File: pslaqr2.f

package info (click to toggle)
scalapack 2.1.0-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 36,184 kB
  • sloc: fortran: 338,772; ansic: 75,298; makefile: 1,392; sh: 56
file content (671 lines) | stat: -rw-r--r-- 29,031 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
      SUBROUTINE PSLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, A, DESCA,
     $                    ILOZ, IHIZ, Z, DESCZ, NS, ND, SR, SI, T, LDT,
     $                    V, LDV, WR, WI, WORK, LWORK )
*
*     Contribution from the Department of Computing Science and HPC2N,
*     Umea University, Sweden
*
*  -- ScaLAPACK routine (version 2.0.2) --
*     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver
*     May 1 2012
*
      IMPLICIT NONE
*
*     .. Scalar Arguments ..
      INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDT, LDV, LWORK, N, ND,
     $                   NS, NW
      LOGICAL            WANTT, WANTZ
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * ), DESCZ( * )
      REAL               A( * ), SI( KBOT ), SR( KBOT ), T( LDT, * ),
     $                   V( LDV, * ), WORK( * ), WI( * ), WR( * ),
     $                   Z( * )
*     ..
*
*  Purpose
*  =======
*
*  Aggressive early deflation:
*
*  PSLAQR2 accepts as input an upper Hessenberg matrix A and performs an
*  orthogonal similarity transformation designed to detect and deflate
*  fully converged eigenvalues from a trailing principal submatrix.  On
*  output A has been overwritten by a new Hessenberg matrix that is a
*  perturbation of an orthogonal similarity transformation of A.  It is
*  to be hoped that the final version of H has many zero subdiagonal
*  entries.
*
*  This routine handles small deflation windows which is affordable by
*  one processor. Normally, it is called by PSLAQR1. All the inputs are
*  assumed to be valid without checking.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  WANTT   (global input) LOGICAL
*          If .TRUE., then the Hessenberg matrix H is fully updated
*          so that the quasi-triangular Schur factor may be
*          computed (in cooperation with the calling subroutine).
*          If .FALSE., then only enough of H is updated to preserve
*          the eigenvalues.
*
*  WANTZ   (global input) LOGICAL
*          If .TRUE., then the orthogonal matrix Z is updated so
*          so that the orthogonal Schur factor may be computed
*          (in cooperation with the calling subroutine).
*          If .FALSE., then Z is not referenced.
*
*  N       (global input) INTEGER
*          The order of the matrix H and (if WANTZ is .TRUE.) the
*          order of the orthogonal matrix Z.
*
*  KTOP    (global input) INTEGER
*  KBOT    (global input) INTEGER
*          It is assumed without a check that either
*          KBOT = N or H(KBOT+1,KBOT)=0.  KBOT and KTOP together
*          determine an isolated block along the diagonal of the
*          Hessenberg matrix. However, H(KTOP,KTOP-1)=0 is not
*          essentially necessary if WANTT is .TRUE. .
*
*  NW      (global input) INTEGER
*          Deflation window size.  1 .LE. NW .LE. (KBOT-KTOP+1).
*          Normally NW .GE. 3 if PSLAQR2 is called by PSLAQR1.
*
*  A       (local input/output) REAL             array, dimension
*          (DESCH(LLD_),*)
*          On input the initial N-by-N section of A stores the
*          Hessenberg matrix undergoing aggressive early deflation.
*          On output A has been transformed by an orthogonal
*          similarity transformation, perturbed, and the returned
*          to Hessenberg form that (it is to be hoped) has some
*          zero subdiagonal entries.
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  ILOZ    (global input) INTEGER
*  IHIZ    (global input) INTEGER
*          Specify the rows of Z to which transformations must be
*          applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.
*
*  Z       (input/output) REAL             array, dimension
*          (DESCH(LLD_),*)
*          IF WANTZ is .TRUE., then on output, the orthogonal
*          similarity transformation mentioned above has been
*          accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right.
*          If WANTZ is .FALSE., then Z is unreferenced.
