File: pslaqr0.f

package info (click to toggle)
scalapack 2.1.0-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 36,184 kB
  • sloc: fortran: 338,772; ansic: 75,298; makefile: 1,392; sh: 56
file content (929 lines) | stat: -rw-r--r-- 36,832 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
      RECURSIVE SUBROUTINE PSLAQR0( WANTT, WANTZ, N, ILO, IHI, H,
     $     DESCH, WR, WI, ILOZ, IHIZ, Z, DESCZ, WORK, LWORK,
     $     IWORK, LIWORK, INFO, RECLEVEL )
*
*     Contribution from the Department of Computing Science and HPC2N,
*     Umea University, Sweden
*
*  -- ScaLAPACK auxiliary routine (version 2.0.1) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     Univ. of Colorado Denver and University of California, Berkeley.
*     January, 2012
*
      IMPLICIT NONE
*
*     .. Scalar Arguments ..
      INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LIWORK, LWORK, N,
     $                   RECLEVEL
      LOGICAL            WANTT, WANTZ
*     ..
*     .. Array Arguments ..
      INTEGER            DESCH( * ), DESCZ( * ), IWORK( * )
      REAL               H( * ), WI( N ), WORK( * ), WR( N ),
     $                   Z( * )
*     ..
*
*  Purpose
*  =======
*
*  PSLAQR0 computes the eigenvalues of a Hessenberg matrix H
*  and, optionally, the matrices T and Z from the Schur decomposition
*  H = Z*T*Z**T, where T is an upper quasi-triangular matrix (the
*  Schur form), and Z is the orthogonal matrix of Schur vectors.
*
*  Optionally Z may be postmultiplied into an input orthogonal
*  matrix Q so that this routine can give the Schur factorization
*  of a matrix A which has been reduced to the Hessenberg form H
*  by the orthogonal matrix Q:
*       A = Q * H * Q**T = (QZ) * T * (QZ)**T.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  WANTT   (global input) LOGICAL
*          = .TRUE. : the full Schur form T is required;
*          = .FALSE.: only eigenvalues are required.
*
*  WANTZ   (global input) LOGICAL
*          = .TRUE. : the matrix of Schur vectors Z is required;
*          = .FALSE.: Schur vectors are not required.
*
*  N       (global input) INTEGER
*          The order of the Hessenberg matrix H (and Z if WANTZ).
*          N >= 0.
*
*  ILO     (global input) INTEGER
*  IHI     (global input) INTEGER
*          It is assumed that H is already upper triangular in rows
*          and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
*          set by a previous call to PSGEBAL, and then passed to PSGEHRD
*          when the matrix output by PSGEBAL is reduced to Hessenberg
*          form. Otherwise ILO and IHI should be set to 1 and N
*          respectively.  If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
*          If N = 0, then ILO = 1 and IHI = 0.
*
*  H       (global input/output) REAL             array, dimension
*          (DESCH(LLD_),*)
*          On entry, the upper Hessenberg matrix H.
*          On exit, if JOB = 'S', H is upper quasi-triangular in
*          rows and columns ILO:IHI, with 1-by-1 and 2-by-2 blocks on
*          the main diagonal.  The 2-by-2 diagonal blocks (corresponding
*          to complex conjugate pairs of eigenvalues) are returned in
*          standard form, with H(i,i) = H(i+1,i+1) and
*          H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and JOB = 'E', the
*          contents of H are unspecified on exit.
*
*  DESCH   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix H.
*
*  WR      (global output) REAL             array, dimension (N)
*  WI      (global output) REAL             array, dimension (N)
*          The real and imaginary parts, respectively, of the computed
*          eigenvalues ILO to IHI are stored in the corresponding
*          elements of WR and WI. If two eigenvalues are computed as a
*          complex conjugate pair, they are stored in consecutive
*          elements of WR and WI, say the i-th and (i+1)th, with
*          WI(i) > 0 and WI(i+1) < 0. If JOB = 'S', the
*          eigenvalues are stored in the same order as on the diagonal
*          of the Schur form returned in H.
*
*  Z       (global input/output) REAL             array.
*          If COMPZ = 'V', on entry Z must contain the current
*          matrix Z of accumulated transformations from, e.g., PSGEHRD,
*          and on exit Z has been updated; transformations are applied
*          only to the submatrix Z(ILO:IHI,ILO:IHI).
*          If COMPZ = 'N', Z is not referenced.
*          If COMPZ = 'I', on entry Z need not be set and on exit,
*          if INFO = 0, Z contains the orthogonal matrix Z of the Schur
*           vectors of H.
*
*  DESCZ   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix Z.
*
*  WORK    (local workspace) REAL             array, dimension(DWORK)
*
*  LWORK   (local input) INTEGER
*          The length of the workspace array WORK.
