1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
|
SUBROUTINE PDHSEQR( JOB, COMPZ, N, ILO, IHI, H, DESCH, WR, WI, Z,
$ DESCZ, WORK, LWORK, IWORK, LIWORK, INFO )
*
* Contribution from the Department of Computing Science and HPC2N,
* Umea University, Sweden
*
* -- ScaLAPACK driver routine (version 2.0.1) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* Univ. of Colorado Denver and University of California, Berkeley.
* January, 2012
*
IMPLICIT NONE
*
* .. Scalar Arguments ..
INTEGER IHI, ILO, INFO, LWORK, LIWORK, N
CHARACTER COMPZ, JOB
* ..
* .. Array Arguments ..
INTEGER DESCH( * ) , DESCZ( * ), IWORK( * )
DOUBLE PRECISION H( * ), WI( N ), WORK( * ), WR( N ), Z( * )
* ..
* Purpose
* =======
*
* PDHSEQR computes the eigenvalues of an upper Hessenberg matrix H
* and, optionally, the matrices T and Z from the Schur decomposition
* H = Z*T*Z**T, where T is an upper quasi-triangular matrix (the
* Schur form), and Z is the orthogonal matrix of Schur vectors.
*
* Optionally Z may be postmultiplied into an input orthogonal
* matrix Q so that this routine can give the Schur factorization
* of a matrix A which has been reduced to the Hessenberg form H
* by the orthogonal matrix Q: A = Q*H*Q**T = (QZ)*T*(QZ)**T.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* JOB (global input) CHARACTER*1
* = 'E': compute eigenvalues only;
* = 'S': compute eigenvalues and the Schur form T.
*
* COMPZ (global input) CHARACTER*1
* = 'N': no Schur vectors are computed;
* = 'I': Z is initialized to the unit matrix and the matrix Z
* of Schur vectors of H is returned;
* = 'V': Z must contain an orthogonal matrix Q on entry, and
* the product Q*Z is returned.
*
* N (global input) INTEGER
* The order of the Hessenberg matrix H (and Z if WANTZ).
* N >= 0.
*
* ILO (global input) INTEGER
* IHI (global input) INTEGER
* It is assumed that H is already upper triangular in rows
* and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
* set by a previous call to PDGEBAL, and then passed to PDGEHRD
* when the matrix output by PDGEBAL is reduced to Hessenberg
* form. Otherwise ILO and IHI should be set to 1 and N
* respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
* If N = 0, then ILO = 1 and IHI = 0.
*
* H (global input/output) DOUBLE PRECISION array, dimension
* (DESCH(LLD_),*)
* On entry, the upper Hessenberg matrix H.
* On exit, if JOB = 'S', H is upper quasi-triangular in
* rows and columns ILO:IHI, with 1-by-1 and 2-by-2 blocks on
* the main diagonal. The 2-by-2 diagonal blocks (corresponding
* to complex conjugate pairs of eigenvalues) are returned in
* standard form, with H(i,i) = H(i+1,i+1) and
* H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and JOB = 'E', the
* contents of H are unspecified on exit.
*
* DESCH (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix H.
*
* WR (global output) DOUBLE PRECISION array, dimension (N)
* WI (global output) DOUBLE PRECISION array, dimension (N)
* The real and imaginary parts, respectively, of the computed
* eigenvalues ILO to IHI are stored in the corresponding
* elements of WR and WI. If two eigenvalues are computed as a
* complex conjugate pair, they are stored in consecutive
* elements of WR and WI, say the i-th and (i+1)th, with
* WI(i) > 0 and WI(i+1) < 0. If JOB = 'S', the
* eigenvalues are stored in the same order as on the diagonal
* of the Schur form returned in H.
*
* Z (global input/output) DOUBLE PRECISION array.
* If COMPZ = 'V', on entry Z must contain the current
* matrix Z of accumulated transformations from, e.g., PDGEHRD,
* and on exit Z has been updated; transformations are applied
* only to the submatrix Z(ILO:IHI,ILO:IHI).
* If COMPZ = 'N', Z is not referenced.