*
*  DESCZ   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix Z.
*
*  NS      (global output) INTEGER
*          The number of unconverged (ie approximate) eigenvalues
*          returned in SR and SI that may be used as shifts by the
*          calling subroutine.
*
*  ND      (global output) INTEGER
*          The number of converged eigenvalues uncovered by this
*          subroutine.
*
*  SR      (global output) REAL             array, dimension KBOT
*  SI      (global output) REAL             array, dimension KBOT
*          On output, the real and imaginary parts of approximate
*          eigenvalues that may be used for shifts are stored in
*          SR(KBOT-ND-NS+1) through SR(KBOT-ND) and
*          SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively.
*          On proc #0, the real and imaginary parts of converged
*          eigenvalues are stored in SR(KBOT-ND+1) through SR(KBOT) and
*          SI(KBOT-ND+1) through SI(KBOT), respectively. On other
*          processors, these entries are set to zero.
*
*  T       (local workspace) REAL             array, dimension LDT*NW.
*
*  LDT     (local input) INTEGER
*          The leading dimension of the array T.
*          LDT >= NW.
*
*  V       (local workspace) REAL             array, dimension LDV*NW.
*
*  LDV     (local input) INTEGER
*          The leading dimension of the array V.
*          LDV >= NW.
*
*  WR      (local workspace) REAL             array, dimension KBOT.
*  WI      (local workspace) REAL             array, dimension KBOT.
*
*  WORK    (local workspace) REAL             array, dimension LWORK.
*
*  LWORK   (local input) INTEGER
*          WORK(LWORK) is a local array and LWORK is assumed big enough
*          so that LWORK >= NW*NW.
*
*  ================================================================
*  Implemented by
*        Meiyue Shao, Department of Computing Science and HPC2N,
*        Umea University, Sweden
*
*  ================================================================
*  References:
*        B. Kagstrom, D. Kressner, and M. Shao,
*        On Aggressive Early Deflation in Parallel Variants of the QR
*        Algorithm.
*        Para 2010, to appear.
*
*  ================================================================
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0, ONE = 1.0 )
*     ..
*     .. Local Scalars ..
      INTEGER            CONTXT, HBL, I, I1, I2, IAFIRST, ICOL, ICOL1,
     $                   ICOL2, INFO, II, IROW, IROW1, IROW2, ITMP1,
     $                   ITMP2, J, JAFIRST, JJ, K, L, LDA, LDZ, LLDTMP,
     $                   MYCOL, MYROW, NODE, NPCOL, NPROW, DBLK,
     $                   HSTEP, VSTEP, KKROW, KKCOL, KLN, LTOP, LEFT,
     $                   RIGHT, UP, DOWN, D1, D2
*     ..
*     .. Local Arrays ..
      INTEGER            DESCT( 9 ), DESCV( 9 ), DESCWH( 9 ),
     $                   DESCWV( 9 )
*     ..
*     .. External Functions ..
      INTEGER            NUMROC
      EXTERNAL           NUMROC
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, INFOG2L, SLASET,
     $                   SLAQR3, DESCINIT, PSGEMM, PSGEMR2D, SGEMM,
     $                   SLAMOV, SGESD2D, SGERV2D, SGEBS2D, SGEBR2D,
     $                   IGEBS2D, IGEBR2D
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, MOD
*     ..
*     .. Executable Statements ..
*
      INFO = 0
*
      IF( N.EQ.0 )
     $   RETURN
*
*     NODE (IAFIRST,JAFIRST) OWNS A(1,1)
*
      HBL = DESCA( MB_ )
      CONTXT = DESCA( CTXT_ )
      LDA = DESCA( LLD_ )
      IAFIRST = DESCA( RSRC_ )
      JAFIRST = DESCA( CSRC_ )
      LDZ = DESCZ( LLD_ )
      CALL BLACS_GRIDINFO( CONTXT, NPROW, NPCOL, MYROW, MYCOL )
      NODE = MYROW*NPCOL + MYCOL
      LEFT = MOD( MYCOL+NPCOL-1, NPCOL )
      RIGHT = MOD( MYCOL+1, NPCOL )
      UP = MOD( MYROW+NPROW-1, NPROW )
      DOWN = MOD( MYROW+1, NPROW )
*
*     I1 and I2 are the indices of the first row and last column of A
*     to which transformations must be applied.