*
*  IWORK   (local workspace) INTEGER array, dimension (LIWORK)
*
*  LIWORK  (local input) INTEGER
*          The length of the workspace array IWORK.
*
*  INFO    (output) INTEGER
*          =    0:  successful exit
*          .LT. 0:  if INFO = -i, the i-th argument had an illegal
*                   value
*          .GT. 0:  if INFO = i, PSLAQR0 failed to compute all of
*                   the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
*                   and WI contain those eigenvalues which have been
*                   successfully computed.  (Failures are rare.)
*
*                If INFO .GT. 0 and JOB = 'E', then on exit, the
*                remaining unconverged eigenvalues are the eigen-
*                values of the upper Hessenberg matrix rows and
*                columns ILO through INFO of the final, output
*                value of H.
*
*                If INFO .GT. 0 and JOB   = 'S', then on exit
*
*           (*)  (initial value of H)*U  = U*(final value of H)
*
*                where U is an orthogonal matrix.  The final
*                value of H is upper Hessenberg and quasi-triangular
*                in rows and columns INFO+1 through IHI.
*
*                If INFO .GT. 0 and COMPZ = 'V', then on exit
*
*                  (final value of Z)  =  (initial value of Z)*U
*
*                where U is the orthogonal matrix in (*) (regard-
*                less of the value of JOB.)
*
*                If INFO .GT. 0 and COMPZ = 'I', then on exit
*                      (final value of Z)  = U
*                where U is the orthogonal matrix in (*) (regard-
*                less of the value of JOB.)
*
*                If INFO .GT. 0 and COMPZ = 'N', then Z is not
*                accessed.
*
*     ================================================================
*     Based on contributions by
*        Robert Granat, Department of Computing Science and HPC2N,
*        Umea University, Sweden.
*     ================================================================
*
*     Restrictions: The block size in H and Z must be square and larger
*     than or equal to six (6) due to restrictions in PSLAQR1, PSLAQR5
*     and SLAQR6. Moreover, H and Z need to be distributed identically
*     with the same context.
*
*     ================================================================
*     References:
*       K. Braman, R. Byers, and R. Mathias,
*       The Multi-Shift QR Algorithm Part I: Maintaining Well Focused
*       Shifts, and Level 3 Performance.
*       SIAM J. Matrix Anal. Appl., 23(4):929--947, 2002.
*
*       K. Braman, R. Byers, and R. Mathias,
*       The Multi-Shift QR Algorithm Part II: Aggressive Early
*       Deflation.
*       SIAM J. Matrix Anal. Appl., 23(4):948--973, 2002.
*
*       R. Granat, B. Kagstrom, and D. Kressner,
*       A Novel Parallel QR Algorithm for Hybrid Distributed Momory HPC
*       Systems.
*       SIAM J. Sci. Comput., 32(4):2345--2378, 2010.
*
*     ================================================================
*
*     .. Parameters ..
*
*     ==== Exceptional deflation windows:  try to cure rare
*     .    slow convergence by increasing the size of the
*     .    deflation window after KEXNW iterations. =====
*
*     ==== Exceptional shifts: try to cure rare slow convergence
*     .    with ad-hoc exceptional shifts every KEXSH iterations.
*     .    The constants WILK1 and WILK2 are used to form the
*     .    exceptional shifts. ====
*
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      INTEGER            RECMAX
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9, RECMAX = 3 )
      INTEGER            NTINY
      PARAMETER          ( NTINY = 11 )
      INTEGER            KEXNW, KEXSH
      PARAMETER          ( KEXNW = 5, KEXSH = 6 )
      REAL               WILK1, WILK2
      PARAMETER          ( WILK1 = 0.75E0, WILK2 = -0.4375E0 )
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0e0, ONE = 1.0e0 )
*     ..
*     .. Local Scalars ..
      REAL               AA, BB, CC, CS, DD, SN, SS, SWAP, ELEM, T0,
     $                   ELEM1, ELEM2, ELEM3, ALPHA, SDSUM, STAMP
      INTEGER            I, J, INF, IT, ITMAX, K, KACC22, KBOT, KDU, KS,
     $                   KT, KTOP, KU, KV, KWH, KWTOP, KWV, LD, LS,
     $                   LWKOPT, NDFL, NH, NHO, NIBBLE, NMIN, NS, NSMAX,
     $                   NSR, NVE, NW, NWMAX, NWR, LLDH, LLDZ, II, JJ,
     $                   ICTXT, NPROW, NPCOL, MYROW, MYCOL, IPV, IPT,
     $                   IPW, IPWRK, VROWS, VCOLS, TROWS, TCOLS, WROWS,
     $                   WCOLS, HRSRC, HCSRC, NB, IS, IE, NPROCS, KK,
     $                   IROFFH, ICOFFH, HRSRC3, HCSRC3, NWIN, TOTIT,
     $                   SWEEP, JW, TOTNS, LIWKOPT, NPMIN, ICTXT_NEW,
     $                   MYROW_NEW, MYCOL_NEW
      LOGICAL            NWINC, SORTED, LQUERY, RECURSION
      CHARACTER          JBCMPZ*2
*     ..
