1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
|
SUBROUTINE PSLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, A, DESCA,
$ ILOZ, IHIZ, Z, DESCZ, NS, ND, SR, SI, T, LDT,
$ V, LDV, WR, WI, WORK, LWORK )
*
* Contribution from the Department of Computing Science and HPC2N,
* Umea University, Sweden
*
* -- ScaLAPACK routine (version 2.0.2) --
* Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver
* May 1 2012
*
IMPLICIT NONE
*
* .. Scalar Arguments ..
INTEGER IHIZ, ILOZ, KBOT, KTOP, LDT, LDV, LWORK, N, ND,
$ NS, NW
LOGICAL WANTT, WANTZ
* ..
* .. Array Arguments ..
INTEGER DESCA( * ), DESCZ( * )
REAL A( * ), SI( KBOT ), SR( KBOT ), T( LDT, * ),
$ V( LDV, * ), WORK( * ), WI( * ), WR( * ),
$ Z( * )
* ..
*
* Purpose
* =======
*
* Aggressive early deflation:
*
* PSLAQR2 accepts as input an upper Hessenberg matrix A and performs an
* orthogonal similarity transformation designed to detect and deflate
* fully converged eigenvalues from a trailing principal submatrix. On
* output A has been overwritten by a new Hessenberg matrix that is a
* perturbation of an orthogonal similarity transformation of A. It is
* to be hoped that the final version of H has many zero subdiagonal
* entries.
*
* This routine handles small deflation windows which is affordable by
* one processor. Normally, it is called by PSLAQR1. All the inputs are
* assumed to be valid without checking.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* WANTT (global input) LOGICAL
* If .TRUE., then the Hessenberg matrix H is fully updated
* so that the quasi-triangular Schur factor may be
* computed (in cooperation with the calling subroutine).
* If .FALSE., then only enough of H is updated to preserve
* the eigenvalues.
*
* WANTZ (global input) LOGICAL
* If .TRUE., then the orthogonal matrix Z is updated so
* so that the orthogonal Schur factor may be computed
* (in cooperation with the calling subroutine).
* If .FALSE., then Z is not referenced.
*
* N (global input) INTEGER
* The order of the matrix H and (if WANTZ is .TRUE.) the
* order of the orthogonal matrix Z.
*
* KTOP (global input) INTEGER
* KBOT (global input) INTEGER
* It is assumed without a check that either
* KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together
* determine an isolated block along the diagonal of the
* Hessenberg matrix. However, H(KTOP,KTOP-1)=0 is not
* essentially necessary if WANTT is .TRUE. .
*
* NW (global input) INTEGER
* Deflation window size. 1 .LE. NW .LE. (KBOT-KTOP+1).
* Normally NW .GE. 3 if PSLAQR2 is called by PSLAQR1.
*
* A (local input/output) REAL array, dimension
* (DESCH(LLD_),*)
* On input the initial N-by-N section of A stores the
* Hessenberg matrix undergoing aggressive early deflation.
* On output A has been transformed by an orthogonal
* similarity transformation, perturbed, and the returned
* to Hessenberg form that (it is to be hoped) has some
* zero subdiagonal entries.
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* ILOZ (global input) INTEGER
* IHIZ (global input) INTEGER
* Specify the rows of Z to which transformations must be
* applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.
*
* Z (input/output) REAL array, dimension
* (DESCH(LLD_),*)
* IF WANTZ is .TRUE., then on output, the orthogonal
* similarity transformation mentioned above has been
* accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right.
* If WANTZ is .FALSE., then Z is unreferenced.
*
* DESCZ (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix Z.
*
* NS (global output) INTEGER
* The number of unconverged (ie approximate) eigenvalues
* returned in SR and SI that may be used as shifts by the
* calling subroutine.
*
* ND (global output) INTEGER
* The number of converged eigenvalues uncovered by this
* subroutine.
*
* SR (global output) REAL array, dimension KBOT
* SI (global output) REAL array, dimension KBOT
* On output, the real and imaginary parts of approximate
* eigenvalues that may be used for shifts are stored in
* SR(KBOT-ND-NS+1) through SR(KBOT-ND) and
* SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively.
* On proc #0, the real and imaginary parts of converged
* eigenvalues are stored in SR(KBOT-ND+1) through SR(KBOT) and
* SI(KBOT-ND+1) through SI(KBOT), respectively. On other
* processors, these entries are set to zero.
