( ICTXT, 'S' ) )
*
*     Test the input parameters
*
      INFO = 0
      IF( NPROW.EQ.-1 ) THEN
         INFO = -( 600+CTXT_ )
      ELSE
*
*     Here we set execution options for PDSYTTRD
*
         PNB = PJLAENV( ICTXT, 2, 'PDSYTTRD', 'L', 0, 0, 0, 0 )
         ANB = PJLAENV( ICTXT, 3, 'PDSYTTRD', 'L', 0, 0, 0, 0 )
*
         INTERLEAVE = ( PJLAENV( ICTXT, 4, 'PDSYTTRD', 'L', 1, 0, 0,
     $                0 ).EQ.1 )
         TWOGEMMS = ( PJLAENV( ICTXT, 4, 'PDSYTTRD', 'L', 2, 0, 0,
     $              0 ).EQ.1 )
         BALANCED = ( PJLAENV( ICTXT, 4, 'PDSYTTRD', 'L', 3, 0, 0,
     $              0 ).EQ.1 )
*
         CALL CHK1MAT( N, 2, N, 2, IA, JA, DESCA, 6, INFO )
*
*
         UPPER = LSAME( UPLO, 'U' )
         IF( INFO.EQ.0 .AND. DESCA( NB_ ).NE.1 )
     $      INFO = 600 + NB_
         IF( INFO.EQ.0 ) THEN
*
*
*           Here is the arithmetic:
*             Let maxnpq = max( np, nq, 2 * ANB )
*             LDV = 4 * max( np, nq ) + 2
*             LWMIN = 2 * ( ANB + 1 ) * LDV + MAX( np, 2 * ANB )
*             = 2 * ( ANB + 1 ) * ( 4 * NPS + 2 ) + NPS
*
*           This overestimates memory requirements when ANB > NP/2
*           Memory requirements are lower when interleave = .false.
*           Hence, we could have two sets of memory requirements,
*           one for interleave and one for
*
*
            NPS = MAX( NUMROC( N, 1, 0, 0, NPROW ), 2*ANB )
            LWMIN = 2*( ANB+1 )*( 4*NPS+2 ) + NPS
*
            WORK( 1 ) = DBLE( LWMIN )
            IF( .NOT.LSAME( UPLO, 'L' ) ) THEN
               INFO = -1
            ELSE IF( IA.NE.1 ) THEN
               INFO = -4
            ELSE IF( JA.NE.1 ) THEN
               INFO = -5
            ELSE IF( NPROW.NE.NPCOL ) THEN
               INFO = -( 600+CTXT_ )
            ELSE IF( DESCA( DTYPE_ ).NE.1 ) THEN
               INFO = -( 600+DTYPE_ )
            ELSE IF( DESCA( MB_ ).NE.1 ) THEN
               INFO = -( 600+MB_ )
            ELSE IF( DESCA( NB_ ).NE.1 ) THEN
               INFO = -( 600+NB_ )
            ELSE IF( DESCA( RSRC_ ).NE.0 ) THEN
               INFO = -( 600+RSRC_ )
            ELSE IF( DESCA( CSRC_ ).NE.0 ) THEN
               INFO = -( 600+CSRC_ )
            ELSE IF( LWORK.LT.LWMIN ) THEN
               INFO = -11
            END IF
         END IF
         IF( UPPER ) THEN
            IDUM1( 1 ) = ICHAR( 'U' )
         ELSE
            IDUM1( 1 ) = ICHAR( 'L' )
         END IF
         IDUM2( 1 ) = 1
*
         CALL PCHK1MAT( N, 2, N, 2, IA, JA, DESCA, 6, 1, IDUM1, IDUM2,
     $                  INFO )
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL PXERBLA( ICTXT, 'PDSYTTRD', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*
*
*     Reduce the lower triangle of sub( A )
      NP = NUMROC( N, 1, MYROW, 0, NPROW )
      NQ = NUMROC( N, 1, MYCOL, 0, NPCOL )
*
      NXTROW = 0
      NXTCOL = 0
*
      LIIP1 = 1
      LIJP1 = 1
      NPM1 = NP
      NQM1 = NQ
*
      LDA = DESCA( LLD_ )
      ICTXT = DESCA( CTXT_ )
*
*
*
*     Miscellaneous details:
*     Put tau, D and E in the right places
*     Check signs
*     Place all the arrays in WORK, control their placement
*     in  memory.