*     .. External Functions ..
      INTEGER            PILAENVX, NUMROC, INDXG2P, ICEIL, BLACS_PNUM
      EXTERNAL           PILAENVX, NUMROC, INDXG2P, ICEIL, BLACS_PNUM
*     ..
*     .. Local Arrays ..
      INTEGER            DESCV( DLEN_ ), DESCT( DLEN_ ), DESCW( DLEN_ ),
     $                   PMAP( 64*64 )
      REAL               ZDUM( 1, 1 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           PSLACPY, PSLAQR1, SLANV2, PSLAQR3, PSLAQR5,
     $                   PSELGET, SLAQR0, SLASET, PSGEMR2D
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, FLOAT, INT, MAX, MIN, MOD
*     ..
*     .. Executable Statements ..
      INFO = 0
      ICTXT = DESCH( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
      NPROCS = NPROW*NPCOL
      RECURSION = RECLEVEL .LT. RECMAX
*
*     Quick return for N = 0: nothing to do.
*
      IF( N.EQ.0 ) THEN
         WORK( 1 ) = ONE
         IWORK( 1 ) = 1
         RETURN
      END IF
*
*     Set up job flags for PILAENV.
*
      IF( WANTT ) THEN
         JBCMPZ( 1: 1 ) = 'S'
      ELSE
         JBCMPZ( 1: 1 ) = 'E'
      END IF
      IF( WANTZ ) THEN
         JBCMPZ( 2: 2 ) = 'V'
      ELSE
         JBCMPZ( 2: 2 ) = 'N'
      END IF
*
*     Check if workspace query
*
      LQUERY = LWORK.EQ.-1 .OR. LIWORK.EQ.-1
*
*     Extract local leading dimensions and block factors of matrices
*     H and Z
*
      LLDH = DESCH( LLD_ )
      LLDZ = DESCZ( LLD_ )
      NB = DESCH( MB_ )
*
*     Tiny (sub-) matrices must use PSLAQR1. (Stops recursion)
*
      IF( N.LE.NTINY ) THEN
*
*     Estimate optimal workspace.
*
         CALL PSLAQR1( WANTT, WANTZ, N, ILO, IHI, H, DESCH, WR, WI,
     $        ILOZ, IHIZ, Z, DESCZ, WORK, LWORK, IWORK, LIWORK, INFO )
         LWKOPT = INT( WORK(1) )
         LIWKOPT = IWORK(1)
*
*     Completely local matrices uses LAPACK. (Stops recursion)
*
      ELSEIF( N.LE.NB ) THEN
         IF( MYROW.EQ.DESCH(RSRC_) .AND. MYCOL.EQ.DESCH(CSRC_) ) THEN
            CALL SLAQR0( WANTT, WANTZ, N, ILO, IHI, H, DESCH(LLD_),
     $           WR, WI, ILOZ, IHIZ, Z, DESCZ(LLD_), WORK, LWORK, INFO )
            IF( N.GT.2 )
     $         CALL SLASET( 'L', N-2, N-2, ZERO, ZERO, H(3),
     $              DESCH(LLD_) )
            LWKOPT = INT( WORK(1) )
            LIWKOPT = 1
         ELSE
            LWKOPT = 1
            LIWKOPT = 1
         END IF
*
*     Do one more step of recursion
*
      ELSE
*
*        Zero out iteration and sweep counters for debugging purposes
*
         TOTIT = 0
         SWEEP = 0
         TOTNS = 0
*
*        Use small bulge multi-shift QR with aggressive early
*        deflation on larger-than-tiny matrices.
*
*        Hope for the best.
*
         INFO = 0
*
*        NWR = recommended deflation window size.  At this
*        point,  N .GT. NTINY = 11, so there is enough
*        subdiagonal workspace for NWR.GE.2 as required.
*        (In fact, there is enough subdiagonal space for
*        NWR.GE.3.)
*
         NWR = PILAENVX( ICTXT, 13, 'PSLAQR0', JBCMPZ, N, ILO, IHI,
     $        LWORK )
         NWR = MAX( 2, NWR )
         NWR = MIN( IHI-ILO+1, NWR )
         NW = NWR
*
*        NSR = recommended number of simultaneous shifts.
*        At this point N .GT. NTINY = 11, so there is at
*        enough subdiagonal workspace for NSR to be even
*        and greater than or equal to two as required.