* If COMPZ = 'I', on entry Z need not be set and on exit,
* if INFO = 0, Z contains the orthogonal matrix Z of the Schur
* vectors of H.
*
* DESCZ (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix Z.
*
* WORK (local workspace) DOUBLE PRECISION array, dimension(LWORK)
*
* LWORK (local input) INTEGER
* The length of the workspace array WORK.
*
* IWORK (local workspace) INTEGER array, dimension (LIWORK)
*
* LIWORK (local input) INTEGER
* The length of the workspace array IWORK.
*
* INFO (output) INTEGER
* = 0: successful exit
* .LT. 0: if INFO = -i, the i-th argument had an illegal
* value (see also below for -7777 and -8888).
* .GT. 0: if INFO = i, PDHSEQR failed to compute all of
* the eigenvalues. Elements 1:ilo-1 and i+1:n of WR
* and WI contain those eigenvalues which have been
* successfully computed. (Failures are rare.)
*
* If INFO .GT. 0 and JOB = 'E', then on exit, the
* remaining unconverged eigenvalues are the eigen-
* values of the upper Hessenberg matrix rows and
* columns ILO through INFO of the final, output
* value of H.
*
* If INFO .GT. 0 and JOB = 'S', then on exit
*
* (*) (initial value of H)*U = U*(final value of H)
*
* where U is an orthogonal matrix. The final
* value of H is upper Hessenberg and quasi-triangular
* in rows and columns INFO+1 through IHI.
*
* If INFO .GT. 0 and COMPZ = 'V', then on exit
*
* (final value of Z) = (initial value of Z)*U
*
* where U is the orthogonal matrix in (*) (regard-
* less of the value of JOB.)
*
* If INFO .GT. 0 and COMPZ = 'I', then on exit
* (final value of Z) = U
* where U is the orthogonal matrix in (*) (regard-
* less of the value of JOB.)
*
* If INFO .GT. 0 and COMPZ = 'N', then Z is not
* accessed.
*
* = -7777: PDLAQR0 failed to converge and PDLAQR1 was called
* instead. This could happen. Mostly due to a bug.
* Please, send a bug report to the authors.
* = -8888: PDLAQR1 failed to converge and PDLAQR0 was called
* instead. This should not happen.
*
* ================================================================
* Based on contributions by
* Robert Granat, Department of Computing Science and HPC2N,
* Umea University, Sweden.
* ================================================================
*
* Restrictions: The block size in H and Z must be square and larger
* than or equal to six (6) due to restrictions in PDLAQR1, PDLAQR5
* and DLAQR6. Moreover, H and Z need to be distributed identically
* with the same context.
*
* ================================================================
* References:
* K. Braman, R. Byers, and R. Mathias,
* The Multi-Shift QR Algorithm Part I: Maintaining Well Focused
* Shifts, and Level 3 Performance.
* SIAM J. Matrix Anal. Appl., 23(4):929--947, 2002.
*
* K. Braman, R. Byers, and R. Mathias,
* The Multi-Shift QR Algorithm Part II: Aggressive Early
* Deflation.
* SIAM J. Matrix Anal. Appl., 23(4):948--973, 2002.
*
* R. Granat, B. Kagstrom, and D. Kressner,
* A Novel Parallel QR Algorithm for Hybrid Distributed Momory HPC
* Systems.
* SIAM J. Sci. Comput., 32(4):2345--2378, 2010.
*
* ================================================================
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
LOGICAL CRSOVER
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9,
$ CRSOVER = .TRUE. )
INTEGER NTINY
PARAMETER ( NTINY = 11 )
INTEGER NL
PARAMETER ( NL = 49 )
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
* ..
* .. Local Scalars ..
INTEGER I, KBOT, NMIN, LLDH, LLDZ, ICTXT, NPROW, NPCOL,
$ MYROW, MYCOL, HROWS, HCOLS, IPW, NH, NB,
$ II, JJ, HRSRC, HCSRC, NPROCS, ILOC1, JLOC1,
$ HRSRC1, HCSRC1, K, ILOC2, JLOC2, ILOC3, JLOC3,
$ ILOC4, JLOC4, HRSRC2, HCSRC2, HRSRC3, HCSRC3,
$ HRSRC4, HCSRC4, LIWKOPT
LOGICAL INITZ, LQUERY, WANTT, WANTZ, PAIR, BORDER
DOUBLE PRECISION TMP1, TMP2, TMP3, TMP4, DUM1, DUM2, DUM3,
$ DUM4, ELEM1, ELEM2, ELEM3, ELEM4,
$ CS, SN, ELEM5, TMP, LWKOPT
* ..
