1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
|
SUBROUTINE DLARRD2( RANGE, ORDER, N, VL, VU, IL, IU, GERS,
$ RELTOL, D, E, E2, PIVMIN, NSPLIT, ISPLIT,
$ M, W, WERR, WL, WU, IBLOCK, INDEXW,
$ WORK, IWORK, DOL, DOU, INFO )
*
* -- ScaLAPACK auxiliary routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, Univ of Colorado Denver
* July 4, 2010
*
* .. Scalar Arguments ..
CHARACTER ORDER, RANGE
INTEGER DOL, DOU, IL, INFO, IU, M, N, NSPLIT
DOUBLE PRECISION PIVMIN, RELTOL, VL, VU, WL, WU
* ..
* .. Array Arguments ..
INTEGER IBLOCK( * ), INDEXW( * ),
$ ISPLIT( * ), IWORK( * )
DOUBLE PRECISION D( * ), E( * ), E2( * ),
$ GERS( * ), W( * ), WERR( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* DLARRD2 computes the eigenvalues of a symmetric tridiagonal
* matrix T to limited initial accuracy. This is an auxiliary code to be
* called from DLARRE2A.
*
* DLARRD2 has been created using the LAPACK code DLARRD
* which itself stems from DSTEBZ. The motivation for creating
* DLARRD2 is efficiency: When computing eigenvalues in parallel
* and the input tridiagonal matrix splits into blocks, DLARRD2
* can skip over blocks which contain none of the eigenvalues from
* DOL to DOU for which the processor responsible. In extreme cases (such
* as large matrices consisting of many blocks of small size, e.g. 2x2,
* the gain can be substantial.
*
* Arguments
* =========
*
* RANGE (input) CHARACTER
* = 'A': ("All") all eigenvalues will be found.
* = 'V': ("Value") all eigenvalues in the half-open interval
* (VL, VU] will be found.
* = 'I': ("Index") the IL-th through IU-th eigenvalues (of the
* entire matrix) will be found.
*
* ORDER (input) CHARACTER
* = 'B': ("By Block") the eigenvalues will be grouped by
* split-off block (see IBLOCK, ISPLIT) and
* ordered from smallest to largest within
* the block.
* = 'E': ("Entire matrix")
* the eigenvalues for the entire matrix
* will be ordered from smallest to
* largest.
*
* N (input) INTEGER
* The order of the tridiagonal matrix T. N >= 0.
*
* VL (input) DOUBLE PRECISION
* VU (input) DOUBLE PRECISION
* If RANGE='V', the lower and upper bounds of the interval to
* be searched for eigenvalues. Eigenvalues less than or equal
* to VL, or greater than VU, will not be returned. VL < VU.
* Not referenced if RANGE = 'A' or 'I'.
*
* IL (input) INTEGER
* IU (input) INTEGER
* If RANGE='I', the indices (in ascending order) of the
* smallest and largest eigenvalues to be returned.
* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
* Not referenced if RANGE = 'A' or 'V'.
*
* GERS (input) DOUBLE PRECISION array, dimension (2*N)
* The N Gerschgorin intervals (the i-th Gerschgorin interval
* is (GERS(2*i-1), GERS(2*i)).
*
* RELTOL (input) DOUBLE PRECISION
* The minimum relative width of an interval. When an interval
* is narrower than RELTOL times the larger (in
* magnitude) endpoint, then it is considered to be
* sufficiently small, i.e., converged. Note: this should
* always be at least radix*machine epsilon.
*
* D (input) DOUBLE PRECISION array, dimension (N)
* The n diagonal elements of the tridiagonal matrix T.
*
* E (input) DOUBLE PRECISION array, dimension (N-1)
* The (n-1) off-diagonal elements of the tridiagonal matrix T.
*
* E2 (input) DOUBLE PRECISION array, dimension (N-1)
* The (n-1) squared off-diagonal elements of the tridiagonal matrix T.
*
* PIVMIN (input) DOUBLE PRECISION
* The minimum pivot allowed in the sturm sequence for T.
*
* NSPLIT (input) INTEGER
* The number of diagonal blocks in the matrix T.
* 1 <= NSPLIT <= N.
*
* ISPLIT (input) INTEGER array, dimension (N)
* The splitting points, at which T breaks up into submatrices.