*
         NWIN = PILAENVX( ICTXT, 19, 'PSLAQR0', JBCMPZ, N, NB, NB, NB )
         NSR = PILAENVX( ICTXT, 15, 'PSLAQR0', JBCMPZ, N, ILO, IHI,
     $        MAX(NWIN,NB) )
         NSR = MIN( NSR, IHI-ILO )
         NSR = MAX( 2, NSR-MOD( NSR, 2 ) )
*
*        Estimate optimal workspace
*
         LWKOPT = 3*ICEIL(NWR,NPROW)*ICEIL(NWR,NPCOL)
*
*        Workspace query call to PSLAQR3
*
         CALL PSLAQR3( WANTT, WANTZ, N, ILO, IHI, NWR+1, H,
     $        DESCH, ILOZ, IHIZ, Z, DESCZ, LS, LD, WR, WI, H,
     $        DESCH, N, H, DESCH, N, H, DESCH, WORK, -1, IWORK,
     $        LIWORK, RECLEVEL )
         LWKOPT = LWKOPT + INT( WORK( 1 ) )
         LIWKOPT = IWORK( 1 )
*
*        Workspace query call to PSLAQR5
*
         CALL PSLAQR5( WANTT, WANTZ, 2, N, 1, N, N, WR, WI, H,
     $        DESCH, ILOZ, IHIZ, Z, DESCZ, WORK, -1, IWORK,
     $        LIWORK )
*
*        Optimal workspace = MAX(PSLAQR3, PSLAQR5)
*
         LWKOPT = MAX( LWKOPT, INT( WORK( 1 ) ) )
         LIWKOPT = MAX( LIWKOPT, IWORK( 1 ) )
*
*        Quick return in case of workspace query.
*
         IF( LQUERY ) THEN
            WORK( 1 ) = FLOAT( LWKOPT )
            IWORK( 1 ) = LIWKOPT
            RETURN
         END IF
*
*        PSLAQR1/PSLAQR0 crossover point.
*
         NMIN = PILAENVX( ICTXT, 12, 'PSLAQR0', JBCMPZ, N, ILO, IHI,
     $        LWORK )
         NMIN = MAX( NTINY, NMIN )
*
*        Nibble crossover point.
*
         NIBBLE = PILAENVX( ICTXT, 14, 'PSLAQR0', JBCMPZ, N, ILO, IHI,
     $        LWORK )
         NIBBLE = MAX( 0, NIBBLE )
*
*        Accumulate reflections during ttswp?  Use block
*        2-by-2 structure during matrix-matrix multiply?
*
         KACC22 = PILAENVX( ICTXT, 16, 'PSLAQR0', JBCMPZ, N, ILO, IHI,
     $        LWORK )
         KACC22 = MAX( 1, KACC22 )
         KACC22 = MIN( 2, KACC22 )
*
*        NWMAX = the largest possible deflation window for
*        which there is sufficient workspace.
*
         NWMAX = MIN( ( N-1 ) / 3, LWORK / 2 )
*
*        NSMAX = the Largest number of simultaneous shifts
*        for which there is sufficient workspace.
*
         NSMAX = MIN( ( N+6 ) / 9, LWORK - LWORK/3 )
         NSMAX = NSMAX - MOD( NSMAX, 2 )
*
*        NDFL: an iteration count restarted at deflation.
*
         NDFL = 1
*
*        ITMAX = iteration limit
*
         ITMAX = MAX( 30, 2*KEXSH )*MAX( 10, ( IHI-ILO+1 ) )
*
*        Last row and column in the active block.
*
         KBOT = IHI
*
*        Main Loop.
*
         DO 110 IT = 1, ITMAX
            TOTIT = TOTIT + 1
*
*           Done when KBOT falls below ILO.
*
            IF( KBOT.LT.ILO )
     $         GO TO 120
*
*           Locate active block.
*
            DO 10 K = KBOT, ILO + 1, -1
               CALL INFOG2L( K, K-1, DESCH, NPROW, NPCOL, MYROW, MYCOL,
     $              II, JJ, HRSRC, HCSRC )
               IF( MYROW.EQ.HRSRC .AND. MYCOL.EQ.HCSRC ) THEN
                  IF( H( II + (JJ-1)*LLDH ).EQ.ZERO )
     $               GO TO 20
               END IF
 10         CONTINUE
            K = ILO
 20         CONTINUE
            KTOP = K
            IF( NPROCS.GT.1 )
     $         CALL IGAMX2D( ICTXT, 'All', '1-Tree', 1, 1, KTOP, 1,
     $              -1, -1, -1, -1, -1 )
*
*           Select deflation window size.
*
            NH = KBOT - KTOP + 1
            IF( NH.LE.NTINY ) THEN
               NW = NH
            ELSEIF( NDFL.LT.KEXNW .OR. NH.LT.NW ) THEN
*
*              Typical deflation window.  If possible and
*              advisable, nibble the entire active block.