*
      I = KBOT
      L = KTOP
      IF( WANTT ) THEN
         I1 = 1
         I2 = N
         LTOP = 1
      ELSE
         I1 = L
         I2 = I
         LTOP = L
      END IF
*
*     Begin Aggressive Early Deflation.
*
      DBLK = NW
      CALL INFOG2L( I-DBLK+1, I-DBLK+1, DESCA, NPROW, NPCOL, MYROW,
     $     MYCOL, IROW, ICOL, II, JJ )
      IF ( MYROW .EQ. II ) THEN
         CALL DESCINIT( DESCT, DBLK, DBLK, DBLK, DBLK, II, JJ, CONTXT,
     $        LDT, INFO )
         CALL DESCINIT( DESCV, DBLK, DBLK, DBLK, DBLK, II, JJ, CONTXT,
     $        LDV, INFO )
      ELSE
         CALL DESCINIT( DESCT, DBLK, DBLK, DBLK, DBLK, II, JJ, CONTXT,
     $        1, INFO )
         CALL DESCINIT( DESCV, DBLK, DBLK, DBLK, DBLK, II, JJ, CONTXT,
     $        1, INFO )
      END IF
      CALL PSGEMR2D( DBLK, DBLK, A, I-DBLK+1, I-DBLK+1, DESCA, T, 1, 1,
     $     DESCT, CONTXT )
      IF ( MYROW .EQ. II .AND. MYCOL .EQ. JJ ) THEN
         CALL SLASET( 'All', DBLK, DBLK, ZERO, ONE, V, LDV )
         CALL SLAQR3( .TRUE., .TRUE., DBLK, 1, DBLK, DBLK-1, T, LDT, 1,
     $        DBLK, V, LDV, NS, ND, WR, WI, WORK, DBLK, DBLK,
     $        WORK( DBLK*DBLK+1 ), DBLK, DBLK, WORK( 2*DBLK*DBLK+1 ),
     $        DBLK, WORK( 3*DBLK*DBLK+1 ), LWORK-3*DBLK*DBLK )
         CALL SGEBS2D( CONTXT, 'All', ' ', DBLK, DBLK, V, LDV )
         CALL IGEBS2D( CONTXT, 'All', ' ', 1, 1, ND, 1 )
      ELSE
         CALL SGEBR2D( CONTXT, 'All', ' ', DBLK, DBLK, V, LDV, II, JJ )
         CALL IGEBR2D( CONTXT, 'All', ' ', 1, 1, ND, 1, II, JJ )
      END IF
*
      IF( ND .GT. 0 ) THEN
*
*        Copy the local matrix back to the diagonal block.
*
         CALL PSGEMR2D( DBLK, DBLK, T, 1, 1, DESCT, A, I-DBLK+1,
     $        I-DBLK+1, DESCA, CONTXT )
*
*        Update T and Z.
*
         IF( MOD( I-DBLK, HBL )+DBLK .LE. HBL ) THEN
*
*           Simplest case: the deflation window is located on one
*           processor.
*           Call SGEMM directly to perform the update.
*
            HSTEP = LWORK / DBLK
            VSTEP = HSTEP
*
*           Update horizontal slab in A.
