| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 
 | /* ---------------------------------------------------------------------
*
*  -- PBLAS routine (version 2.0) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     April 1, 1998
*
*  ---------------------------------------------------------------------
*/
/*
*  Include files
*/
#include "pblas.h"
#include "PBpblas.h"
#include "PBtools.h"
#include "PBblacs.h"
#include "PBblas.h"
#ifdef __STDC__
void pztradd_( F_CHAR_T UPLO, F_CHAR_T TRANS, int * M, int * N,
               double * ALPHA,
               double * A, int * IA, int * JA, int * DESCA,
               double * BETA,
               double * C, int * IC, int * JC, int * DESCC )
#else
void pztradd_( UPLO, TRANS, M, N, ALPHA, A, IA, JA, DESCA, BETA,
               C, IC, JC, DESCC )
/*
*  .. Scalar Arguments ..
*/
   F_CHAR_T       TRANS, UPLO;
   int            * IA, * IC, * JA, * JC, * M, * N;
   double         * ALPHA, * BETA;
/*
*  .. Array Arguments ..
*/
   int            * DESCA, * DESCC;
   double         * A, * C;
#endif
{
/*
*  Purpose
*  =======
*
*  PZTRADD  adds a trapezoidal matrix to another
*
*     sub( C ) := beta*sub( C ) + alpha*op( sub( A ) )
*
*  where
*
*     sub( C ) denotes C(IC:IC+M-1,JC:JC+N-1),  and, op( X )  is one  of
*
*     op( X ) = X   or   op( X ) = X'   or   op( X ) = conjg( X' ).
*
*  Thus, op( sub( A ) ) denotes A(IA:IA+M-1,JA:JA+N-1)   if TRANS = 'N',
*                               A(IA:IA+N-1,JA:JA+M-1)'  if TRANS = 'T',
*                        conjg(A(IA:IA+N-1,JA:JA+M-1)')  if TRANS = 'C',
*
*  Alpha  and  beta  are scalars, sub( C ) and op( sub( A ) ) are m by n
*  upper or lower trapezoidal submatrices.
*
*  Notes
*  =====
*
*  A description  vector  is associated with each 2D block-cyclicly dis-
*  tributed matrix.  This  vector  stores  the  information  required to
*  establish the  mapping  between a  matrix entry and its corresponding
*  process and memory location.
*
*  In  the  following  comments,   the character _  should  be  read  as
*  "of  the  distributed  matrix".  Let  A  be a generic term for any 2D
*  block cyclicly distributed matrix.  Its description vector is DESC_A:
*
*  NOTATION         STORED IN       EXPLANATION
*  ---------------- --------------- ------------------------------------
*  DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type.
*  CTXT_A  (global) DESCA[ CTXT_  ] The BLACS context handle, indicating
*                                   the NPROW x NPCOL BLACS process grid
*                                   A  is  distributed over. The context
*                                   itself  is  global,  but  the handle
*                                   (the integer value) may vary.
*  M_A     (global) DESCA[ M_     ] The  number of rows in the distribu-
*                                   ted matrix A, M_A >= 0.
*  N_A     (global) DESCA[ N_     ] The number of columns in the distri-
*                                   buted matrix A, N_A >= 0.
*  IMB_A   (global) DESCA[ IMB_   ] The number of rows of the upper left
*                                   block of the matrix A, IMB_A > 0.
*  INB_A   (global) DESCA[ INB_   ] The  number  of columns of the upper
*                                   left   block   of   the  matrix   A,
*                                   INB_A > 0.
*  MB_A    (global) DESCA[ MB_    ] The blocking factor used to  distri-
*                                   bute the last  M_A-IMB_A  rows of A,
*                                   MB_A > 0.
*  NB_A    (global) DESCA[ NB_    ] The blocking factor used to  distri-
*                                   bute the last  N_A-INB_A  columns of
*                                   A, NB_A > 0.
*  RSRC_A  (global) DESCA[ RSRC_  ] The process row over which the first
*                                   row of the matrix  A is distributed,
*                                   NPROW > RSRC_A >= 0.
*  CSRC_A  (global) DESCA[ CSRC_  ] The  process column  over  which the
*                                   first column of  A  is  distributed.
*                                   NPCOL > CSRC_A >= 0.
*  LLD_A   (local)  DESCA[ LLD_   ] The  leading dimension  of the local
*                                   array  storing  the  local blocks of
*                                   the distributed matrix A,
*                                   IF( Lc( 1, N_A ) > 0 )
*                                      LLD_A >= MAX( 1, Lr( 1, M_A ) )
*                                   ELSE
*                                      LLD_A >= 1.
*
*  Let K be the number of  rows of a matrix A starting at the global in-
*  dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
*  that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
*  receive if these K rows were distributed over NPROW processes.  If  K
*  is the number of columns of a matrix  A  starting at the global index
*  JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number  of co-
*  lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would  receive if
*  these K columns were distributed over NPCOL processes.