*
* T (local workspace) REAL array, dimension LDT*NW.
*
* LDT (local input) INTEGER
* The leading dimension of the array T.
* LDT >= NW.
*
* V (local workspace) REAL array, dimension LDV*NW.
*
* LDV (local input) INTEGER
* The leading dimension of the array V.
* LDV >= NW.
*
* WR (local workspace) REAL array, dimension KBOT.
* WI (local workspace) REAL array, dimension KBOT.
*
* WORK (local workspace) REAL array, dimension LWORK.
*
* LWORK (local input) INTEGER
* WORK(LWORK) is a local array and LWORK is assumed big enough
* so that LWORK >= NW*NW.
*
* ================================================================
* Implemented by
* Meiyue Shao, Department of Computing Science and HPC2N,
* Umea University, Sweden
*
* ================================================================
* References:
* B. Kagstrom, D. Kressner, and M. Shao,
* On Aggressive Early Deflation in Parallel Variants of the QR
* Algorithm.
* Para 2010, to appear.
*
* ================================================================
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0, ONE = 1.0 )
* ..
* .. Local Scalars ..
INTEGER CONTXT, HBL, I, I1, I2, IAFIRST, ICOL, ICOL1,
$ ICOL2, INFO, II, IROW, IROW1, IROW2, ITMP1,
$ ITMP2, J, JAFIRST, JJ, K, L, LDA, LDZ, LLDTMP,
$ MYCOL, MYROW, NODE, NPCOL, NPROW, DBLK,
$ HSTEP, VSTEP, KKROW, KKCOL, KLN, LTOP, LEFT,
$ RIGHT, UP, DOWN, D1, D2
* ..
* .. Local Arrays ..
INTEGER DESCT( 9 ), DESCV( 9 ), DESCWH( 9 ),
$ DESCWV( 9 )
* ..
* .. External Functions ..
INTEGER NUMROC
EXTERNAL NUMROC
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, INFOG2L, SLASET,
$ SLAQR3, DESCINIT, PSGEMM, PSGEMR2D, SGEMM,
$ SLAMOV, SGESD2D, SGERV2D, SGEBS2D, SGEBR2D,
$ IGEBS2D, IGEBR2D
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, MOD
* ..
* .. Executable Statements ..
*
INFO = 0
*
IF( N.EQ.0 )
$ RETURN
*
* NODE (IAFIRST,JAFIRST) OWNS A(1,1)
*
HBL = DESCA( MB_ )
CONTXT = DESCA( CTXT_ )
LDA = DESCA( LLD_ )
IAFIRST = DESCA( RSRC_ )
JAFIRST = DESCA( CSRC_ )
LDZ = DESCZ( LLD_ )
CALL BLACS_GRIDINFO( CONTXT, NPROW, NPCOL, MYROW, MYCOL )
NODE = MYROW*NPCOL + MYCOL
LEFT = MOD( MYCOL+NPCOL-1, NPCOL )
RIGHT = MOD( MYCOL+1, NPCOL )
UP = MOD( MYROW+NPROW-1, NPROW )
DOWN = MOD( MYROW+1, NPROW )
*
* I1 and I2 are the indices of the first row and last column of A
* to which transformations must be applied.
*
I = KBOT
L = KTOP
IF( WANTT ) THEN
I1 = 1
I2 = N
LTOP = 1
ELSE
I1 = L
I2 = I
LTOP = L
END IF
*
* Begin Aggressive Early Deflation.