*
*
*
*     Loop invariants
*     A(LIIP1, LIJ) points to the first element of A(I+1,J)
*     NPM1,NQM1 = the number of rows, cols in A( LII+1:N,LIJ+1:N )
*     A(LII:N,LIJ:N) is one step out of date.
*     proc( CURROW, CURCOL ) owns A(LII,LIJ)
*     proc( NXTROW, CURCOL ) owns A(LIIP1,LIJ)
*
      INH = 1
*
      IF( INTERLEAVE ) THEN
*
*        H and V are interleaved to minimize memory movement
*        LDV has to be twice as large to accomodate interleaving.
*        In addition, LDV is doubled again to allow v, h and
*        toptau to be spreaad across and transposed in a
*        single communication operation with minimum memory
*        movement.
*
*        We could reduce LDV back to 2*MAX(NPM1,NQM1)
*        by increasing the memory movement required in
*        the spread and transpose of v, h and toptau.
*        However, since the non-interleaved path already
*        provides a mear minimum memory requirement option,
*        we did not provide this additional path.
*
         LDV = 4*( MAX( NPM1, NQM1 ) ) + 2
*
         INH = 1
*
         INV = INH + LDV / 2
         INVT = INH + ( ANB+1 )*LDV
*
         INHT = INVT + LDV / 2
         INTMP = INVT + LDV*( ANB+1 )
*
      ELSE
         LDV = MAX( NPM1, NQM1 )
*
         INHT = INH + LDV*( ANB+1 )
         INV = INHT + LDV*( ANB+1 )
*
*        The code works without this +1, but only because of a
*        coincidence.  Without the +1, WORK(INVT) gets trashed, but
*        WORK(INVT) is only used once and when it is used, it is
*        multiplied by WORK( INH ) which is zero.  Hence, the fact
*        that WORK(INVT) is trashed has no effect.
*
         INVT = INV + LDV*( ANB+1 ) + 1
         INTMP = INVT + LDV*( 2*ANB )
*
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL PXERBLA( ICTXT, 'PDSYTTRD', -INFO )
         WORK( 1 ) = DBLE( LWMIN )
         RETURN
      END IF
*
*
*        The satisfies the loop invariant: trueA = A - V * HT - H * VT,
*        (where V, H, VT and HT all have BINDEX+1 rows/columns)
*        the first ANB times through the loop.
*
*
*
*     Setting either ( InH and InHT ) or InV to Z_ZERO
*     is adequate except in the face of NaNs.
*
*
      DO 10 I = 1, NP
         WORK( INH+I-1 ) = Z_ZERO
         WORK( INV+I-1 ) = Z_ZERO
   10 CONTINUE
      DO 20 I = 1, NQ
         WORK( INHT+I-1 ) = Z_ZERO
   20 CONTINUE
*
*
*
      TOPNV = Z_ZERO
*
      LTLIP1 = LIJP1
      LTNM1 = NPM1
      IF( MYCOL.GT.MYROW ) THEN
         LTLIP1 = LTLIP1 + 1
         LTNM1 = LTNM1 - 1
      END IF
*
*
      DO 210 MININDEX = 1, N - 1, ANB
*
*
         MAXINDEX = MIN( MININDEX+ANB-1, N )
         LIJB = NUMROC( MAXINDEX, 1, MYCOL, 0, NPCOL ) + 1
         LIIB = NUMROC( MAXINDEX, 1, MYROW, 0, NPROW ) + 1
*
         NQB = NQ - LIJB + 1
         NPB = NP - LIIB + 1
         INHTB = INHT + LIJB - 1
         INVTB = INVT + LIJB - 1
         INHB = INH + LIIB - 1
         INVB = INV + LIIB - 1
*
*
*
*
         DO 160 INDEX = MININDEX, MIN( MAXINDEX, N-1 )
*
            BINDEX = INDEX - MININDEX
*
            CURROW = NXTROW
            CURCOL = NXTCOL
*
            NXTROW = MOD( CURROW+1, NPROW )
            NXTCOL = MOD( CURCOL+1, NPCOL )
*