* The first submatrix consists of rows/columns 1 to ISPLIT(1),
* the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
* etc., and the NSPLIT-th consists of rows/columns
* ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
* (Only the first NSPLIT elements will actually be used, but
* since the user cannot know a priori what value NSPLIT will
* have, N words must be reserved for ISPLIT.)
*
* M (output) INTEGER
* The actual number of eigenvalues found. 0 <= M <= N.
* (See also the description of INFO=2,3.)
*
* W (output) DOUBLE PRECISION array, dimension (N)
* On exit, the first M elements of W will contain the
* eigenvalue approximations. DLARRD2 computes an interval
* I_j = (a_j, b_j] that includes eigenvalue j. The eigenvalue
* approximation is given as the interval midpoint
* W(j)= ( a_j + b_j)/2. The corresponding error is bounded by
* WERR(j) = abs( a_j - b_j)/2
*
* WERR (output) DOUBLE PRECISION array, dimension (N)
* The error bound on the corresponding eigenvalue approximation
* in W.
*
* WL (output) DOUBLE PRECISION
* WU (output) DOUBLE PRECISION
* The interval (WL, WU] contains all the wanted eigenvalues.
* If RANGE='V', then WL=VL and WU=VU.
* If RANGE='A', then WL and WU are the global Gerschgorin bounds
* on the spectrum.
* If RANGE='I', then WL and WU are computed by DLAEBZ from the
* index range specified.
*
* IBLOCK (output) INTEGER array, dimension (N)
* At each row/column j where E(j) is zero or small, the
* matrix T is considered to split into a block diagonal
* matrix. On exit, if INFO = 0, IBLOCK(i) specifies to which
* block (from 1 to the number of blocks) the eigenvalue W(i)
* belongs. (DLARRD2 may use the remaining N-M elements as
* workspace.)
*
* INDEXW (output) INTEGER array, dimension (N)
* The indices of the eigenvalues within each block (submatrix);
* for example, INDEXW(i)= j and IBLOCK(i)=k imply that the
* i-th eigenvalue W(i) is the j-th eigenvalue in block k.
*
* WORK (workspace) DOUBLE PRECISION array, dimension (4*N)
*
* IWORK (workspace) INTEGER array, dimension (3*N)
*
* DOL (input) INTEGER
* DOU (input) INTEGER
* If the user wants to work on only a selected part of the
* representation tree, he can specify an index range DOL:DOU.
* Otherwise, the setting DOL=1, DOU=N should be applied.
* Note that DOL and DOU refer to the order in which the eigenvalues
* are stored in W.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: some or all of the eigenvalues failed to converge or
* were not computed:
* =1 or 3: Bisection failed to converge for some
* eigenvalues; these eigenvalues are flagged by a
* negative block number. The effect is that the
* eigenvalues may not be as accurate as the
* absolute and relative tolerances. This is
* generally caused by unexpectedly inaccurate
* arithmetic.
* =2 or 3: RANGE='I' only: Not all of the eigenvalues
* IL:IU were found.
* Effect: M < IU+1-IL
* Cause: non-monotonic arithmetic, causing the
* Sturm sequence to be non-monotonic.
* Cure: recalculate, using RANGE='A', and pick
* out eigenvalues IL:IU. In some cases,
* increasing the PARAMETER "FUDGE" may
* make things work.
* = 4: RANGE='I', and the Gershgorin interval
* initially used was too small. No eigenvalues
* were computed.
* Probable cause: your machine has sloppy
* floating-point arithmetic.
* Cure: Increase the PARAMETER "FUDGE",
* recompile, and try again.
*
* Internal Parameters
* ===================
*
* FUDGE DOUBLE PRECISION, default = 2 originally, increased to 10.
* A "fudge factor" to widen the Gershgorin intervals. Ideally,
* a value of 1 should work, but on machines with sloppy
* arithmetic, this needs to be larger. The default for
* publicly released versions should be large enough to handle
* the worst machine around. Note that this has no effect
* on accuracy of the solution.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, HALF, FUDGE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0,
$ TWO = 2.0D0, HALF = ONE/TWO,
$ FUDGE = 10.0D0 )
* ..
* .. Local Scalars ..