*
            IF( WANTT ) THEN
               CALL INFOG2L( I-DBLK+1, I+1, DESCA, NPROW, NPCOL, MYROW,
     $              MYCOL, IROW, ICOL, II, JJ )
               IF( MYROW .EQ. II ) THEN
                  ICOL1 = NUMROC( N, HBL, MYCOL, JAFIRST, NPCOL )
                  DO 10 KKCOL = ICOL, ICOL1, HSTEP
                     KLN = MIN( HSTEP, ICOL1-KKCOL+1 )
                     CALL SGEMM( 'T', 'N', DBLK, KLN, DBLK, ONE, V,
     $                    LDV, A( IROW+(KKCOL-1)*LDA ), LDA, ZERO, WORK,
     $                    DBLK )
                     CALL SLAMOV( 'A', DBLK, KLN, WORK, DBLK,
     $                    A( IROW+(KKCOL-1)*LDA ), LDA )
   10             CONTINUE
               END IF
            END IF
*
*           Update vertical slab in A.
*
            CALL INFOG2L( LTOP, I-DBLK+1, DESCA, NPROW, NPCOL, MYROW,
     $           MYCOL, IROW, ICOL, II, JJ )
            IF( MYCOL .EQ. JJ ) THEN
               CALL INFOG2L( I-DBLK, I-DBLK+1, DESCA, NPROW, NPCOL,
     $              MYROW, MYCOL, IROW1, ICOL1, ITMP1, ITMP2 )
               IF( MYROW .NE. ITMP1 ) IROW1 = IROW1-1
               DO 20 KKROW = IROW, IROW1, VSTEP
                  KLN = MIN( VSTEP, IROW1-KKROW+1 )
                  CALL SGEMM( 'N', 'N', KLN, DBLK, DBLK, ONE,
     $                 A( KKROW+(ICOL-1)*LDA ), LDA, V, LDV, ZERO, WORK,
     $                 KLN )
                  CALL SLAMOV( 'A', KLN, DBLK, WORK, KLN,
     $                 A( KKROW+(ICOL-1)*LDA ), LDA )
   20          CONTINUE
            END IF
*
*           Update vertical slab in Z.
*
            IF( WANTZ ) THEN
               CALL INFOG2L( ILOZ, I-DBLK+1, DESCZ, NPROW, NPCOL, MYROW,
     $              MYCOL, IROW, ICOL, II, JJ )
               IF( MYCOL .EQ. JJ ) THEN
                  CALL INFOG2L( IHIZ, I-DBLK+1, DESCZ, NPROW, NPCOL,
     $                 MYROW, MYCOL, IROW1, ICOL1, ITMP1, ITMP2 )
                  IF( MYROW .NE. ITMP1 ) IROW1 = IROW1-1
                  DO 30 KKROW = IROW, IROW1, VSTEP
                     KLN = MIN( VSTEP, IROW1-KKROW+1 )
                     CALL SGEMM( 'N', 'N', KLN, DBLK, DBLK, ONE,
     $                    Z( KKROW+(ICOL-1)*LDZ ), LDZ, V, LDV, ZERO,
     $                    WORK, KLN )
                     CALL SLAMOV( 'A', KLN, DBLK, WORK, KLN,
     $                    Z( KKROW+(ICOL-1)*LDZ ), LDZ )
   30             CONTINUE
               END IF
            END IF
*
         ELSE IF( MOD( I-DBLK, HBL )+DBLK .LE. 2*HBL ) THEN
*
*           More complicated case: the deflation window lay on a 2x2
*           processor mesh.
*           Call SGEMM locally and communicate by pair.
*
            D1 = HBL - MOD( I-DBLK, HBL )
            D2 = DBLK - D1
            HSTEP = LWORK / DBLK
            VSTEP = HSTEP
*
*           Update horizontal slab in A.