*              If not, use size NWR or NWR+1 depending upon
*              which has the smaller corresponding subdiagonal
*              entry (a heuristic).
*
               NWINC = .TRUE.
               IF( NH.LE.MIN( NMIN, NWMAX ) ) THEN
                  NW = NH
               ELSE
                  NW = MIN( NWR, NH, NWMAX )
                  IF( NW.LT.NWMAX ) THEN
                     IF( NW.GE.NH-1 ) THEN
                        NW = NH
                     ELSE
                        KWTOP = KBOT - NW + 1
                        CALL PSELGET( 'All', '1-Tree', ELEM1, H, KWTOP,
     $                       KWTOP-1, DESCH )
                        CALL PSELGET( 'All', '1-Tree', ELEM2, H,
     $                       KWTOP-1, KWTOP-2, DESCH )
                        IF( ABS( ELEM1 ).GT.ABS( ELEM2 ) ) NW = NW + 1
                     END IF
                  END IF
               END IF
            ELSE
*
*              Exceptional deflation window.  If there have
*              been no deflations in KEXNW or more iterations,
*              then vary the deflation window size.   At first,
*              because, larger windows are, in general, more
*              powerful than smaller ones, rapidly increase the
*              window up to the maximum reasonable and possible.
*              Then maybe try a slightly smaller window.
*
               IF( NWINC .AND. NW.LT.MIN( NWMAX, NH ) ) THEN
                  NW = MIN( NWMAX, NH, 2*NW )
               ELSE
                  NWINC = .FALSE.
                  IF( NW.EQ.NH .AND. NH.GT.2 )
     $               NW = NH - 1
               END IF
            END IF
*
*           Aggressive early deflation:
*           split workspace into
*             - an NW-by-NW work array V for orthogonal matrix
*             - an NW-by-at-least-NW-but-more-is-better
*               (NW-by-NHO) horizontal work array for Schur factor
*             - an at-least-NW-but-more-is-better (NVE-by-NW)
*               vertical work array for matrix multiplications
*             - align T, V and W with the deflation window
*
            KV = N - NW + 1
            KT = NW + 1
            NHO = ( N-NW-1 ) - KT + 1
            KWV = NW + 2
            NVE = ( N-NW ) - KWV + 1
*
            JW = MIN( NW, KBOT-KTOP+1 )
            KWTOP = KBOT - JW + 1
            IROFFH = MOD( KWTOP - 1, NB )
            ICOFFH = IROFFH
            HRSRC = INDXG2P( KWTOP, NB, MYROW, DESCH(RSRC_), NPROW )
            HCSRC = INDXG2P( KWTOP, NB, MYCOL, DESCH(CSRC_), NPCOL )
            VROWS = NUMROC( JW+IROFFH, NB, MYROW, HRSRC, NPROW )
            VCOLS = NUMROC( JW+ICOFFH, NB, MYCOL, HCSRC, NPCOL )
            CALL DESCINIT( DESCV, JW+IROFFH, JW+ICOFFH, NB, NB,
     $           HRSRC, HCSRC, ICTXT, MAX(1, VROWS), INFO )
*
            TROWS = NUMROC( JW+IROFFH, NB, MYROW, HRSRC, NPROW )
            TCOLS = NUMROC( JW+ICOFFH, NB, MYCOL, HCSRC, NPCOL )
            CALL DESCINIT( DESCT, JW+IROFFH, JW+ICOFFH, NB, NB,
     $           HRSRC, HCSRC, ICTXT, MAX(1, TROWS), INFO )
            WROWS = NUMROC( JW+IROFFH, NB, MYROW, HRSRC, NPROW )
            WCOLS = NUMROC( JW+ICOFFH, NB, MYCOL, HCSRC, NPCOL )
            CALL DESCINIT( DESCW, JW+IROFFH, JW+ICOFFH, NB, NB,
     $           HRSRC, HCSRC, ICTXT, MAX(1, WROWS), INFO )
*
            IPV   = 1
            IPT   = IPV + DESCV( LLD_ ) * VCOLS
            IPW   = IPT + DESCT( LLD_ ) * TCOLS
            IPWRK = IPW + DESCW( LLD_ ) * WCOLS
*
*           Aggressive early deflation
*
            IWORK(1) = IT
            CALL PSLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H,
     $           DESCH, ILOZ, IHIZ, Z, DESCZ, LS, LD, WR, WI,
     $           WORK(IPV), DESCV, NHO, WORK(IPT), DESCT, NVE,
     $           WORK(IPW), DESCW, WORK(IPWRK), LWORK-IPWRK+1,
     $           IWORK, LIWORK, RECLEVEL )
*
*           Adjust KBOT accounting for new deflations.
*
            KBOT = KBOT - LD
*
*           KS points to the shifts.