* .. Local Arrays ..
INTEGER DESCH2( DLEN_ )
* ..
* .. External Functions ..
INTEGER PILAENVX, NUMROC, ICEIL
LOGICAL LSAME
EXTERNAL PILAENVX, LSAME, NUMROC, ICEIL
* ..
* .. External Subroutines ..
EXTERNAL PDLACPY, PDLAQR1, PDLAQR0, PDLASET, PXERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN
* ..
* .. Executable Statements ..
*
* Decode and check the input parameters.
*
INFO = 0
ICTXT = DESCH( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
NPROCS = NPROW*NPCOL
IF( NPROW.EQ.-1 ) INFO = -(600+CTXT_)
IF( INFO.EQ.0 ) THEN
WANTT = LSAME( JOB, 'S' )
INITZ = LSAME( COMPZ, 'I' )
WANTZ = INITZ .OR. LSAME( COMPZ, 'V' )
LLDH = DESCH( LLD_ )
LLDZ = DESCZ( LLD_ )
NB = DESCH( MB_ )
LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
*
IF( .NOT.LSAME( JOB, 'E' ) .AND. .NOT.WANTT ) THEN
INFO = -1
ELSE IF( .NOT.LSAME( COMPZ, 'N' ) .AND. .NOT.WANTZ ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
INFO = -4
ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
INFO = -5
ELSEIF( DESCZ( CTXT_ ).NE.DESCH( CTXT_ ) ) THEN
INFO = -( 1000+CTXT_ )
ELSEIF( DESCH( MB_ ).NE.DESCH( NB_ ) ) THEN
INFO = -( 700+NB_ )
ELSEIF( DESCZ( MB_ ).NE.DESCZ( NB_ ) ) THEN
INFO = -( 1000+NB_ )
ELSEIF( DESCH( MB_ ).NE.DESCZ( MB_ ) ) THEN
INFO = -( 1000+MB_ )
ELSEIF( DESCH( MB_ ).LT.6 ) THEN
INFO = -( 700+NB_ )
ELSEIF( DESCZ( MB_ ).LT.6 ) THEN
INFO = -( 1000+MB_ )
ELSE
CALL CHK1MAT( N, 3, N, 3, 1, 1, DESCH, 7, INFO )
IF( INFO.EQ.0 )
$ CALL CHK1MAT( N, 3, N, 3, 1, 1, DESCZ, 11, INFO )
IF( INFO.EQ.0 )
$ CALL PCHK2MAT( N, 3, N, 3, 1, 1, DESCH, 7, N, 3, N, 3,
$ 1, 1, DESCZ, 11, 0, IWORK, IWORK, INFO )
END IF
END IF
*
* Compute required workspace.
*
CALL PDLAQR1( WANTT, WANTZ, N, ILO, IHI, H, DESCH, WR, WI,
$ ILO, IHI, Z, DESCZ, WORK, -1, IWORK, -1, INFO )
LWKOPT = WORK(1)
LIWKOPT = IWORK(1)
CALL PDLAQR0( WANTT, WANTZ, N, ILO, IHI, H, DESCH, WR, WI,
$ ILO, IHI, Z, DESCZ, WORK, -1, IWORK, -1, INFO, 0 )
IF( N.LT.NL ) THEN
HROWS = NUMROC( NL, NB, MYROW, DESCH(RSRC_), NPROW )
HCOLS = NUMROC( NL, NB, MYCOL, DESCH(CSRC_), NPCOL )
WORK(1) = WORK(1) + DBLE(2*HROWS*HCOLS)
END IF
LWKOPT = MAX( LWKOPT, WORK(1) )
LIWKOPT = MAX( LIWKOPT, IWORK(1) )
WORK(1) = LWKOPT
IWORK(1) = LIWKOPT
*
IF( .NOT.LQUERY .AND. LWORK.LT.INT(LWKOPT) ) THEN
INFO = -13
ELSEIF( .NOT.LQUERY .AND. LIWORK.LT.LIWKOPT ) THEN
INFO = -15
END IF
*
IF( INFO.NE.0 ) THEN
*
* Quick return in case of invalid argument.