*
            IF( WANTT ) THEN
               CALL INFOG2L( I-DBLK+1, I+1, DESCA, NPROW, NPCOL, MYROW,
     $              MYCOL, IROW, ICOL, II, JJ )
               IF( MYROW .EQ. UP ) THEN
                  IF( MYROW .EQ. II ) THEN
                     ICOL1 = NUMROC( N, HBL, MYCOL, JAFIRST, NPCOL )
                     DO 40 KKCOL = ICOL, ICOL1, HSTEP
                        KLN = MIN( HSTEP, ICOL1-KKCOL+1 )
                        CALL SGEMM( 'T', 'N', DBLK, KLN, DBLK, ONE, V,
     $                       DBLK, A( IROW+(KKCOL-1)*LDA ), LDA, ZERO,
     $                       WORK, DBLK )
                        CALL SLAMOV( 'A', DBLK, KLN, WORK, DBLK,
     $                       A( IROW+(KKCOL-1)*LDA ), LDA )
   40                CONTINUE
                  END IF
               ELSE
                  IF( MYROW .EQ. II ) THEN
                     ICOL1 = NUMROC( N, HBL, MYCOL, JAFIRST, NPCOL )
                     DO 50 KKCOL = ICOL, ICOL1, HSTEP
                        KLN = MIN( HSTEP, ICOL1-KKCOL+1 )
                        CALL SGEMM( 'T', 'N', D2, KLN, D1, ONE,
     $                       V( 1, D1+1 ), LDV, A( IROW+(KKCOL-1)*LDA ),
     $                       LDA, ZERO, WORK( D1+1 ), DBLK )
                        CALL SGESD2D( CONTXT, D2, KLN, WORK( D1+1 ),
     $                       DBLK, DOWN, MYCOL )
                        CALL SGERV2D( CONTXT, D1, KLN, WORK, DBLK, DOWN,
     $                       MYCOL )
                        CALL SGEMM( 'T', 'N', D1, KLN, D1, ONE,
     $                       V, LDV, A( IROW+(KKCOL-1)*LDA ), LDA, ONE,
     $                       WORK, DBLK )
                        CALL SLAMOV( 'A', D1, KLN, WORK, DBLK,
     $                       A( IROW+(KKCOL-1)*LDA ), LDA )
   50                CONTINUE
                  ELSE IF( UP .EQ. II ) THEN
                     ICOL1 = NUMROC( N, HBL, MYCOL, JAFIRST, NPCOL )
                     DO 60 KKCOL = ICOL, ICOL1, HSTEP
                        KLN = MIN( HSTEP, ICOL1-KKCOL+1 )
                        CALL SGEMM( 'T', 'N', D1, KLN, D2, ONE,
     $                       V( D1+1, 1 ), LDV, A( IROW+(KKCOL-1)*LDA ),
     $                       LDA, ZERO, WORK, DBLK )
                        CALL SGESD2D( CONTXT, D1, KLN, WORK, DBLK, UP,
     $                       MYCOL )
                        CALL SGERV2D( CONTXT, D2, KLN, WORK( D1+1 ),
     $                       DBLK, UP, MYCOL )
                        CALL SGEMM( 'T', 'N', D2, KLN, D2, ONE,
     $                       V( D1+1, D1+1 ), LDV,
     $                       A( IROW+(KKCOL-1)*LDA ), LDA, ONE,
     $                       WORK( D1+1 ), DBLK )
                        CALL SLAMOV( 'A', D2, KLN, WORK( D1+1 ), DBLK,
     $                       A( IROW+(KKCOL-1)*LDA ), LDA )
   60                CONTINUE
                  END IF
               END IF
            END IF
*
*           Update vertical slab in A.