*
            KS = KBOT - LS + 1
*
*           Skip an expensive QR sweep if there is a (partly
*           heuristic) reason to expect that many eigenvalues
*           will deflate without it.  Here, the QR sweep is
*           skipped if many eigenvalues have just been deflated
*           or if the remaining active block is small.
*
            IF( ( LD.EQ.0 ) .OR. ( ( 100*LD.LE.NW*NIBBLE ) .AND. ( KBOT-
     $           KTOP+1.GT.MIN( NMIN, NWMAX ) ) ) ) THEN
*
*              NS = nominal number of simultaneous shifts.
*              This may be lowered (slightly) if PSLAQR3
*              did not provide that many shifts.
*
               NS = MIN( NSMAX, NSR, MAX( 2, KBOT-KTOP ) )
               NS = NS - MOD( NS, 2 )
*
*              If there have been no deflations
*              in a multiple of KEXSH iterations,
*              then try exceptional shifts.
*              Otherwise use shifts provided by
*              PSLAQR3 above or from the eigenvalues
*              of a trailing principal submatrix.
*
               IF( MOD( NDFL, KEXSH ).EQ.0 ) THEN
                  KS = KBOT - NS + 1
                  DO 30 I = KBOT, MAX( KS+1, KTOP+2 ), -2
                     CALL PSELGET( 'All', '1-Tree', ELEM1, H, I, I-1,
     $                    DESCH )
                     CALL PSELGET( 'All', '1-Tree', ELEM2, H, I-1, I-2,
     $                    DESCH )
                     CALL PSELGET( 'All', '1-Tree', ELEM3, H, I, I,
     $                    DESCH )
                     SS = ABS( ELEM1 ) + ABS( ELEM2 )
                     AA = WILK1*SS + ELEM3
                     BB = SS
                     CC = WILK2*SS
                     DD = AA
                     CALL SLANV2( AA, BB, CC, DD, WR( I-1 ), WI( I-1 ),
     $                    WR( I ), WI( I ), CS, SN )
 30               CONTINUE
                  IF( KS.EQ.KTOP ) THEN
                     CALL PSELGET( 'All', '1-Tree', ELEM1, H, KS+1,
     $                    KS+1, DESCH )
                     WR( KS+1 ) = ELEM1
                     WI( KS+1 ) = ZERO
                     WR( KS ) = WR( KS+1 )
                     WI( KS ) = WI( KS+1 )
                  END IF
               ELSE
*
*                 Got NS/2 or fewer shifts? Use PSLAQR0 or
*                 PSLAQR1 on a trailing principal submatrix to
*                 get more.
*
                  IF( KBOT-KS+1.LE.NS / 2 ) THEN
                     KS = KBOT - NS + 1
                     KT = N - NS + 1
                     NPMIN = PILAENVX( ICTXT, 23, 'PSLAQR0', 'EN', NS,
     $                    NB, NPROW, NPCOL )
c
c   Temporarily force NPMIN <= 8 since only PSLAQR1 is used.
c
                     NPMIN = MIN(NPMIN, 8)
                     IF( MIN(NPROW, NPCOL).LE.NPMIN+1 .OR.
     $                    RECLEVEL.GE.1 ) THEN
*
*                       The window is large enough. Compute the Schur
*                       decomposition with all processors.
*
                        IROFFH = MOD( KS - 1, NB )
                        ICOFFH = IROFFH
                        IF( NS.GT.NMIN ) THEN
                           HRSRC = INDXG2P( KS, NB, MYROW, DESCH(RSRC_),
     $                          NPROW )
                           HCSRC = INDXG2P( KS, NB, MYROW, DESCH(CSRC_),
     $                          NPCOL )
                        ELSE
                           HRSRC = 0
                           HCSRC = 0
                        END IF
                        TROWS = NUMROC( NS+IROFFH, NB, MYROW, HRSRC,
     $                       NPROW )
                        TCOLS = NUMROC( NS+ICOFFH, NB, MYCOL, HCSRC,
     $                       NPCOL )
                        CALL DESCINIT( DESCT, NS+IROFFH, NS+ICOFFH, NB,
     $                       NB, HRSRC, HCSRC, ICTXT, MAX(1, TROWS),
     $                       INFO )
                        IPT = 1
                        IPWRK = IPT + DESCT(LLD_) * TCOLS
*
                        IF( NS.GT.NMIN .AND. RECURSION ) THEN
                           CALL PSLACPY( 'All', NS, NS, H, KS, KS,
     $                          DESCH, WORK(IPT), 1+IROFFH, 1+ICOFFH,
     $                          DESCT )
                           CALL PSLAQR0( .FALSE., .FALSE., IROFFH+NS,
     $                          1+IROFFH, IROFFH+NS, WORK(IPT),
     $                          DESCT, WR( KS-IROFFH ),
     $                          WI( KS-IROFFH ), 1, 1, ZDUM,
     $                          DESCZ, WORK( IPWRK ),
     $                          LWORK-IPWRK+1, IWORK, LIWORK,
     $                          INF, RECLEVEL+1 )
                        ELSE
                           CALL PSLAMVE( 'All', NS, NS, H, KS, KS,
     $                          DESCH, WORK(IPT), 1+IROFFH, 1+ICOFFH,
     $                          DESCT, WORK(IPWRK) )
                           CALL PSLAQR1( .FALSE., .FALSE., IROFFH+NS,
     $                          1+IROFFH, IROFFH+NS, WORK(IPT),
     $                          DESCT, WR( KS-IROFFH ),
     $                          WI( KS-IROFFH ), 1+IROFFH, IROFFH+NS,
     $                          ZDUM, DESCZ, WORK( IPWRK ),
     $                          LWORK-IPWRK+1, IWORK, LIWORK, INF )
                        END IF
                     ELSE
*
*                       The window is too small. Redistribute the AED
*                       window to a subgrid and do the computation on
*                       the subgrid.