            LII = LIIP1
            LIJ = LIJP1
            NPM0 = NPM1
*
            IF( MYROW.EQ.CURROW ) THEN
               NPM1 = NPM1 - 1
               LIIP1 = LIIP1 + 1
            END IF
            IF( MYCOL.EQ.CURCOL ) THEN
               NQM1 = NQM1 - 1
               LIJP1 = LIJP1 + 1
               LTLIP1 = LTLIP1 + 1
               LTNM1 = LTNM1 - 1
            END IF
*
*
*
*
*     V = NV, VT = NVT, H = NH, HT = NHT
*
*
*     Update the current column of A
*
*
            IF( MYCOL.EQ.CURCOL ) THEN
*
               INDEXA = LII + ( LIJ-1 )*LDA
               INDEXINV = INV + LII - 1 + ( BINDEX-1 )*LDV
               INDEXINH = INH + LII - 1 + ( BINDEX-1 )*LDV
               CONJTOPH = WORK( INHT+LIJ-1+BINDEX*LDV )
               CONJTOPV = TOPNV
*
               IF( INDEX.GT.1 ) THEN
                  DO 30 I = 0, NPM0 - 1
*                  A( INDEXA+I ) = A( INDEXA+I )
                     A( INDEXA+I ) = A( INDEXA+I ) -
     $                               WORK( INDEXINV+LDV+I )*CONJTOPH -
     $                               WORK( INDEXINH+LDV+I )*CONJTOPV
   30             CONTINUE
               END IF
*
*
            END IF
*
*
            IF( MYCOL.EQ.CURCOL ) THEN
*
*     Compute the householder vector
*
               IF( MYROW.EQ.CURROW ) THEN
                  DTMP( 2 ) = A( LII+( LIJ-1 )*LDA )
               ELSE
                  DTMP( 2 ) = ZERO
               END IF
               IF( MYROW.EQ.NXTROW ) THEN
                  DTMP( 3 ) = A( LIIP1+( LIJ-1 )*LDA )
                  DTMP( 4 ) = ZERO
               ELSE
                  DTMP( 3 ) = ZERO
                  DTMP( 4 ) = ZERO
               END IF
*
               NORM = DNRM2( NPM1, A( LIIP1+( LIJ-1 )*LDA ), 1 )
               DTMP( 1 ) = NORM
*
*              IF DTMP(5) = 1.0, NORM is too large and might cause
*              overflow, hence PDTREECOMB must be called.  IF DTMP(5)
*              is zero on output, DTMP(1) can be trusted.
*
               DTMP( 5 ) = ZERO
               IF( DTMP( 1 ).GE.SAFMAX .OR. DTMP( 1 ).LT.SAFMIN ) THEN
                  DTMP( 5 ) = ONE
                  DTMP( 1 ) = ZERO
               END IF
*
               DTMP( 1 ) = DTMP( 1 )*DTMP( 1 )
               CALL DGSUM2D( ICTXT, 'C', ' ', 5, 1, DTMP, 5, -1,
     $                       CURCOL )
               IF( DTMP( 5 ).EQ.ZERO ) THEN
                  DTMP( 1 ) = SQRT( DTMP( 1 ) )
               ELSE
                  DTMP( 1 ) = NORM
                  CALL PDTREECOMB( ICTXT, 'C', 1, DTMP, -1, MYCOL,
     $                             DCOMBNRM2 )
               END IF
*
               NORM = DTMP( 1 )
*
               D( LIJ ) = DTMP( 2 )
               IF( MYROW.EQ.CURROW .AND. MYCOL.EQ.CURCOL ) THEN
                  A( LII+( LIJ-1 )*LDA ) = D( LIJ )
               END IF
*
*
               ALPHA = DTMP( 3 )
*
               NORM = SIGN( NORM, ALPHA )
*
               IF( NORM.EQ.ZERO ) THEN
                  TOPTAU = ZERO
               ELSE
                  BETA = NORM + ALPHA
                  TOPTAU = BETA / NORM
                  ONEOVERBETA = 1.0D0 / BETA
*
                  CALL DSCAL( NPM1, ONEOVERBETA,