*
CALL PXERBLA( ICTXT, 'PDHSEQR', -INFO )
RETURN
*
ELSE IF( N.EQ.0 ) THEN
*
* Quick return in case N = 0; nothing to do.
*
RETURN
*
ELSE IF( LQUERY ) THEN
*
* Quick return in case of a workspace query.
*
RETURN
*
ELSE
*
* Copy eigenvalues isolated by PDGEBAL.
*
DO 10 I = 1, ILO - 1
CALL INFOG2L( I, I, DESCH, NPROW, NPCOL, MYROW, MYCOL, II,
$ JJ, HRSRC, HCSRC )
IF( MYROW.EQ.HRSRC .AND. MYCOL.EQ.HCSRC ) THEN
WR( I ) = H( (JJ-1)*LLDH + II )
ELSE
WR( I ) = ZERO
END IF
WI( I ) = ZERO
10 CONTINUE
IF( ILO.GT.1 )
$ CALL DGSUM2D( ICTXT, 'All', '1-Tree', ILO-1, 1, WR, N, -1,
$ -1 )
DO 20 I = IHI + 1, N
CALL INFOG2L( I, I, DESCH, NPROW, NPCOL, MYROW, MYCOL, II,
$ JJ, HRSRC, HCSRC )
IF( MYROW.EQ.HRSRC .AND. MYCOL.EQ.HCSRC ) THEN
WR( I ) = H( (JJ-1)*LLDH + II )
ELSE
WR( I ) = ZERO
END IF
WI( I ) = ZERO
20 CONTINUE
IF( IHI.LT.N )
$ CALL DGSUM2D( ICTXT, 'All', '1-Tree', N-IHI, 1, WR(IHI+1),
$ N, -1, -1 )
*
* Initialize Z, if requested.
*
IF( INITZ )
$ CALL PDLASET( 'A', N, N, ZERO, ONE, Z, 1, 1, DESCZ )
*
* Quick return if possible.
*
NPROCS = NPROW*NPCOL
IF( ILO.EQ.IHI ) THEN
CALL INFOG2L( ILO, ILO, DESCH, NPROW, NPCOL, MYROW,
$ MYCOL, II, JJ, HRSRC, HCSRC )
IF( MYROW.EQ.HRSRC .AND. MYCOL.EQ.HCSRC ) THEN
WR( ILO ) = H( (JJ-1)*LLDH + II )
IF( NPROCS.GT.1 )
$ CALL DGEBS2D( ICTXT, 'All', '1-Tree', 1, 1, WR(ILO),
$ 1 )
ELSE
CALL DGEBR2D( ICTXT, 'All', '1-Tree', 1, 1, WR(ILO),
$ 1, HRSRC, HCSRC )
END IF
WI( ILO ) = ZERO
RETURN
END IF
*
* PDLAQR1/PDLAQR0 crossover point.
*
NH = IHI-ILO+1
NMIN = PILAENVX( ICTXT, 12, 'PDHSEQR',
$ JOB( : 1 ) // COMPZ( : 1 ), N, ILO, IHI, LWORK )
NMIN = MAX( NTINY, NMIN )
*
* PDLAQR0 for big matrices; PDLAQR1 for small ones.
*
IF( (.NOT. CRSOVER .AND. NH.GT.NTINY) .OR. NH.GT.NMIN .OR.
$ DESCH(RSRC_).NE.0 .OR. DESCH(CSRC_).NE.0 ) THEN
CALL PDLAQR0( WANTT, WANTZ, N, ILO, IHI, H, DESCH, WR, WI,
$ ILO, IHI, Z, DESCZ, WORK, LWORK, IWORK, LIWORK, INFO,
$ 0 )
IF( INFO.GT.0 .AND. ( DESCH(RSRC_).NE.0 .OR.