*
DBLK = NW
CALL INFOG2L( I-DBLK+1, I-DBLK+1, DESCA, NPROW, NPCOL, MYROW,
$ MYCOL, IROW, ICOL, II, JJ )
IF ( MYROW .EQ. II ) THEN
CALL DESCINIT( DESCT, DBLK, DBLK, DBLK, DBLK, II, JJ, CONTXT,
$ LDT, INFO )
CALL DESCINIT( DESCV, DBLK, DBLK, DBLK, DBLK, II, JJ, CONTXT,
$ LDV, INFO )
ELSE
CALL DESCINIT( DESCT, DBLK, DBLK, DBLK, DBLK, II, JJ, CONTXT,
$ 1, INFO )
CALL DESCINIT( DESCV, DBLK, DBLK, DBLK, DBLK, II, JJ, CONTXT,
$ 1, INFO )
END IF
CALL PSGEMR2D( DBLK, DBLK, A, I-DBLK+1, I-DBLK+1, DESCA, T, 1, 1,
$ DESCT, CONTXT )
IF ( MYROW .EQ. II .AND. MYCOL .EQ. JJ ) THEN
CALL SLASET( 'All', DBLK, DBLK, ZERO, ONE, V, LDV )
CALL SLAQR3( .TRUE., .TRUE., DBLK, 1, DBLK, DBLK-1, T, LDT, 1,
$ DBLK, V, LDV, NS, ND, WR, WI, WORK, DBLK, DBLK,
$ WORK( DBLK*DBLK+1 ), DBLK, DBLK, WORK( 2*DBLK*DBLK+1 ),
$ DBLK, WORK( 3*DBLK*DBLK+1 ), LWORK-3*DBLK*DBLK )
CALL SGEBS2D( CONTXT, 'All', ' ', DBLK, DBLK, V, LDV )
CALL IGEBS2D( CONTXT, 'All', ' ', 1, 1, ND, 1 )
ELSE
CALL SGEBR2D( CONTXT, 'All', ' ', DBLK, DBLK, V, LDV, II, JJ )
CALL IGEBR2D( CONTXT, 'All', ' ', 1, 1, ND, 1, II, JJ )
END IF
*
IF( ND .GT. 0 ) THEN
*
* Copy the local matrix back to the diagonal block.
*
CALL PSGEMR2D( DBLK, DBLK, T, 1, 1, DESCT, A, I-DBLK+1,
$ I-DBLK+1, DESCA, CONTXT )
*
* Update T and Z.
*
IF( MOD( I-DBLK, HBL )+DBLK .LE. HBL ) THEN
*
* Simplest case: the deflation window is located on one
* processor.
* Call SGEMM directly to perform the update.
*
HSTEP = LWORK / DBLK
VSTEP = HSTEP
*
* Update horizontal slab in A.
*
IF( WANTT ) THEN
CALL INFOG2L( I-DBLK+1, I+1, DESCA, NPROW, NPCOL, MYROW,
$ MYCOL, IROW, ICOL, II, JJ )
IF( MYROW .EQ. II ) THEN
ICOL1 = NUMROC( N, HBL, MYCOL, JAFIRST, NPCOL )
DO 10 KKCOL = ICOL, ICOL1, HSTEP
KLN = MIN( HSTEP, ICOL1-KKCOL+1 )
CALL SGEMM( 'T', 'N', DBLK, KLN, DBLK, ONE, V,
$ LDV, A( IROW+(KKCOL-1)*LDA ), LDA, ZERO, WORK,
$ DBLK )
CALL SLAMOV( 'A', DBLK, KLN, WORK, DBLK,
$ A( IROW+(KKCOL-1)*LDA ), LDA )
10 CONTINUE
END IF
END IF
*
* Update vertical slab in A.
*
CALL INFOG2L( LTOP, I-DBLK+1, DESCA, NPROW, NPCOL, MYROW,
$ MYCOL, IROW, ICOL, II, JJ )
IF( MYCOL .EQ. JJ ) THEN
CALL INFOG2L( I-DBLK, I-DBLK+1, DESCA, NPROW, NPCOL,
$ MYROW, MYCOL, IROW1, ICOL1, ITMP1, ITMP2 )
IF( MYROW .NE. ITMP1 ) IROW1 = IROW1-1
DO 20 KKROW = IROW, IROW1, VSTEP
KLN = MIN( VSTEP, IROW1-KKROW+1 )
CALL SGEMM( 'N', 'N', KLN, DBLK, DBLK, ONE,
$ A( KKROW+(ICOL-1)*LDA ), LDA, V, LDV, ZERO, WORK,
$ KLN )
CALL SLAMOV( 'A', KLN, DBLK, WORK, KLN,
$ A( KKROW+(ICOL-1)*LDA ), LDA )
20 CONTINUE
END IF
*
* Update vertical slab in Z.