*
                        ICTXT_NEW = ICTXT
                        DO 50 I = 0, NPMIN-1
                           DO 40 J = 0, NPMIN-1
                              PMAP( J+1+I*NPMIN ) =
     $                             BLACS_PNUM( ICTXT, I, J )
 40                        CONTINUE
 50                     CONTINUE
                        CALL BLACS_GRIDMAP( ICTXT_NEW, PMAP, NPMIN,
     $                       NPMIN, NPMIN )
                        CALL BLACS_GRIDINFO( ICTXT_NEW, NPMIN, NPMIN,
     $                       MYROW_NEW, MYCOL_NEW )
                        IF( MYROW.GE.NPMIN .OR. MYCOL.GE.NPMIN )
     $                     ICTXT_NEW = -1
*
                        IF( ICTXT_NEW.GE.0 ) THEN
                           TROWS = NUMROC( NS, NB, MYROW_NEW, 0, NPMIN )
                           TCOLS = NUMROC( NS, NB, MYCOL_NEW, 0, NPMIN )
                           CALL DESCINIT( DESCT, NS, NS, NB, NB, 0, 0,
     $                          ICTXT_NEW, MAX(1,TROWS), INFO )
                           IPT = 1
                           IPWRK = IPT + DESCT(LLD_) * TCOLS
                        ELSE
                           IPT = 1
                           IPWRK = 2
                           DESCT( CTXT_ ) = -1
                           INF = 0
                        END IF
                        CALL PSGEMR2D( NS, NS, H, KS, KS, DESCH,
     $                       WORK(IPT), 1, 1, DESCT, ICTXT )
*
c
c   This part is still not perfect.
c   Either PSLAQR0 or PSLAQR1 can work, but not both.
c
c                        NMIN = PILAENVX( ICTXT_NEW, 12, 'PSLAQR0',
c     $                       'EN', NS, 1, NS, LWORK )
                        IF( ICTXT_NEW.GE.0 ) THEN
c                           IF( NS.GT.NMIN .AND. RECLEVEL.LT.1 ) THEN
c                              CALL PSLAQR0( .FALSE., .FALSE., NS, 1,
c     $                             NS, WORK(IPT), DESCT, WR( KS ),
c     $                             WI( KS ), 1, 1, ZDUM, DESCT,
c     $                             WORK( IPWRK ), LWORK-IPWRK+1, IWORK,
c     $                             LIWORK, INF, RECLEVEL+1 )
c                           ELSE
                              CALL PSLAQR1( .FALSE., .FALSE., NS, 1,
     $                             NS, WORK(IPT), DESCT, WR( KS ),
     $                             WI( KS ), 1, NS, ZDUM, DESCT,
     $                             WORK( IPWRK ), LWORK-IPWRK+1, IWORK,
     $                             LIWORK, INF )
c                           END IF
                           CALL BLACS_GRIDEXIT( ICTXT_NEW )
                        END IF
                        IF( MYROW+MYCOL.GT.0 ) THEN
                           DO 60 J = 0, NS-1
                              WR( KS+J ) = ZERO
                              WI( KS+J ) = ZERO
 60                        CONTINUE
                        END IF
                        CALL IGAMN2D( ICTXT, 'All', '1-Tree', 1, 1, INF,
     $                       1, -1, -1, -1, -1, -1 )
                        CALL SGSUM2D( ICTXT, 'All', ' ', NS, 1, WR(KS),
     $                       NS, -1, -1 )
                        CALL SGSUM2D( ICTXT, 'All', ' ', NS, 1, WI(KS),
     $                       NS, -1, -1 )
                     END IF
                     KS = KS + INF
*
*                    In case of a rare QR failure use
*                    eigenvalues of the trailing 2-by-2
*                    principal submatrix.