*
            CALL INFOG2L( LTOP, I-DBLK+1, DESCA, NPROW, NPCOL, MYROW,
     $           MYCOL, IROW, ICOL, II, JJ )
            IF( MYCOL .EQ. LEFT ) THEN
               IF( MYCOL .EQ. JJ ) THEN
                  CALL INFOG2L( I-DBLK, I-DBLK+1, DESCA, NPROW, NPCOL,
     $                 MYROW, MYCOL, IROW1, ICOL1, ITMP1, ITMP2 )
                  IF( MYROW .NE. ITMP1 ) IROW1 = IROW1-1
                  DO 70 KKROW = IROW, IROW1, VSTEP
                     KLN = MIN( VSTEP, IROW1-KKROW+1 )
                     CALL SGEMM( 'N', 'N', KLN, DBLK, DBLK, ONE,
     $                    A( KKROW+(ICOL-1)*LDA ), LDA, V, LDV, ZERO,
     $                    WORK, KLN )
                     CALL SLAMOV( 'A', KLN, DBLK, WORK, KLN,
     $                    A( KKROW+(ICOL-1)*LDA ), LDA )
   70             CONTINUE
               END IF
            ELSE
               IF( MYCOL .EQ. JJ ) THEN
                  CALL INFOG2L( I-DBLK, I-DBLK+1, DESCA, NPROW, NPCOL,
     $                 MYROW, MYCOL, IROW1, ICOL1, ITMP1, ITMP2 )
                  IF( MYROW .NE. ITMP1 ) IROW1 = IROW1-1
                  DO 80 KKROW = IROW, IROW1, VSTEP
                     KLN = MIN( VSTEP, IROW1-KKROW+1 )
                     CALL SGEMM( 'N', 'N', KLN, D2, D1, ONE,
     $                    A( KKROW+(ICOL-1)*LDA ), LDA,
     $                    V( 1, D1+1 ), LDV, ZERO, WORK( 1+D1*KLN ),
     $                    KLN )
                     CALL SGESD2D( CONTXT, KLN, D2, WORK( 1+D1*KLN ),
     $                    KLN, MYROW, RIGHT )
                     CALL SGERV2D( CONTXT, KLN, D1, WORK, KLN, MYROW,
     $                    RIGHT )
                     CALL SGEMM( 'N', 'N', KLN, D1, D1, ONE,
     $                    A( KKROW+(ICOL-1)*LDA ), LDA, V, LDV, ONE,
     $                    WORK, KLN )
                     CALL SLAMOV( 'A', KLN, D1, WORK, KLN,
     $                    A( KKROW+(ICOL-1)*LDA ), LDA )
   80             CONTINUE
               ELSE IF ( LEFT .EQ. JJ ) THEN
                  CALL INFOG2L( I-DBLK, I-DBLK+1, DESCA, NPROW, NPCOL,
     $                 MYROW, MYCOL, IROW1, ICOL1, ITMP1, ITMP2 )
                  IF( MYROW .NE. ITMP1 ) IROW1 = IROW1-1
                  DO 90 KKROW = IROW, IROW1, VSTEP
                     KLN = MIN( VSTEP, IROW1-KKROW+1 )
                     CALL SGEMM( 'N', 'N', KLN, D1, D2, ONE,
     $                    A( KKROW+(ICOL-1)*LDA ), LDA, V( D1+1, 1 ),
     $                    LDV, ZERO, WORK, KLN )
                     CALL SGESD2D( CONTXT, KLN, D1, WORK, KLN, MYROW,
     $                    LEFT )
                     CALL SGERV2D( CONTXT, KLN, D2, WORK( 1+D1*KLN ),
     $                    KLN, MYROW, LEFT )
                     CALL SGEMM( 'N', 'N', KLN, D2, D2, ONE,
     $                    A( KKROW+(ICOL-1)*LDA ), LDA, V( D1+1, D1+1 ),
     $                    LDV, ONE, WORK( 1+D1*KLN ), KLN )
                     CALL SLAMOV( 'A', KLN, D2, WORK( 1+D1*KLN ), KLN,
     $                    A( KKROW+(ICOL-1)*LDA ), LDA )
   90             CONTINUE
               END IF
            END IF
*
*           Update vertical slab in Z.