$ DESCH(CSRC_).NE.0 ) ) THEN
*
* A rare PDLAQR0 failure! PDLAQR1 sometimes succeeds
* when PDLAQR0 fails.
*
KBOT = INFO
CALL PDLAQR1( WANTT, WANTZ, N, ILO, IHI, H, DESCH, WR,
$ WI, ILO, IHI, Z, DESCZ, WORK, LWORK, IWORK,
$ LIWORK, INFO )
INFO = -7777
END IF
ELSE
*
* Small matrix.
*
CALL PDLAQR1( WANTT, WANTZ, N, ILO, IHI, H, DESCH, WR, WI,
$ ILO, IHI, Z, DESCZ, WORK, LWORK, IWORK, LIWORK, INFO )
*
IF( INFO.GT.0 ) THEN
*
* A rare PDLAQR1 failure! PDLAQR0 sometimes succeeds
* when PDLAQR1 fails.
*
KBOT = INFO
*
IF( N.GE.NL ) THEN
*
* Larger matrices have enough subdiagonal scratch
* space to call PDLAQR0 directly.
*
CALL PDLAQR0( WANTT, WANTZ, N, ILO, KBOT, H, DESCH,
$ WR, WI, ILO, IHI, Z, DESCZ, WORK, LWORK,
$ IWORK, LIWORK, INFO, 0 )
ELSE
*
* Tiny matrices don't have enough subdiagonal
* scratch space to benefit from PDLAQR0. Hence,
* tiny matrices must be copied into a larger
* array before calling PDLAQR0.
*
HROWS = NUMROC( NL, NB, MYROW, DESCH(RSRC_), NPROW )
HCOLS = NUMROC( NL, NB, MYCOL, DESCH(CSRC_), NPCOL )
CALL DESCINIT( DESCH2, NL, NL, NB, NB, DESCH(RSRC_),
$ DESCH(CSRC_), ICTXT, MAX(1, HROWS), INFO )
CALL PDLACPY( 'All', N, N, H, 1, 1, DESCH, WORK, 1,
$ 1, DESCH2 )
CALL PDELSET( WORK, N+1, N, DESCH2, ZERO )
CALL PDLASET( 'All', NL, NL-N, ZERO, ZERO, WORK, 1,
$ N+1, DESCH2 )
IPW = 1 + DESCH2(LLD_)*HCOLS
CALL PDLAQR0( WANTT, WANTZ, NL, ILO, KBOT, WORK,
$ DESCH2, WR, WI, ILO, IHI, Z, DESCZ,
$ WORK(IPW), LWORK-IPW+1, IWORK,
$ LIWORK, INFO, 0 )
IF( WANTT .OR. INFO.NE.0 )
$ CALL PDLACPY( 'All', N, N, WORK, 1, 1, DESCH2,
$ H, 1, 1, DESCH )
END IF
INFO = -8888
END IF
END IF
*
* Clear out the trash, if necessary.
*
IF( ( WANTT .OR. INFO.NE.0 ) .AND. N.GT.2 )
$ CALL PDLASET( 'L', N-2, N-2, ZERO, ZERO, H, 3, 1, DESCH )
*
* Force any 2-by-2 blocks to be complex conjugate pairs of
* eigenvalues by removing false such blocks.