*
IF( WANTZ ) THEN
CALL INFOG2L( ILOZ, I-DBLK+1, DESCZ, NPROW, NPCOL, MYROW,
$ MYCOL, IROW, ICOL, II, JJ )
IF( MYCOL .EQ. JJ ) THEN
CALL INFOG2L( IHIZ, I-DBLK+1, DESCZ, NPROW, NPCOL,
$ MYROW, MYCOL, IROW1, ICOL1, ITMP1, ITMP2 )
IF( MYROW .NE. ITMP1 ) IROW1 = IROW1-1
DO 30 KKROW = IROW, IROW1, VSTEP
KLN = MIN( VSTEP, IROW1-KKROW+1 )
CALL SGEMM( 'N', 'N', KLN, DBLK, DBLK, ONE,
$ Z( KKROW+(ICOL-1)*LDZ ), LDZ, V, LDV, ZERO,
$ WORK, KLN )
CALL SLAMOV( 'A', KLN, DBLK, WORK, KLN,
$ Z( KKROW+(ICOL-1)*LDZ ), LDZ )
30 CONTINUE
END IF
END IF
*
ELSE IF( MOD( I-DBLK, HBL )+DBLK .LE. 2*HBL ) THEN
*
* More complicated case: the deflation window lay on a 2x2
* processor mesh.
* Call SGEMM locally and communicate by pair.
*
D1 = HBL - MOD( I-DBLK, HBL )
D2 = DBLK - D1
HSTEP = LWORK / DBLK
VSTEP = HSTEP
*
* Update horizontal slab in A.
*
IF( WANTT ) THEN
CALL INFOG2L( I-DBLK+1, I+1, DESCA, NPROW, NPCOL, MYROW,
$ MYCOL, IROW, ICOL, II, JJ )
IF( MYROW .EQ. UP ) THEN
IF( MYROW .EQ. II ) THEN
ICOL1 = NUMROC( N, HBL, MYCOL, JAFIRST, NPCOL )
DO 40 KKCOL = ICOL, ICOL1, HSTEP
KLN = MIN( HSTEP, ICOL1-KKCOL+1 )
CALL SGEMM( 'T', 'N', DBLK, KLN, DBLK, ONE, V,
$ DBLK, A( IROW+(KKCOL-1)*LDA ), LDA, ZERO,
$ WORK, DBLK )
CALL SLAMOV( 'A', DBLK, KLN, WORK, DBLK,
$ A( IROW+(KKCOL-1)*LDA ), LDA )
40 CONTINUE
END IF
ELSE
IF( MYROW .EQ. II ) THEN
ICOL1 = NUMROC( N, HBL, MYCOL, JAFIRST, NPCOL )
DO 50 KKCOL = ICOL, ICOL1, HSTEP
KLN = MIN( HSTEP, ICOL1-KKCOL+1 )
CALL SGEMM( 'T', 'N', D2, KLN, D1, ONE,
$ V( 1, D1+1 ), LDV, A( IROW+(KKCOL-1)*LDA ),
$ LDA, ZERO, WORK( D1+1 ), DBLK )
CALL SGESD2D( CONTXT, D2, KLN, WORK( D1+1 ),
$ DBLK, DOWN, MYCOL )
CALL SGERV2D( CONTXT, D1, KLN, WORK, DBLK, DOWN,
$ MYCOL )
CALL SGEMM( 'T', 'N', D1, KLN, D1, ONE,
$ V, LDV, A( IROW+(KKCOL-1)*LDA ), LDA, ONE,
$ WORK, DBLK )
CALL SLAMOV( 'A', D1, KLN, WORK, DBLK,
$ A( IROW+(KKCOL-1)*LDA ), LDA )
50 CONTINUE
ELSE IF( UP .EQ. II ) THEN
ICOL1 = NUMROC( N, HBL, MYCOL, JAFIRST, NPCOL )
DO 60 KKCOL = ICOL, ICOL1, HSTEP
KLN = MIN( HSTEP, ICOL1-KKCOL+1 )
CALL SGEMM( 'T', 'N', D1, KLN, D2, ONE,
$ V( D1+1, 1 ), LDV, A( IROW+(KKCOL-1)*LDA ),
$ LDA, ZERO, WORK, DBLK )
CALL SGESD2D( CONTXT, D1, KLN, WORK, DBLK, UP,
$ MYCOL )
CALL SGERV2D( CONTXT, D2, KLN, WORK( D1+1 ),
$ DBLK, UP, MYCOL )
CALL SGEMM( 'T', 'N', D2, KLN, D2, ONE,
$ V( D1+1, D1+1 ), LDV,
$ A( IROW+(KKCOL-1)*LDA ), LDA, ONE,
$ WORK( D1+1 ), DBLK )
CALL SLAMOV( 'A', D2, KLN, WORK( D1+1 ), DBLK,
$ A( IROW+(KKCOL-1)*LDA ), LDA )
60 CONTINUE
END IF
END IF
END IF
*
* Update vertical slab in A.