     $                        A( LIIP1+( LIJ-1 )*LDA ), 1 )
               END IF
*
               IF( MYROW.EQ.NXTROW ) THEN
                  A( LIIP1+( LIJ-1 )*LDA ) = Z_ONE
               END IF
*
               TAU( LIJ ) = TOPTAU
               E( LIJ ) = -NORM
*
            END IF
*
*
*     Spread v, nh, toptau across
*
            DO 40 I = 0, NPM1 - 1
               WORK( INV+LIIP1-1+BINDEX*LDV+NPM1+I ) = A( LIIP1+I+
     $            ( LIJ-1 )*LDA )
   40       CONTINUE
*
            IF( MYCOL.EQ.CURCOL ) THEN
               WORK( INV+LIIP1-1+BINDEX*LDV+NPM1+NPM1 ) = TOPTAU
               CALL DGEBS2D( ICTXT, 'R', ' ', NPM1+NPM1+1, 1,
     $                       WORK( INV+LIIP1-1+BINDEX*LDV ),
     $                       NPM1+NPM1+1 )
            ELSE
               CALL DGEBR2D( ICTXT, 'R', ' ', NPM1+NPM1+1, 1,
     $                       WORK( INV+LIIP1-1+BINDEX*LDV ),
     $                       NPM1+NPM1+1, MYROW, CURCOL )
               TOPTAU = WORK( INV+LIIP1-1+BINDEX*LDV+NPM1+NPM1 )
            END IF
            DO 50 I = 0, NPM1 - 1
               WORK( INH+LIIP1-1+( BINDEX+1 )*LDV+I ) = WORK( INV+LIIP1-
     $            1+BINDEX*LDV+NPM1+I )
   50       CONTINUE
*
            IF( INDEX.LT.N ) THEN
               IF( MYROW.EQ.NXTROW .AND. MYCOL.EQ.CURCOL )
     $            A( LIIP1+( LIJ-1 )*LDA ) = E( LIJ )
            END IF
*
*     Transpose v, nh
*
*
            IF( MYROW.EQ.MYCOL ) THEN
               DO 60 I = 0, NPM1 + NPM1
                  WORK( INVT+LIJP1-1+BINDEX*LDV+I ) = WORK( INV+LIIP1-1+
     $               BINDEX*LDV+I )
   60          CONTINUE
            ELSE
               CALL DGESD2D( ICTXT, NPM1+NPM1, 1,
     $                       WORK( INV+LIIP1-1+BINDEX*LDV ), NPM1+NPM1,
     $                       MYCOL, MYROW )
               CALL DGERV2D( ICTXT, NQM1+NQM1, 1,
     $                       WORK( INVT+LIJP1-1+BINDEX*LDV ), NQM1+NQM1,
     $                       MYCOL, MYROW )
            END IF
*
            DO 70 I = 0, NQM1 - 1
               WORK( INHT+LIJP1-1+( BINDEX+1 )*LDV+I ) = WORK( INVT+
     $            LIJP1-1+BINDEX*LDV+NQM1+I )
   70       CONTINUE
*
*
*           Update the current block column of A
*
            IF( INDEX.GT.1 ) THEN
               DO 90 J = LIJP1, LIJB - 1
                  DO 80 I = 0, NPM1 - 1
*
                     A( LIIP1+I+( J-1 )*LDA ) = A( LIIP1+I+( J-1 )*LDA )
     $                   - WORK( INV+LIIP1-1+BINDEX*LDV+I )*
     $                  WORK( INHT+J-1+BINDEX*LDV ) -
     $                  WORK( INH+LIIP1-1+BINDEX*LDV+I )*
     $                  WORK( INVT+J-1+BINDEX*LDV )
   80             CONTINUE
   90          CONTINUE
            END IF
*
*
*
*     Compute NV = A * NHT; NVT = A * NH
*
*           These two lines are necessary because these elements
*           are not always involved in the calls to DTRMVT
*           for two reasons:
*           1)  On diagonal processors, the call to TRMVT
*               involves only LTNM1-1 elements
*           2)  On some processes, NQM1 < LTM1 or  LIIP1 < LTLIP1
*               and when the results are combined across all processes,
*               uninitialized values may be included.