*
DO 30 I = ILO, IHI-1
CALL PDELGET( 'All', ' ', TMP3, H, I+1, I, DESCH )
IF( TMP3.NE.0.0D+00 ) THEN
CALL PDELGET( 'All', ' ', TMP1, H, I, I, DESCH )
CALL PDELGET( 'All', ' ', TMP2, H, I, I+1, DESCH )
CALL PDELGET( 'All', ' ', TMP4, H, I+1, I+1, DESCH )
CALL DLANV2( TMP1, TMP2, TMP3, TMP4, DUM1, DUM2, DUM3,
$ DUM4, CS, SN )
IF( TMP3.EQ.0.0D+00 ) THEN
IF( WANTT ) THEN
IF( I+2.LE.N )
$ CALL PDROT( N-I-1, H, I, I+2, DESCH,
$ DESCH(M_), H, I+1, I+2, DESCH, DESCH(M_),
$ CS, SN, WORK, LWORK, INFO )
CALL PDROT( I-1, H, 1, I, DESCH, 1, H, 1, I+1,
$ DESCH, 1, CS, SN, WORK, LWORK, INFO )
END IF
IF( WANTZ ) THEN
CALL PDROT( N, Z, 1, I, DESCZ, 1, Z, 1, I+1, DESCZ,
$ 1, CS, SN, WORK, LWORK, INFO )
END IF
CALL PDELSET( H, I, I, DESCH, TMP1 )
CALL PDELSET( H, I, I+1, DESCH, TMP2 )
CALL PDELSET( H, I+1, I, DESCH, TMP3 )
CALL PDELSET( H, I+1, I+1, DESCH, TMP4 )
END IF
END IF
30 CONTINUE
*
* Read out eigenvalues: first let all the processes compute the
* eigenvalue inside their diagonal blocks in parallel, except for
* the eigenvalue located next to a block border. After that,
* compute all eigenvalues located next to the block borders.
* Finally, do a global summation over WR and WI so that all
* processors receive the result.
*
DO 40 K = ILO, IHI
WR( K ) = ZERO
WI( K ) = ZERO
40 CONTINUE
NB = DESCH( MB_ )
*
* Loop 50: extract eigenvalues from the blocks which are not laid
* out across a border of the processor mesh, except for those 1x1
* blocks on the border.
*
PAIR = .FALSE.
DO 50 K = ILO, IHI
IF( .NOT. PAIR ) THEN
BORDER = MOD( K, NB ).EQ.0 .OR. ( K.NE.1 .AND.
$ MOD( K, NB ).EQ.1 )
IF( .NOT. BORDER ) THEN
CALL INFOG2L( K, K, DESCH, NPROW, NPCOL, MYROW,
$ MYCOL, ILOC1, JLOC1, HRSRC1, HCSRC1 )
IF( MYROW.EQ.HRSRC1 .AND. MYCOL.EQ.HCSRC1 ) THEN
ELEM1 = H((JLOC1-1)*LLDH+ILOC1)
IF( K.LT.N ) THEN
ELEM3 = H((JLOC1-1)*LLDH+ILOC1+1)
ELSE
ELEM3 = ZERO
END IF
IF( ELEM3.NE.ZERO ) THEN
ELEM2 = H((JLOC1)*LLDH+ILOC1)
ELEM4 = H((JLOC1)*LLDH+ILOC1+1)
CALL DLANV2( ELEM1, ELEM2, ELEM3, ELEM4,
$ WR( K ), WI( K ), WR( K+1 ), WI( K+1 ),
$ SN, CS )
PAIR = .TRUE.
ELSE
IF( K.GT.1 ) THEN
TMP = H((JLOC1-2)*LLDH+ILOC1)
IF( TMP.NE.ZERO ) THEN
ELEM1 = H((JLOC1-2)*LLDH+ILOC1-1)
ELEM2 = H((JLOC1-1)*LLDH+ILOC1-1)
ELEM3 = H((JLOC1-2)*LLDH+ILOC1)
ELEM4 = H((JLOC1-1)*LLDH+ILOC1)
CALL DLANV2( ELEM1, ELEM2, ELEM3,
$ ELEM4, WR( K-1 ), WI( K-1 ),
$ WR( K ), WI( K ), SN, CS )
ELSE
WR( K ) = ELEM1
END IF
ELSE
WR( K ) = ELEM1
END IF
END IF
END IF
END IF
ELSE
PAIR = .FALSE.