*
*  The values of Lr() and Lc() may be determined via a call to the func-
*  tion PB_Cnumroc:
*  Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
*  Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
*
*  Arguments
*  =========
*
*  UPLO    (global input) CHARACTER*1
*          On  entry, UPLO specifies whether  the  local  pieces  of the
*          array C containing the upper or lower triangular part  of the
*          triangular submatrix sub( C ) is to be referenced as follows:
*
*             UPLO = 'U' or 'u'   Only the local pieces corresponding to
*                                 the   upper  triangular  part  of  the
*                                 triangular submatrix sub( C ) is to be
*                                 referenced,
*
*             UPLO = 'L' or 'l'   Only the local pieces corresponding to
*                                 the   lower  triangular  part  of  the
*                                 triangular submatrix sub( C ) is to be
*                                 referenced.
*
*  TRANS   (global input) CHARACTER*1
*          On entry,  TRANS   specifies the form of op( sub( A ) ) to be
*          used in the matrix addition as follows:
*
*             TRANS = 'N' or 'n'   op( sub( A ) ) = sub( A ),
*
*             TRANS = 'T' or 't'   op( sub( A ) ) = sub( A )',
*
*             TRANS = 'C' or 'c'   op( sub( A ) ) = conjg( sub( A )' ).
*
*  M       (global input) INTEGER
*          On entry,  M  specifies the number of rows of  the  submatrix
*          sub( C ) and the number of columns of the submatrix sub( A ).
*          M  must be at least zero.
*
*  N       (global input) INTEGER
*          On entry, N  specifies the number of columns of the submatrix
*          sub( C ) and the number of rows of the submatrix sub( A ).  N
*          must be at least zero.
*
*  ALPHA   (global input) COMPLEX*16
*          On entry, ALPHA specifies the scalar alpha.   When  ALPHA  is
*          supplied  as  zero  then  the  local entries of  the array  A
*          corresponding to the entries of the submatrix  sub( A )  need
*          not be set on input.
*
*  A       (local input) COMPLEX*16 array
*          On entry, A is an array of dimension (LLD_A, Ka), where Ka is
*          at least Lc( 1, JA+N-1 ) when  TRANS = 'N' or 'n'  and  is at
*          least Lc( 1, JA+M-1 ) otherwise.  Before  entry,  this  array
*          contains the local entries of the matrix A.
*          Before entry with UPLO = 'U' or 'u' and TRANS = 'N' or 'n' or
*          UPLO = 'L' or 'l' and  TRANS = 'T', 'C', 't' or 'c', this ar-
*          ray contains the local entries corresponding to  the  entries
*          of the upper triangular submatrix sub( A ), and the local en-
*          tries corresponding to the entries of the strictly lower tri-
*          angular part  of the submatrix  sub( A )  are not referenced.
*          Before entry with UPLO = 'L' or 'l' and TRANS = 'N' or 'n' or
*          UPLO = 'U' or 'u' and  TRANS = 'T', 'C', 't' or 'c', this ar-
*          ray contains the local entries corresponding  to the  entries
*          of the lower triangular submatrix sub( A ), and the local en-
*          tries corresponding to the entries of the strictly upper tri-
*          angular part  of the submatrix  sub( A )  are not referenced.
*
*  IA      (global input) INTEGER
*          On entry, IA  specifies A's global row index, which points to
*          the beginning of the submatrix sub( A ).
*
*  JA      (global input) INTEGER
*          On entry, JA  specifies A's global column index, which points
*          to the beginning of the submatrix sub( A ).
*
*  DESCA   (global and local input) INTEGER array
*          On entry, DESCA  is an integer array of dimension DLEN_. This
*          is the array descriptor for the matrix A.
*
*  BETA    (global input) COMPLEX*16
*          On entry,  BETA  specifies the scalar  beta.   When  BETA  is
*          supplied  as  zero  then  the  local entries of  the array  C
*          corresponding to the entries of the submatrix  sub( C )  need
*          not be set on input.
*
*  C       (local input/local output) COMPLEX*16 array
*          On entry, C is an array of dimension (LLD_C, Kc), where Kc is
*          at least Lc( 1, JC+N-1 ).  Before  entry, this array contains
*          the local entries of the matrix C.
*          Before  entry  with  UPLO = 'U' or 'u', this  array  contains
*          the local entries corresponding to the upper triangular  part
*          of the  triangular submatrix  sub( C ), and the local entries
*          corresponding to the  strictly lower triangular  of  sub( C )
*          are not  referenced.  On exit,  the upper triangular part  of
*          sub( C ) is overwritten by the  upper triangular part  of the
*          updated submatrix.
*          Before  entry  with  UPLO = 'L' or 'l', this  array  contains
*          the local entries corresponding to the lower triangular  part
*          of the  triangular submatrix  sub( C ), and the local entries
*          corresponding to the  strictly upper triangular  of  sub( C )
*          are not  referenced.  On exit,  the lower triangular part  of
*          sub( C ) is overwritten by the  lower triangular part  of the
*          updated submatrix.