            WORK( INV+LIIP1-1+( BINDEX+1 )*LDV ) = Z_ZERO
            WORK( INVT+LIJP1-1+( BINDEX+1 )*LDV+NQM1-1 ) = Z_ZERO
*
*
            IF( MYROW.EQ.MYCOL ) THEN
               IF( LTNM1.GT.1 ) THEN
                  CALL DTRMVT( 'L', LTNM1-1,
     $                         A( LTLIP1+1+( LIJP1-1 )*LDA ), LDA,
     $                         WORK( INVT+LIJP1-1+( BINDEX+1 )*LDV ), 1,
     $                         WORK( INH+LTLIP1+1-1+( BINDEX+1 )*LDV ),
     $                         1, WORK( INV+LTLIP1+1-1+( BINDEX+1 )*
     $                         LDV ), 1, WORK( INHT+LIJP1-1+( BINDEX+
     $                         1 )*LDV ), 1 )
               END IF
               DO 100 I = 1, LTNM1
                  WORK( INVT+LIJP1+I-1-1+( BINDEX+1 )*LDV )
     $               = WORK( INVT+LIJP1+I-1-1+( BINDEX+1 )*LDV ) +
     $               A( LTLIP1+I-1+( LIJP1+I-1-1 )*LDA )*
     $               WORK( INH+LTLIP1+I-1-1+( BINDEX+1 )*LDV )
  100          CONTINUE
            ELSE
               IF( LTNM1.GT.0 )
     $            CALL DTRMVT( 'L', LTNM1, A( LTLIP1+( LIJP1-1 )*LDA ),
     $                         LDA, WORK( INVT+LIJP1-1+( BINDEX+1 )*
     $                         LDV ), 1, WORK( INH+LTLIP1-1+( BINDEX+
     $                         1 )*LDV ), 1, WORK( INV+LTLIP1-1+
     $                         ( BINDEX+1 )*LDV ), 1,
     $                         WORK( INHT+LIJP1-1+( BINDEX+1 )*LDV ),
     $                         1 )
*
            END IF
*
*
*     We take advantage of the fact that:
*     A * sum( B ) = sum ( A * B ) for matrices A,B
*
*     trueA = A + V * HT + H * VT
*     hence:  (trueA)v = Av' + V * HT * v + H * VT * v
*     VT * v = sum_p_in_NPROW ( VTp * v )
*     H * VT * v = H * sum (VTp * v) = sum ( H * VTp * v )
*
*     v = v + V * HT * h + H * VT * h
*
*
*
*     tmp = HT * nh1
            DO 110 I = 1, 2*( BINDEX+1 )
               WORK( INTMP-1+I ) = 0
  110       CONTINUE
*
            IF( BALANCED ) THEN
               NPSET = NPROW
               MYSETNUM = MYROW
               ROWSPERPROC = ICEIL( NQB, NPSET )
               MYFIRSTROW = MIN( NQB+1, 1+ROWSPERPROC*MYSETNUM )
               NUMROWS = MIN( ROWSPERPROC, NQB-MYFIRSTROW+1 )
*
*
*     tmp = HT * v
*
               CALL DGEMV( 'C', NUMROWS, BINDEX+1, Z_ONE,
     $                     WORK( INHTB+MYFIRSTROW-1 ), LDV,
     $                     WORK( INHTB+MYFIRSTROW-1+( BINDEX+1 )*LDV ),
     $                     1, Z_ZERO, WORK( INTMP ), 1 )
*     tmp2 = VT * v
               CALL DGEMV( 'C', NUMROWS, BINDEX+1, Z_ONE,
     $                     WORK( INVTB+MYFIRSTROW-1 ), LDV,
     $                     WORK( INHTB+MYFIRSTROW-1+( BINDEX+1 )*LDV ),
     $                     1, Z_ZERO, WORK( INTMP+BINDEX+1 ), 1 )
*
*
               CALL DGSUM2D( ICTXT, 'C', ' ', 2*( BINDEX+1 ), 1,
     $                       WORK( INTMP ), 2*( BINDEX+1 ), -1, -1 )
            ELSE
*     tmp = HT * v
*
               CALL DGEMV( 'C', NQB, BINDEX+1, Z_ONE, WORK( INHTB ),
     $                     LDV, WORK( INHTB+( BINDEX+1 )*LDV ), 1,
     $                     Z_ZERO, WORK( INTMP ), 1 )
*     tmp2 = VT * v