*
CALL INFOG2L( LTOP, I-DBLK+1, DESCA, NPROW, NPCOL, MYROW,
$ MYCOL, IROW, ICOL, II, JJ )
IF( MYCOL .EQ. LEFT ) THEN
IF( MYCOL .EQ. JJ ) THEN
CALL INFOG2L( I-DBLK, I-DBLK+1, DESCA, NPROW, NPCOL,
$ MYROW, MYCOL, IROW1, ICOL1, ITMP1, ITMP2 )
IF( MYROW .NE. ITMP1 ) IROW1 = IROW1-1
DO 70 KKROW = IROW, IROW1, VSTEP
KLN = MIN( VSTEP, IROW1-KKROW+1 )
CALL SGEMM( 'N', 'N', KLN, DBLK, DBLK, ONE,
$ A( KKROW+(ICOL-1)*LDA ), LDA, V, LDV, ZERO,
$ WORK, KLN )
CALL SLAMOV( 'A', KLN, DBLK, WORK, KLN,
$ A( KKROW+(ICOL-1)*LDA ), LDA )
70 CONTINUE
END IF
ELSE
IF( MYCOL .EQ. JJ ) THEN
CALL INFOG2L( I-DBLK, I-DBLK+1, DESCA, NPROW, NPCOL,
$ MYROW, MYCOL, IROW1, ICOL1, ITMP1, ITMP2 )
IF( MYROW .NE. ITMP1 ) IROW1 = IROW1-1
DO 80 KKROW = IROW, IROW1, VSTEP
KLN = MIN( VSTEP, IROW1-KKROW+1 )
CALL SGEMM( 'N', 'N', KLN, D2, D1, ONE,
$ A( KKROW+(ICOL-1)*LDA ), LDA,
$ V( 1, D1+1 ), LDV, ZERO, WORK( 1+D1*KLN ),
$ KLN )
CALL SGESD2D( CONTXT, KLN, D2, WORK( 1+D1*KLN ),
$ KLN, MYROW, RIGHT )
CALL SGERV2D( CONTXT, KLN, D1, WORK, KLN, MYROW,
$ RIGHT )
CALL SGEMM( 'N', 'N', KLN, D1, D1, ONE,
$ A( KKROW+(ICOL-1)*LDA ), LDA, V, LDV, ONE,
$ WORK, KLN )
CALL SLAMOV( 'A', KLN, D1, WORK, KLN,
$ A( KKROW+(ICOL-1)*LDA ), LDA )
80 CONTINUE
ELSE IF ( LEFT .EQ. JJ ) THEN
CALL INFOG2L( I-DBLK, I-DBLK+1, DESCA, NPROW, NPCOL,
$ MYROW, MYCOL, IROW1, ICOL1, ITMP1, ITMP2 )
IF( MYROW .NE. ITMP1 ) IROW1 = IROW1-1
DO 90 KKROW = IROW, IROW1, VSTEP
KLN = MIN( VSTEP, IROW1-KKROW+1 )
CALL SGEMM( 'N', 'N', KLN, D1, D2, ONE,
$ A( KKROW+(ICOL-1)*LDA ), LDA, V( D1+1, 1 ),
$ LDV, ZERO, WORK, KLN )
CALL SGESD2D( CONTXT, KLN, D1, WORK, KLN, MYROW,
$ LEFT )
CALL SGERV2D( CONTXT, KLN, D2, WORK( 1+D1*KLN ),
$ KLN, MYROW, LEFT )
CALL SGEMM( 'N', 'N', KLN, D2, D2, ONE,
$ A( KKROW+(ICOL-1)*LDA ), LDA, V( D1+1, D1+1 ),
$ LDV, ONE, WORK( 1+D1*KLN ), KLN )
CALL SLAMOV( 'A', KLN, D2, WORK( 1+D1*KLN ), KLN,
$ A( KKROW+(ICOL-1)*LDA ), LDA )
90 CONTINUE
END IF
END IF
*
* Update vertical slab in Z.