*
*  IC      (global input) INTEGER
*          On entry, IC  specifies C's global row index, which points to
*          the beginning of the submatrix sub( C ).
*
*  JC      (global input) INTEGER
*          On entry, JC  specifies C's global column index, which points
*          to the beginning of the submatrix sub( C ).
*
*  DESCC   (global and local input) INTEGER array
*          On entry, DESCC  is an integer array of dimension DLEN_. This
*          is the array descriptor for the matrix C.
*
*  -- Written on April 1, 1998 by
*     Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
*
*  ---------------------------------------------------------------------
*/
/*
*  .. Local Scalars ..
*/
   char           DirAC, TranOp, UploC, ctop, rtop;
   int            Ai, Aj, Ci, Cj, ctxt, info, mycol, myrow, notran, npcol,
                  nprow, upper;
/*
*  .. Local Arrays ..
*/
   int            Ad[DLEN_], Cd[DLEN_];
/* ..
*  .. Executable Statements ..
*
*/
   upper  = ( ( UploC  = Mupcase( F2C_CHAR( UPLO  )[0] ) ) ==  CUPPER );
   notran = ( ( TranOp = Mupcase( F2C_CHAR( TRANS )[0] ) ) == CNOTRAN );
   PB_CargFtoC( *IA, *JA, DESCA, &Ai, &Aj, Ad );
   PB_CargFtoC( *IC, *JC, DESCC, &Ci, &Cj, Cd );
#ifndef NO_ARGCHK
/*
*  Test the input parameters
*/
   Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
   if( !( info = ( ( nprow == -1 ) ? -( 901 + CTXT_ ) : 0 ) ) )
   {
      if( ( !upper ) && ( UploC != CLOWER ) )
      {
         PB_Cwarn( ctxt, __LINE__, "PZTRADD", "Illegal UPLO = %c\n", UploC );
         info = -1;
      }
      else if( ( !notran ) && ( TranOp != CTRAN ) && ( TranOp != CCOTRAN ) )
      {
         PB_Cwarn( ctxt, __LINE__, "PZTRADD", "Illegal TRANS = %c\n", TranOp );
         info = -2;
      }
      if( notran )
         PB_Cchkmat( ctxt, "PZTRADD", "A", *M, 3, *N, 4, Ai, Aj, Ad,  9,
                     &info );
      else
         PB_Cchkmat( ctxt, "PZTRADD", "A", *N, 4, *M, 3, Ai, Aj, Ad,  9,
                     &info );
      PB_Cchkmat(    ctxt, "PZTRADD", "C", *M, 3, *N, 4, Ci, Cj, Cd, 14,
                     &info );
   }
   if( info ) { PB_Cabort( ctxt, "PZTRADD", info ); return; }
#endif
/*
*  Quick return if possible
*/
   if( ( *M == 0 ) || ( *N == 0 ) ||
       ( ( ALPHA[REAL_PART] == ZERO && ALPHA[IMAG_PART] == ZERO ) &&
         ( BETA [REAL_PART] ==  ONE && BETA [IMAG_PART] == ZERO ) ) )
      return;
/*
*  And when alpha is zero
*/
   if( ( ALPHA[REAL_PART] == ZERO ) && ( ALPHA[IMAG_PART] == ZERO ) )
   {
      if( ( BETA[REAL_PART] == ZERO ) && ( BETA[IMAG_PART] == ZERO ) )
      {
         PB_Cplapad( PB_Cztypeset(), &UploC, NOCONJG, *M, *N,
                     ((char *)BETA), ((char *)BETA), ((char *) C), Ci, Cj, Cd );
      }
      else
      {
         PB_Cplascal( PB_Cztypeset(), &UploC, NOCONJG, *M, *N,
                      ((char *)BETA), ((char * )C), Ci, Cj, Cd );
      }
      return;
   }
/*
*  Start the operations
*/
/*
*  This operation mainly involves point-to-point send and receive communication.
*  There is therefore no particular BLACS topology to recommend. Still, one can
*  choose the main loop direction in which the operands will be added, but not
*  transposed. This selection is based on the current setting for the BLACS
*  broadcast operations.
*/
   rtop = *PB_Ctop( &ctxt, BCAST, ROW,    TOP_GET );
   ctop = *PB_Ctop( &ctxt, BCAST, COLUMN, TOP_GET );
   if( *M <= *N )
      DirAC = ( rtop == CTOP_DRING ? CBACKWARD : CFORWARD );
   else
      DirAC = ( ctop == CTOP_DRING ? CBACKWARD : CFORWARD );
   PB_Cptradd( PB_Cztypeset(), &DirAC, &UploC, ( notran ? NOTRAN :
               ( ( TranOp == CCOTRAN ) ? COTRAN : TRAN ) ), *M, *N,
               ((char *) ALPHA), ((char *) A), Ai, Aj, Ad, ((char *)  BETA),
               ((char *) C), Ci, Cj, Cd );
/*
*  End of PZTRADD
*/
}
 |