LOGICAL NCNVRG, TOOFEW
INTEGER I, IB, IBEGIN, IDISCL, IDISCU, IE, IEND, IINFO,
$ IM, IN, IOFF, IORDER, IOUT, IRANGE, ITMAX,
$ ITMP1, ITMP2, IW, IWOFF, J, JBLK, JDISC, JE,
$ JEE, NB, NWL, NWU
DOUBLE PRECISION ATOLI, EPS, GL, GU, RTOLI, SPDIAM, TMP1, TMP2,
$ TNORM, UFLOW, WKILL, WLU, WUL
* ..
* .. Local Arrays ..
INTEGER IDUMMA( 1 )
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
DOUBLE PRECISION DLAMCH
EXTERNAL LSAME, ILAENV, DLAMCH
* ..
* .. External Subroutines ..
EXTERNAL DLAEBZ
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, INT, LOG, MAX, MIN, SQRT
* ..
* .. Executable Statements ..
*
INFO = 0
*
* Decode RANGE
*
IF( LSAME( RANGE, 'A' ) ) THEN
IRANGE = 1
ELSE IF( LSAME( RANGE, 'V' ) ) THEN
IRANGE = 2
ELSE IF( LSAME( RANGE, 'I' ) ) THEN
IRANGE = 3
ELSE
IRANGE = 0
END IF
*
* Decode ORDER
*
IF( LSAME( ORDER, 'B' ) ) THEN
IORDER = 2
ELSE IF( LSAME( ORDER, 'E' ) ) THEN
IORDER = 1
ELSE
IORDER = 0
END IF
*
* Check for Errors
*
IF( IRANGE.LE.0 ) THEN
INFO = -1
ELSE IF( IORDER.LE.0 ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( IRANGE.EQ.2 ) THEN
IF( VL.GE.VU )
$ INFO = -5
ELSE IF( IRANGE.EQ.3 .AND. ( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) )
$ THEN
INFO = -6
ELSE IF( IRANGE.EQ.3 .AND. ( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) )
$ THEN
INFO = -7
END IF
*
IF( INFO.NE.0 ) THEN
RETURN
END IF
* Initialize error flags
INFO = 0
NCNVRG = .FALSE.
TOOFEW = .FALSE.
* Quick return if possible
M = 0
IF( N.EQ.0 ) RETURN
* Simplification:
IF( IRANGE.EQ.3 .AND. IL.EQ.1 .AND. IU.EQ.N ) IRANGE = 1
* Get machine constants
EPS = DLAMCH( 'P' )
UFLOW = DLAMCH( 'U' )
* Special Case when N=1
* Treat case of 1x1 matrix for quick return
IF( N.EQ.1 ) THEN
IF( (IRANGE.EQ.1).OR.
$ ((IRANGE.EQ.2).AND.(D(1).GT.VL).AND.(D(1).LE.VU)).OR.
$ ((IRANGE.EQ.3).AND.(IL.EQ.1).AND.(IU.EQ.1)) ) THEN
M = 1
W(1) = D(1)
* The computation error of the eigenvalue is zero
WERR(1) = ZERO
IBLOCK( 1 ) = 1
INDEXW( 1 ) = 1
ENDIF
RETURN
END IF
* NB is the minimum vector length for vector bisection, or 0
* if only scalar is to be done.
NB = ILAENV( 1, 'DSTEBZ', ' ', N, -1, -1, -1 )
IF( NB.LE.1 ) NB = 0
* Find global spectral radius
GL = D(1)
GU = D(1)
DO 5 I = 1,N
GL = MIN( GL, GERS( 2*I - 1))
GU = MAX( GU, GERS(2*I) )
5 CONTINUE
* Compute global Gerschgorin bounds and spectral diameter
TNORM = MAX( ABS( GL ), ABS( GU ) )
GL = GL - FUDGE*TNORM*EPS*N - FUDGE*TWO*PIVMIN
GU = GU + FUDGE*TNORM*EPS*N + FUDGE*TWO*PIVMIN
SPDIAM = GU - GL
* Input arguments for DLAEBZ:
* The relative tolerance. An interval (a,b] lies within
* "relative tolerance" if b-a < RELTOL*max(|a|,|b|),
RTOLI = RELTOL
ATOLI = FUDGE*TWO*UFLOW + FUDGE*TWO*PIVMIN
IF( IRANGE.EQ.3 ) THEN
* RANGE='I': Compute an interval containing eigenvalues
* IL through IU. The initial interval [GL,GU] from the global
* Gerschgorin bounds GL and GU is refined by DLAEBZ.