*
            IF( WANTZ ) THEN
               CALL INFOG2L( ILOZ, I-DBLK+1, DESCZ, NPROW, NPCOL, MYROW,
     $              MYCOL, IROW, ICOL, II, JJ )
               IF( MYCOL .EQ. LEFT ) THEN
                  IF( MYCOL .EQ. JJ ) THEN
                     CALL INFOG2L( IHIZ, I-DBLK+1, DESCZ, NPROW, NPCOL,
     $                    MYROW, MYCOL, IROW1, ICOL1, ITMP1, ITMP2 )
                     IF( MYROW .NE. ITMP1 ) IROW1 = IROW1-1
                     DO 100 KKROW = IROW, IROW1, VSTEP
                        KLN = MIN( VSTEP, IROW1-KKROW+1 )
                        CALL SGEMM( 'N', 'N', KLN, DBLK, DBLK, ONE,
     $                       Z( KKROW+(ICOL-1)*LDZ ), LDZ, V, LDV, ZERO,
     $                       WORK, KLN )
                        CALL SLAMOV( 'A', KLN, DBLK, WORK, KLN,
     $                       Z( KKROW+(ICOL-1)*LDZ ), LDZ )
  100                CONTINUE
                  END IF
               ELSE
                  IF( MYCOL .EQ. JJ ) THEN
                     CALL INFOG2L( IHIZ, I-DBLK+1, DESCZ, NPROW, NPCOL,
     $                    MYROW, MYCOL, IROW1, ICOL1, ITMP1, ITMP2 )
                     IF( MYROW .NE. ITMP1 ) IROW1 = IROW1-1
                     DO 110 KKROW = IROW, IROW1, VSTEP
                        KLN = MIN( VSTEP, IROW1-KKROW+1 )
                        CALL SGEMM( 'N', 'N', KLN, D2, D1, ONE,
     $                       Z( KKROW+(ICOL-1)*LDZ ), LDZ,
     $                       V( 1, D1+1 ), LDV, ZERO, WORK( 1+D1*KLN ),
     $                       KLN )
                        CALL SGESD2D( CONTXT, KLN, D2, WORK( 1+D1*KLN ),
     $                       KLN, MYROW, RIGHT )
                        CALL SGERV2D( CONTXT, KLN, D1, WORK, KLN, MYROW,
     $                       RIGHT )
                        CALL SGEMM( 'N', 'N', KLN, D1, D1, ONE,
     $                       Z( KKROW+(ICOL-1)*LDZ ), LDZ, V, LDV, ONE,
     $                       WORK, KLN )
                        CALL SLAMOV( 'A', KLN, D1, WORK, KLN,
     $                       Z( KKROW+(ICOL-1)*LDZ ), LDZ )
  110                CONTINUE
                  ELSE IF( LEFT .EQ. JJ ) THEN
                     CALL INFOG2L( IHIZ, I-DBLK+1, DESCZ, NPROW, NPCOL,
     $                    MYROW, MYCOL, IROW1, ICOL1, ITMP1, ITMP2 )
                     IF( MYROW .NE. ITMP1 ) IROW1 = IROW1-1
                     DO 120 KKROW = IROW, IROW1, VSTEP
                        KLN = MIN( VSTEP, IROW1-KKROW+1 )
                        CALL SGEMM( 'N', 'N', KLN, D1, D2, ONE,
     $                       Z( KKROW+(ICOL-1)*LDZ ), LDZ,
     $                       V( D1+1, 1 ), LDV, ZERO, WORK, KLN )
                        CALL SGESD2D( CONTXT, KLN, D1, WORK, KLN, MYROW,
     $                       LEFT )
                        CALL SGERV2D( CONTXT, KLN, D2, WORK( 1+D1*KLN ),
     $                       KLN, MYROW, LEFT )
                        CALL SGEMM( 'N', 'N', KLN, D2, D2, ONE,
     $                       Z( KKROW+(ICOL-1)*LDZ ), LDZ,
     $                       V( D1+1, D1+1 ), LDV, ONE,
     $                       WORK( 1+D1*KLN ), KLN )
                        CALL SLAMOV( 'A', KLN, D2, WORK( 1+D1*KLN ),
     $                       KLN, Z( KKROW+(ICOL-1)*LDZ ), LDZ )
  120                CONTINUE
                  END IF
               END IF
            END IF
*
         ELSE
*
*           Most complicated case: the deflation window lay across the
*           border of the processor mesh.
*           Treat V as a distributed matrix and call PSGEMM.