*
IF( WANTZ ) THEN
CALL INFOG2L( ILOZ, I-DBLK+1, DESCZ, NPROW, NPCOL, MYROW,
$ MYCOL, IROW, ICOL, II, JJ )
IF( MYCOL .EQ. LEFT ) THEN
IF( MYCOL .EQ. JJ ) THEN
CALL INFOG2L( IHIZ, I-DBLK+1, DESCZ, NPROW, NPCOL,
$ MYROW, MYCOL, IROW1, ICOL1, ITMP1, ITMP2 )
IF( MYROW .NE. ITMP1 ) IROW1 = IROW1-1
DO 100 KKROW = IROW, IROW1, VSTEP
KLN = MIN( VSTEP, IROW1-KKROW+1 )
CALL SGEMM( 'N', 'N', KLN, DBLK, DBLK, ONE,
$ Z( KKROW+(ICOL-1)*LDZ ), LDZ, V, LDV, ZERO,
$ WORK, KLN )
CALL SLAMOV( 'A', KLN, DBLK, WORK, KLN,
$ Z( KKROW+(ICOL-1)*LDZ ), LDZ )
100 CONTINUE
END IF
ELSE
IF( MYCOL .EQ. JJ ) THEN
CALL INFOG2L( IHIZ, I-DBLK+1, DESCZ, NPROW, NPCOL,
$ MYROW, MYCOL, IROW1, ICOL1, ITMP1, ITMP2 )
IF( MYROW .NE. ITMP1 ) IROW1 = IROW1-1
DO 110 KKROW = IROW, IROW1, VSTEP
KLN = MIN( VSTEP, IROW1-KKROW+1 )
CALL SGEMM( 'N', 'N', KLN, D2, D1, ONE,
$ Z( KKROW+(ICOL-1)*LDZ ), LDZ,
$ V( 1, D1+1 ), LDV, ZERO, WORK( 1+D1*KLN ),
$ KLN )
CALL SGESD2D( CONTXT, KLN, D2, WORK( 1+D1*KLN ),
$ KLN, MYROW, RIGHT )
CALL SGERV2D( CONTXT, KLN, D1, WORK, KLN, MYROW,
$ RIGHT )
CALL SGEMM( 'N', 'N', KLN, D1, D1, ONE,
$ Z( KKROW+(ICOL-1)*LDZ ), LDZ, V, LDV, ONE,
$ WORK, KLN )
CALL SLAMOV( 'A', KLN, D1, WORK, KLN,
$ Z( KKROW+(ICOL-1)*LDZ ), LDZ )
110 CONTINUE
ELSE IF( LEFT .EQ. JJ ) THEN
CALL INFOG2L( IHIZ, I-DBLK+1, DESCZ, NPROW, NPCOL,
$ MYROW, MYCOL, IROW1, ICOL1, ITMP1, ITMP2 )
IF( MYROW .NE. ITMP1 ) IROW1 = IROW1-1
DO 120 KKROW = IROW, IROW1, VSTEP
KLN = MIN( VSTEP, IROW1-KKROW+1 )
CALL SGEMM( 'N', 'N', KLN, D1, D2, ONE,
$ Z( KKROW+(ICOL-1)*LDZ ), LDZ,
$ V( D1+1, 1 ), LDV, ZERO, WORK, KLN )
CALL SGESD2D( CONTXT, KLN, D1, WORK, KLN, MYROW,
$ LEFT )
CALL SGERV2D( CONTXT, KLN, D2, WORK( 1+D1*KLN ),
$ KLN, MYROW, LEFT )
CALL SGEMM( 'N', 'N', KLN, D2, D2, ONE,
$ Z( KKROW+(ICOL-1)*LDZ ), LDZ,
$ V( D1+1, D1+1 ), LDV, ONE,
$ WORK( 1+D1*KLN ), KLN )
CALL SLAMOV( 'A', KLN, D2, WORK( 1+D1*KLN ),
$ KLN, Z( KKROW+(ICOL-1)*LDZ ), LDZ )
120 CONTINUE
END IF
END IF
END IF
*
ELSE
*
* Most complicated case: the deflation window lay across the
* border of the processor mesh.