ITMAX = INT( ( LOG( TNORM+PIVMIN )-LOG( PIVMIN ) ) /
$ LOG( TWO ) ) + 2
WORK( N+1 ) = GL
WORK( N+2 ) = GL
WORK( N+3 ) = GU
WORK( N+4 ) = GU
WORK( N+5 ) = GL
WORK( N+6 ) = GU
IWORK( 1 ) = -1
IWORK( 2 ) = -1
IWORK( 3 ) = N + 1
IWORK( 4 ) = N + 1
IWORK( 5 ) = IL - 1
IWORK( 6 ) = IU
*
CALL DLAEBZ( 3, ITMAX, N, 2, 2, NB, ATOLI, RTOLI, PIVMIN,
$ D, E, E2, IWORK( 5 ), WORK( N+1 ), WORK( N+5 ), IOUT,
$ IWORK, W, IBLOCK, IINFO )
IF( IINFO .NE. 0 ) THEN
INFO = IINFO
RETURN
END IF
* On exit, output intervals may not be ordered by ascending negcount
IF( IWORK( 6 ).EQ.IU ) THEN
WL = WORK( N+1 )
WLU = WORK( N+3 )
NWL = IWORK( 1 )
WU = WORK( N+4 )
WUL = WORK( N+2 )
NWU = IWORK( 4 )
ELSE
WL = WORK( N+2 )
WLU = WORK( N+4 )
NWL = IWORK( 2 )
WU = WORK( N+3 )
WUL = WORK( N+1 )
NWU = IWORK( 3 )
END IF
* On exit, the interval [WL, WLU] contains a value with negcount NWL,
* and [WUL, WU] contains a value with negcount NWU.
IF( NWL.LT.0 .OR. NWL.GE.N .OR. NWU.LT.1 .OR. NWU.GT.N ) THEN
INFO = 4
RETURN
END IF
ELSEIF( IRANGE.EQ.2 ) THEN
WL = VL
WU = VU
ELSEIF( IRANGE.EQ.1 ) THEN
WL = GL
WU = GU
ENDIF
* Find Eigenvalues -- Loop Over blocks and recompute NWL and NWU.
* NWL accumulates the number of eigenvalues .le. WL,
* NWU accumulates the number of eigenvalues .le. WU
M = 0
IEND = 0
INFO = 0
NWL = 0
NWU = 0
*
DO 70 JBLK = 1, NSPLIT
IOFF = IEND
IBEGIN = IOFF + 1
IEND = ISPLIT( JBLK )
IN = IEND - IOFF
*
IF( IRANGE.EQ.1 ) THEN
IF( (IEND.LT.DOL).OR.(IBEGIN.GT.DOU) ) THEN
* the local block contains none of eigenvalues that matter
* to this processor
NWU = NWU + IN
DO 30 J = 1, IN
M = M + 1
IBLOCK( M ) = JBLK
30 CONTINUE
GO TO 70
END IF
END IF
IF( IN.EQ.1 ) THEN
* 1x1 block
IF( WL.GE.D( IBEGIN )-PIVMIN )
$ NWL = NWL + 1
IF( WU.GE.D( IBEGIN )-PIVMIN )
$ NWU = NWU + 1
IF( IRANGE.EQ.1 .OR. ( WL.LT.D( IBEGIN )-PIVMIN .AND. WU.GE.