END IF
50 CONTINUE
*
* Loop 60: extract eigenvalues from the blocks which are laid
* out across a border of the processor mesh. The processors are
* numbered as below:
*
* 1 | 2
* --+--
* 3 | 4
*
DO 60 K = ICEIL(ILO,NB)*NB, IHI-1, NB
CALL INFOG2L( K, K, DESCH, NPROW, NPCOL, MYROW, MYCOL,
$ ILOC1, JLOC1, HRSRC1, HCSRC1 )
CALL INFOG2L( K, K+1, DESCH, NPROW, NPCOL, MYROW, MYCOL,
$ ILOC2, JLOC2, HRSRC2, HCSRC2 )
CALL INFOG2L( K+1, K, DESCH, NPROW, NPCOL, MYROW, MYCOL,
$ ILOC3, JLOC3, HRSRC3, HCSRC3 )
CALL INFOG2L( K+1, K+1, DESCH, NPROW, NPCOL, MYROW, MYCOL,
$ ILOC4, JLOC4, HRSRC4, HCSRC4 )
IF( MYROW.EQ.HRSRC2 .AND. MYCOL.EQ.HCSRC2 ) THEN
ELEM2 = H((JLOC2-1)*LLDH+ILOC2)
IF( HRSRC1.NE.HRSRC2 .OR. HCSRC1.NE.HCSRC2 )
$ CALL DGESD2D( ICTXT, 1, 1, ELEM2, 1, HRSRC1, HCSRC1)
END IF
IF( MYROW.EQ.HRSRC3 .AND. MYCOL.EQ.HCSRC3 ) THEN
ELEM3 = H((JLOC3-1)*LLDH+ILOC3)
IF( HRSRC1.NE.HRSRC3 .OR. HCSRC1.NE.HCSRC3 )
$ CALL DGESD2D( ICTXT, 1, 1, ELEM3, 1, HRSRC1, HCSRC1)
END IF
IF( MYROW.EQ.HRSRC4 .AND. MYCOL.EQ.HCSRC4 ) THEN
WORK(1) = H((JLOC4-1)*LLDH+ILOC4)
IF( K+1.LT.N ) THEN
WORK(2) = H((JLOC4-1)*LLDH+ILOC4+1)
ELSE
WORK(2) = ZERO
END IF
IF( HRSRC1.NE.HRSRC4 .OR. HCSRC1.NE.HCSRC4 )
$ CALL DGESD2D( ICTXT, 2, 1, WORK, 2, HRSRC1, HCSRC1 )
END IF
IF( MYROW.EQ.HRSRC1 .AND. MYCOL.EQ.HCSRC1 ) THEN
ELEM1 = H((JLOC1-1)*LLDH+ILOC1)
IF( HRSRC1.NE.HRSRC2 .OR. HCSRC1.NE.HCSRC2 )
$ CALL DGERV2D( ICTXT, 1, 1, ELEM2, 1, HRSRC2, HCSRC2)
IF( HRSRC1.NE.HRSRC3 .OR. HCSRC1.NE.HCSRC3 )
$ CALL DGERV2D( ICTXT, 1, 1, ELEM3, 1, HRSRC3, HCSRC3)
IF( HRSRC1.NE.HRSRC4 .OR. HCSRC1.NE.HCSRC4 )
$ CALL DGERV2D( ICTXT, 2, 1, WORK, 2, HRSRC4, HCSRC4 )
ELEM4 = WORK(1)
ELEM5 = WORK(2)
IF( ELEM5.EQ.ZERO ) THEN
IF( WR( K ).EQ.ZERO .AND. WI( K ).EQ.ZERO ) THEN
CALL DLANV2( ELEM1, ELEM2, ELEM3, ELEM4, WR( K ),
$ WI( K ), WR( K+1 ), WI( K+1 ), SN, CS )
ELSEIF( WR( K+1 ).EQ.ZERO .AND. WI( K+1 ).EQ.ZERO )
$ THEN
WR( K+1 ) = ELEM4
END IF
ELSEIF( WR( K ).EQ.ZERO .AND. WI( K ).EQ.ZERO )
$ THEN
WR( K ) = ELEM1
END IF
END IF
60 CONTINUE
*
IF( NPROCS.GT.1 ) THEN
CALL DGSUM2D( ICTXT, 'All', ' ', IHI-ILO+1, 1, WR(ILO), N,
$ -1, -1 )
CALL DGSUM2D( ICTXT, 'All', ' ', IHI-ILO+1, 1, WI(ILO), N,
$ -1, -1 )
END IF
*
END IF
*
WORK(1) = LWKOPT
IWORK(1) = LIWKOPT
RETURN
*
* End of PDHSEQR
*
END
|