               CALL DGEMV( 'C', NQB, BINDEX+1, Z_ONE, WORK( INVTB ),
     $                     LDV, WORK( INHTB+( BINDEX+1 )*LDV ), 1,
     $                     Z_ZERO, WORK( INTMP+BINDEX+1 ), 1 )
*
            END IF
*
*
*
            IF( BALANCED ) THEN
               MYSETNUM = MYCOL
*
               ROWSPERPROC = ICEIL( NPB, NPSET )
               MYFIRSTROW = MIN( NPB+1, 1+ROWSPERPROC*MYSETNUM )
               NUMROWS = MIN( ROWSPERPROC, NPB-MYFIRSTROW+1 )
*
               CALL DGSUM2D( ICTXT, 'R', ' ', 2*( BINDEX+1 ), 1,
     $                       WORK( INTMP ), 2*( BINDEX+1 ), -1, -1 )
*
*
*     v = v + V * tmp
               IF( INDEX.GT.1. ) THEN
                  CALL DGEMV( 'N', NUMROWS, BINDEX+1, Z_NEGONE,
     $                        WORK( INVB+MYFIRSTROW-1 ), LDV,
     $                        WORK( INTMP ), 1, Z_ONE,
     $                        WORK( INVB+MYFIRSTROW-1+( BINDEX+1 )*
     $                        LDV ), 1 )
*
*     v = v + H * tmp2
                  CALL DGEMV( 'N', NUMROWS, BINDEX+1, Z_NEGONE,
     $                        WORK( INHB+MYFIRSTROW-1 ), LDV,
     $                        WORK( INTMP+BINDEX+1 ), 1, Z_ONE,
     $                        WORK( INVB+MYFIRSTROW-1+( BINDEX+1 )*
     $                        LDV ), 1 )
               END IF
*
            ELSE
*     v = v + V * tmp
               CALL DGEMV( 'N', NPB, BINDEX+1, Z_NEGONE, WORK( INVB ),
     $                     LDV, WORK( INTMP ), 1, Z_ONE,
     $                     WORK( INVB+( BINDEX+1 )*LDV ), 1 )
*
*
*     v = v + H * tmp2
               CALL DGEMV( 'N', NPB, BINDEX+1, Z_NEGONE, WORK( INHB ),
     $                     LDV, WORK( INTMP+BINDEX+1 ), 1, Z_ONE,
     $                     WORK( INVB+( BINDEX+1 )*LDV ), 1 )
*
            END IF
*
*
*     Transpose NV and add it back into NVT
*
            IF( MYROW.EQ.MYCOL ) THEN
               DO 120 I = 0, NQM1 - 1
                  WORK( INTMP+I ) = WORK( INVT+LIJP1-1+( BINDEX+1 )*LDV+
     $                              I )
  120          CONTINUE
            ELSE
               CALL DGESD2D( ICTXT, NQM1, 1,
     $                       WORK( INVT+LIJP1-1+( BINDEX+1 )*LDV ),
     $                       NQM1, MYCOL, MYROW )
               CALL DGERV2D( ICTXT, NPM1, 1, WORK( INTMP ), NPM1, MYCOL,
     $                       MYROW )
*
            END IF
            DO 130 I = 0, NPM1 - 1
               WORK( INV+LIIP1-1+( BINDEX+1 )*LDV+I ) = WORK( INV+LIIP1-
     $            1+( BINDEX+1 )*LDV+I ) + WORK( INTMP+I )
  130       CONTINUE
*
*     Sum-to-one NV rowwise (within a row)
*
            CALL DGSUM2D( ICTXT, 'R', ' ', NPM1, 1,
     $                    WORK( INV+LIIP1-1+( BINDEX+1 )*LDV ), NPM1,
     $                    MYROW, NXTCOL )
*
*
*     Dot product c = NV * NH
*     Sum-to-all c within next processor column
*
*
            IF( MYCOL.EQ.NXTCOL ) THEN
               CC( 1 ) = Z_ZERO
               DO 140 I = 0, NPM1 - 1
                  CC( 1 ) = CC( 1 ) + WORK( INV+LIIP1-1+( BINDEX+1 )*
     $                      LDV+I )*WORK( INH+LIIP1-1+( BINDEX+1 )*LDV+
     $                      I )
  140          CONTINUE
               IF( MYROW.EQ.NXTROW ) THEN