$ D( IBEGIN )-PIVMIN ) ) THEN
M = M + 1
W( M ) = D( IBEGIN )
WERR(M) = ZERO
* The gap for a single block doesn't matter for the later
* algorithm and is assigned an arbitrary large value
IBLOCK( M ) = JBLK
INDEXW( M ) = 1
END IF
ELSE
* General Case - block of size IN > 2
* Compute local Gerschgorin interval and use it as the initial
* interval for DLAEBZ
GU = D( IBEGIN )
GL = D( IBEGIN )
TMP1 = ZERO
DO 40 J = IBEGIN, IEND
GL = MIN( GL, GERS( 2*J - 1))
GU = MAX( GU, GERS(2*J) )
40 CONTINUE
SPDIAM = GU - GL
GL = GL - FUDGE*TNORM*EPS*IN - FUDGE*PIVMIN
GU = GU + FUDGE*TNORM*EPS*IN + FUDGE*PIVMIN
*
IF( IRANGE.GT.1 ) THEN
IF( GU.LT.WL ) THEN
* the local block contains none of the wanted eigenvalues
NWL = NWL + IN
NWU = NWU + IN
GO TO 70
END IF
* refine search interval if possible, only range (WL,WU] matters
GL = MAX( GL, WL )
GU = MIN( GU, WU )
IF( GL.GE.GU )
$ GO TO 70
END IF
* Find negcount of initial interval boundaries GL and GU
WORK( N+1 ) = GL
WORK( N+IN+1 ) = GU
CALL DLAEBZ( 1, 0, IN, IN, 1, NB, ATOLI, RTOLI, PIVMIN,
$ D( IBEGIN ), E( IBEGIN ), E2( IBEGIN ),
$ IDUMMA, WORK( N+1 ), WORK( N+2*IN+1 ), IM,
$ IWORK, W( M+1 ), IBLOCK( M+1 ), IINFO )
IF( IINFO .NE. 0 ) THEN
INFO = IINFO
RETURN
END IF
*
NWL = NWL + IWORK( 1 )
NWU = NWU + IWORK( IN+1 )
IWOFF = M - IWORK( 1 )
* Compute Eigenvalues
ITMAX = INT( ( LOG( GU-GL+PIVMIN )-LOG( PIVMIN ) ) /
$ LOG( TWO ) ) + 2
CALL DLAEBZ( 2, ITMAX, IN, IN, 1, NB, ATOLI, RTOLI, PIVMIN,
$ D( IBEGIN ), E( IBEGIN ), E2( IBEGIN ),
$ IDUMMA, WORK( N+1 ), WORK( N+2*IN+1 ), IOUT,
$ IWORK, W( M+1 ), IBLOCK( M+1 ), IINFO )
IF( IINFO .NE. 0 ) THEN
INFO = IINFO
RETURN
END IF
*
* Copy eigenvalues into W and IBLOCK
* Use -JBLK for block number for unconverged eigenvalues.
* Loop over the number of output intervals from DLAEBZ
DO 60 J = 1, IOUT
* eigenvalue approximation is middle point of interval
TMP1 = HALF*( WORK( J+N )+WORK( J+IN+N ) )
* semi length of error interval
TMP2 = HALF*ABS( WORK( J+N )-WORK( J+IN+N ) )
IF( J.GT.IOUT-IINFO ) THEN
* Flag non-convergence.
NCNVRG = .TRUE.
IB = -JBLK
ELSE
IB = JBLK
END IF
DO 50 JE = IWORK( J ) + 1 + IWOFF,
$ IWORK( J+IN ) + IWOFF
W( JE ) = TMP1
WERR( JE ) = TMP2
INDEXW( JE ) = JE - IWOFF
IBLOCK( JE ) = IB
50 CONTINUE
60 CONTINUE
*
M = M + IM
END IF
70 CONTINUE
* If RANGE='I', then (WL,WU) contains eigenvalues NWL+1,...,NWU
* If NWL+1 < IL or NWU > IU, discard extra eigenvalues.
IF( IRANGE.EQ.3 ) THEN
IDISCL = IL - 1 - NWL
IDISCU = NWU - IU
*
IF( IDISCL.GT.0 ) THEN
IM = 0
DO 80 JE = 1, M
* Remove some of the smallest eigenvalues from the left so that
* at the end IDISCL =0. Move all eigenvalues up to the left.
IF( W( JE ).LE.WLU .AND. IDISCL.GT.0 ) THEN
IDISCL = IDISCL - 1
ELSE
IM = IM + 1
W( IM ) = W( JE )
WERR( IM ) = WERR( JE )
INDEXW( IM ) = INDEXW( JE )
IBLOCK( IM ) = IBLOCK( JE )
END IF
80 CONTINUE
M = IM
END IF
IF( IDISCU.GT.0 ) THEN
* Remove some of the largest eigenvalues from the right so that
* at the end IDISCU =0. Move all eigenvalues up to the left.