*
                     IF( KS.GE.KBOT ) THEN
                        CALL PSELGET( 'All', '1-Tree', AA, H, KBOT-1,
     $                       KBOT-1, DESCH )
                        CALL PSELGET( 'All', '1-Tree', CC, H, KBOT,
     $                       KBOT-1, DESCH )
                        CALL PSELGET( 'All', '1-Tree', BB, H, KBOT-1,
     $                       KBOT, DESCH )
                        CALL PSELGET( 'All', '1-Tree', DD, H, KBOT,
     $                       KBOT, DESCH )
                        CALL SLANV2( AA, BB, CC, DD, WR( KBOT-1 ),
     $                       WI( KBOT-1 ), WR( KBOT ),
     $                       WI( KBOT ), CS, SN )
                        KS = KBOT - 1
                     END IF
                  END IF
*
                  IF( KBOT-KS+1.GT.NS ) THEN
*
*                    Sort the shifts (helps a little)
*                    Bubble sort keeps complex conjugate
*                    pairs together.
*
                     SORTED = .FALSE.
                     DO 80 K = KBOT, KS + 1, -1
                        IF( SORTED )
     $                     GO TO 90
                        SORTED = .TRUE.
                        DO 70 I = KS, K - 1
                           IF( ABS( WR( I ) )+ABS( WI( I ) ).LT.
     $                          ABS( WR( I+1 ) )+ABS( WI( I+1 ) ) ) THEN
                              SORTED = .FALSE.
*
                              SWAP = WR( I )
                              WR( I ) = WR( I+1 )
                              WR( I+1 ) = SWAP
*
                              SWAP = WI( I )
                              WI( I ) = WI( I+1 )
                              WI( I+1 ) = SWAP
                           END IF
 70                     CONTINUE
 80                  CONTINUE
 90                  CONTINUE
                  END IF
*
*                 Shuffle shifts into pairs of real shifts
*                 and pairs of complex conjugate shifts
*                 assuming complex conjugate shifts are
*                 already adjacent to one another. (Yes,
*                 they are.)
*
                  DO 100 I = KBOT, KS + 2, -2
                     IF( WI( I ).NE.-WI( I-1 ) ) THEN
*
                        SWAP = WR( I )
                        WR( I ) = WR( I-1 )
                        WR( I-1 ) = WR( I-2 )
                        WR( I-2 ) = SWAP
*
                        SWAP = WI( I )
                        WI( I ) = WI( I-1 )
                        WI( I-1 ) = WI( I-2 )
                        WI( I-2 ) = SWAP
                     END IF
 100              CONTINUE
               END IF
*
*              If there are only two shifts and both are
*              real, then use only one.
*
               IF( KBOT-KS+1.EQ.2 ) THEN
                  IF( WI( KBOT ).EQ.ZERO ) THEN
                     CALL PSELGET( 'All', '1-Tree', ELEM, H, KBOT,
     $                    KBOT, DESCH )
                     IF( ABS( WR( KBOT )-ELEM ).LT.
     $                    ABS( WR( KBOT-1 )-ELEM ) ) THEN
                        WR( KBOT-1 ) = WR( KBOT )
                     ELSE
                        WR( KBOT ) = WR( KBOT-1 )
                     END IF
                  END IF
               END IF
*
*              Use up to NS of the the smallest magnatiude
*              shifts.  If there aren't NS shifts available,
*              then use them all, possibly dropping one to
*              make the number of shifts even.
*
               NS = MIN( NS, KBOT-KS+1 )
               NS = NS - MOD( NS, 2 )
               KS = KBOT - NS + 1
*
*              Small-bulge multi-shift QR sweep.
*
               TOTNS = TOTNS + NS
               SWEEP = SWEEP + 1
               CALL PSLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT,
     $              NS, WR( KS ), WI( KS ), H, DESCH, ILOZ, IHIZ, Z,
     $              DESCZ, WORK, LWORK, IWORK, LIWORK )
            END IF
*
*           Note progress (or the lack of it).
*
            IF( LD.GT.0 ) THEN
               NDFL = 1
            ELSE
               NDFL = NDFL + 1
            END IF
*
*           End of main loop.
 110     CONTINUE
*
*        Iteration limit exceeded.  Set INFO to show where
*        the problem occurred and exit.
*
         INFO = KBOT
 120     CONTINUE
      END IF
*
*     Return the optimal value of LWORK.
*
      WORK( 1 ) = FLOAT( LWKOPT )
      IWORK( 1 ) = LIWKOPT
      IF( .NOT. LQUERY ) THEN
         IWORK( 1 ) = TOTIT
         IWORK( 2 ) = SWEEP
         IWORK( 3 ) = TOTNS
      END IF
      RETURN
*
*     End of PSLAQR0
*
      END