                  CC( 2 ) = WORK( INV+LIIP1-1+( BINDEX+1 )*LDV )
                  CC( 3 ) = WORK( INH+LIIP1-1+( BINDEX+1 )*LDV )
               ELSE
                  CC( 2 ) = Z_ZERO
                  CC( 3 ) = Z_ZERO
               END IF
               CALL DGSUM2D( ICTXT, 'C', ' ', 3, 1, CC, 3, -1, NXTCOL )
*
               TOPV = CC( 2 )
               C = CC( 1 )
               TOPH = CC( 3 )
*
               TOPNV = TOPTAU*( TOPV-C*TOPTAU / 2*TOPH )
*
*
*     Compute V = Tau * (V - C * Tau' / 2 * H )
*
*
               DO 150 I = 0, NPM1 - 1
                  WORK( INV+LIIP1-1+( BINDEX+1 )*LDV+I ) = TOPTAU*
     $               ( WORK( INV+LIIP1-1+( BINDEX+1 )*LDV+I )-C*TOPTAU /
     $               2*WORK( INH+LIIP1-1+( BINDEX+1 )*LDV+I ) )
  150          CONTINUE
*
            END IF
*
*
  160    CONTINUE
*
*
*     Perform the rank2k update
*
         IF( MAXINDEX.LT.N ) THEN
*
            DO 170 I = 0, NPM1 - 1
               WORK( INTMP+I ) = WORK( INH+LIIP1-1+ANB*LDV+I )
  170       CONTINUE
*
*
*
            IF( .NOT.TWOGEMMS ) THEN
               IF( INTERLEAVE ) THEN
                  LDZG = LDV / 2
               ELSE
                  CALL DLAMOV( 'A', LTNM1, ANB, WORK( INHT+LIJP1-1 ),
     $                         LDV, WORK( INVT+LIJP1-1+ANB*LDV ), LDV )
*
                  CALL DLAMOV( 'A', LTNM1, ANB, WORK( INV+LTLIP1-1 ),
     $                         LDV, WORK( INH+LTLIP1-1+ANB*LDV ), LDV )
                  LDZG = LDV
               END IF
               NBZG = ANB*2
            ELSE
               LDZG = LDV
               NBZG = ANB
            END IF
*
*
            DO 180 PBMIN = 1, LTNM1, PNB
*
               PBSIZE = MIN( PNB, LTNM1-PBMIN+1 )
               PBMAX = MIN( LTNM1, PBMIN+PNB-1 )
               CALL DGEMM( 'N', 'C', PBSIZE, PBMAX, NBZG, Z_NEGONE,
     $                     WORK( INH+LTLIP1-1+PBMIN-1 ), LDZG,
     $                     WORK( INVT+LIJP1-1 ), LDZG, Z_ONE,
     $                     A( LTLIP1+PBMIN-1+( LIJP1-1 )*LDA ), LDA )
               IF( TWOGEMMS ) THEN
                  CALL DGEMM( 'N', 'C', PBSIZE, PBMAX, ANB, Z_NEGONE,
     $                        WORK( INV+LTLIP1-1+PBMIN-1 ), LDZG,
     $                        WORK( INHT+LIJP1-1 ), LDZG, Z_ONE,
     $                        A( LTLIP1+PBMIN-1+( LIJP1-1 )*LDA ), LDA )
               END IF
  180       CONTINUE
*
*
*
            DO 190 I = 0, NPM1 - 1
               WORK( INV+LIIP1-1+I ) = WORK( INV+LIIP1-1+ANB*LDV+I )
               WORK( INH+LIIP1-1+I ) = WORK( INTMP+I )
  190       CONTINUE
            DO 200 I = 0, NQM1 - 1
               WORK( INHT+LIJP1-1+I ) = WORK( INHT+LIJP1-1+ANB*LDV+I )
  200       CONTINUE
*
*
         END IF
*
*     End of the update A code
*
  210 CONTINUE
*
      IF( MYCOL.EQ.NXTCOL ) THEN
         IF( MYROW.EQ.NXTROW ) THEN
*
            D( NQ ) = A( NP+( NQ-1 )*LDA )
*
            CALL DGEBS2D( ICTXT, 'C', ' ', 1, 1, D( NQ ), 1 )
         ELSE
            CALL DGEBR2D( ICTXT, 'C', ' ', 1, 1, D( NQ ), 1, NXTROW,
     $                    NXTCOL )
         END IF
      END IF
*
*
*
*
      WORK( 1 ) = DBLE( LWMIN )
      RETURN
*
*     End of PDSYTTRD
*
*
      END
 |