* Treat V as a distributed matrix and call PSGEMM.
*
HSTEP = LWORK / DBLK * NPCOL
VSTEP = LWORK / DBLK * NPROW
LLDTMP = NUMROC( DBLK, DBLK, MYROW, 0, NPROW )
LLDTMP = MAX( 1, LLDTMP )
CALL DESCINIT( DESCV, DBLK, DBLK, DBLK, DBLK, 0, 0, CONTXT,
$ LLDTMP, INFO )
CALL DESCINIT( DESCWH, DBLK, HSTEP, DBLK, LWORK / DBLK, 0,
$ 0, CONTXT, LLDTMP, INFO )
*
* Update horizontal slab in A.
*
IF( WANTT ) THEN
DO 130 KKCOL = I+1, N, HSTEP
KLN = MIN( HSTEP, N-KKCOL+1 )
CALL PSGEMM( 'T', 'N', DBLK, KLN, DBLK, ONE, V, 1, 1,
$ DESCV, A, I-DBLK+1, KKCOL, DESCA, ZERO, WORK, 1,
$ 1, DESCWH )
CALL PSGEMR2D( DBLK, KLN, WORK, 1, 1, DESCWH, A,
$ I-DBLK+1, KKCOL, DESCA, CONTXT )
130 CONTINUE
END IF
*
* Update vertical slab in A.
*
DO 140 KKROW = LTOP, I-DBLK, VSTEP
KLN = MIN( VSTEP, I-DBLK-KKROW+1 )
LLDTMP = NUMROC( KLN, LWORK / DBLK, MYROW, 0, NPROW )
LLDTMP = MAX( 1, LLDTMP )
CALL DESCINIT( DESCWV, KLN, DBLK, LWORK / DBLK, DBLK, 0,
$ 0, CONTXT, LLDTMP, INFO )
CALL PSGEMM( 'N', 'N', KLN, DBLK, DBLK, ONE, A, KKROW,
$ I-DBLK+1, DESCA, V, 1, 1, DESCV, ZERO, WORK, 1, 1,
$ DESCWV )
CALL PSGEMR2D( KLN, DBLK, WORK, 1, 1, DESCWV, A, KKROW,
$ I-DBLK+1, DESCA, CONTXT )
140 CONTINUE
*
* Update vertical slab in Z.
*
IF( WANTZ ) THEN
DO 150 KKROW = ILOZ, IHIZ, VSTEP
KLN = MIN( VSTEP, IHIZ-KKROW+1 )
LLDTMP = NUMROC( KLN, LWORK / DBLK, MYROW, 0, NPROW )
LLDTMP = MAX( 1, LLDTMP )
CALL DESCINIT( DESCWV, KLN, DBLK, LWORK / DBLK, DBLK,
$ 0, 0, CONTXT, LLDTMP, INFO )
CALL PSGEMM( 'N', 'N', KLN, DBLK, DBLK, ONE, Z, KKROW,
$ I-DBLK+1, DESCZ, V, 1, 1, DESCV, ZERO, WORK, 1,
$ 1, DESCWV )
CALL PSGEMR2D( KLN, DBLK, WORK, 1, 1, DESCWV, Z,
$ KKROW, I-DBLK+1, DESCZ, CONTXT )
150 CONTINUE
END IF
END IF
*
* Extract converged eigenvalues.
*
II = 0
160 CONTINUE
IF( II .EQ. ND-1 .OR. WI( DBLK-II ) .EQ. ZERO ) THEN
IF( NODE .EQ. 0 ) THEN
SR( I-II ) = WR( DBLK-II )
ELSE
SR( I-II ) = ZERO
END IF
SI( I-II ) = ZERO
II = II + 1
ELSE
IF( NODE .EQ. 0 ) THEN
SR( I-II-1 ) = WR( DBLK-II-1 )
SR( I-II ) = WR( DBLK-II )
SI( I-II-1 ) = WI( DBLK-II-1 )
SI( I-II ) = WI( DBLK-II )
ELSE
SR( I-II-1 ) = ZERO
SR( I-II ) = ZERO
SI( I-II-1 ) = ZERO
SI( I-II ) = ZERO
END IF
II = II + 2
END IF
IF( II .LT. ND ) GOTO 160
END IF
*
* END OF PSLAQR2
*
END
|