IM=M+1
DO 81 JE = M, 1, -1
IF( W( JE ).GE.WUL .AND. IDISCU.GT.0 ) THEN
IDISCU = IDISCU - 1
ELSE
IM = IM - 1
W( IM ) = W( JE )
WERR( IM ) = WERR( JE )
INDEXW( IM ) = INDEXW( JE )
IBLOCK( IM ) = IBLOCK( JE )
END IF
81 CONTINUE
JEE = 0
DO 82 JE = IM, M
JEE = JEE + 1
W( JEE ) = W( JE )
WERR( JEE ) = WERR( JE )
INDEXW( JEE ) = INDEXW( JE )
IBLOCK( JEE ) = IBLOCK( JE )
82 CONTINUE
M = M-IM+1
END IF
IF( IDISCL.GT.0 .OR. IDISCU.GT.0 ) THEN
* Code to deal with effects of bad arithmetic. (If N(w) is
* monotone non-decreasing, this should never happen.)
* Some low eigenvalues to be discarded are not in (WL,WLU],
* or high eigenvalues to be discarded are not in (WUL,WU]
* so just kill off the smallest IDISCL/largest IDISCU
* eigenvalues, by marking the corresponding IBLOCK = 0
IF( IDISCL.GT.0 ) THEN
WKILL = WU
DO 100 JDISC = 1, IDISCL
IW = 0
DO 90 JE = 1, M
IF( IBLOCK( JE ).NE.0 .AND.
$ ( W( JE ).LT.WKILL .OR. IW.EQ.0 ) ) THEN
IW = JE
WKILL = W( JE )
END IF
90 CONTINUE
IBLOCK( IW ) = 0
100 CONTINUE
END IF
IF( IDISCU.GT.0 ) THEN
WKILL = WL
DO 120 JDISC = 1, IDISCU
IW = 0
DO 110 JE = 1, M
IF( IBLOCK( JE ).NE.0 .AND.
$ ( W( JE ).GE.WKILL .OR. IW.EQ.0 ) ) THEN
IW = JE
WKILL = W( JE )
END IF
110 CONTINUE
IBLOCK( IW ) = 0
120 CONTINUE
END IF
* Now erase all eigenvalues with IBLOCK set to zero
IM = 0
DO 130 JE = 1, M
IF( IBLOCK( JE ).NE.0 ) THEN
IM = IM + 1
W( IM ) = W( JE )
WERR( IM ) = WERR( JE )
INDEXW( IM ) = INDEXW( JE )
IBLOCK( IM ) = IBLOCK( JE )
END IF
130 CONTINUE
M = IM
END IF
IF( IDISCL.LT.0 .OR. IDISCU.LT.0 ) THEN
TOOFEW = .TRUE.
END IF
END IF
*
IF(( IRANGE.EQ.1 .AND. M.NE.N ).OR.
$ ( IRANGE.EQ.3 .AND. M.NE.IU-IL+1 ) ) THEN
TOOFEW = .TRUE.
END IF
* If ORDER='B',(IBLOCK = 2), do nothing the eigenvalues are already sorted
* by block.
* If ORDER='E',(IBLOCK = 1), sort the eigenvalues from smallest to largest
IF( IORDER.EQ.1 .AND. NSPLIT.GT.1 ) THEN
DO 150 JE = 1, M - 1
IE = 0
TMP1 = W( JE )
DO 140 J = JE + 1, M
IF( W( J ).LT.TMP1 ) THEN
IE = J
TMP1 = W( J )
END IF
140 CONTINUE
IF( IE.NE.0 ) THEN
TMP2 = WERR( IE )
ITMP1 = IBLOCK( IE )
ITMP2 = INDEXW( IE )
W( IE ) = W( JE )
WERR( IE ) = WERR( JE )
IBLOCK( IE ) = IBLOCK( JE )
INDEXW( IE ) = INDEXW( JE )
W( JE ) = TMP1
WERR( JE ) = TMP2
IBLOCK( JE ) = ITMP1
INDEXW( JE ) = ITMP2
END IF
150 CONTINUE
END IF
*
INFO = 0
IF( NCNVRG )
$ INFO = INFO + 1
IF( TOOFEW )
$ INFO = INFO + 2
RETURN
*
* End of DLARRD2
*
END
|