*
            HSTEP = LWORK / DBLK * NPCOL
            VSTEP = LWORK / DBLK * NPROW
            LLDTMP = NUMROC( DBLK, DBLK, MYROW, 0, NPROW )
            LLDTMP = MAX( 1, LLDTMP )
            CALL DESCINIT( DESCV, DBLK, DBLK, DBLK, DBLK, 0, 0, CONTXT,
     $           LLDTMP, INFO )
            CALL DESCINIT( DESCWH, DBLK, HSTEP, DBLK, LWORK / DBLK, 0,
     $           0, CONTXT, LLDTMP, INFO )
*
*           Update horizontal slab in A.
*
            IF( WANTT ) THEN
               DO 130 KKCOL = I+1, N, HSTEP
                  KLN = MIN( HSTEP, N-KKCOL+1 )
                  CALL PSGEMM( 'T', 'N', DBLK, KLN, DBLK, ONE, V, 1, 1,
     $                 DESCV, A, I-DBLK+1, KKCOL, DESCA, ZERO, WORK, 1,
     $                 1, DESCWH )
                  CALL PSGEMR2D( DBLK, KLN, WORK, 1, 1, DESCWH, A,
     $                 I-DBLK+1, KKCOL, DESCA, CONTXT )
  130          CONTINUE
            END IF
*
*           Update vertical slab in A.
*
            DO 140 KKROW = LTOP, I-DBLK, VSTEP
               KLN = MIN( VSTEP, I-DBLK-KKROW+1 )
               LLDTMP = NUMROC( KLN, LWORK / DBLK, MYROW, 0, NPROW )
               LLDTMP = MAX( 1, LLDTMP )
               CALL DESCINIT( DESCWV, KLN, DBLK, LWORK / DBLK, DBLK, 0,
     $              0, CONTXT, LLDTMP, INFO )
               CALL PSGEMM( 'N', 'N', KLN, DBLK, DBLK, ONE, A, KKROW,
     $              I-DBLK+1, DESCA, V, 1, 1, DESCV, ZERO, WORK, 1, 1,
     $              DESCWV )
               CALL PSGEMR2D( KLN, DBLK, WORK, 1, 1, DESCWV, A, KKROW,
     $              I-DBLK+1, DESCA, CONTXT )
  140       CONTINUE
*
*           Update vertical slab in Z.
*
            IF( WANTZ ) THEN
               DO 150 KKROW = ILOZ, IHIZ, VSTEP
                  KLN = MIN( VSTEP, IHIZ-KKROW+1 )
                  LLDTMP = NUMROC( KLN, LWORK / DBLK, MYROW, 0, NPROW )
                  LLDTMP = MAX( 1, LLDTMP )
                  CALL DESCINIT( DESCWV, KLN, DBLK, LWORK / DBLK, DBLK,
     $                 0, 0, CONTXT, LLDTMP, INFO )
                  CALL PSGEMM( 'N', 'N', KLN, DBLK, DBLK, ONE, Z, KKROW,
     $                 I-DBLK+1, DESCZ, V, 1, 1, DESCV, ZERO, WORK, 1,
     $                 1, DESCWV )
                  CALL PSGEMR2D( KLN, DBLK, WORK, 1, 1, DESCWV, Z,
     $                 KKROW, I-DBLK+1, DESCZ, CONTXT )
  150          CONTINUE
            END IF
         END IF
*
*        Extract converged eigenvalues.
*
         II = 0
  160    CONTINUE
            IF( II .EQ. ND-1 .OR. WI( DBLK-II ) .EQ. ZERO ) THEN
               IF( NODE .EQ. 0 ) THEN
                  SR( I-II ) = WR( DBLK-II )
               ELSE
                  SR( I-II ) = ZERO
               END IF
               SI( I-II ) = ZERO
               II = II + 1
            ELSE
               IF( NODE .EQ. 0 ) THEN
                  SR( I-II-1 ) = WR( DBLK-II-1 )
                  SR( I-II ) = WR( DBLK-II )
                  SI( I-II-1 ) = WI( DBLK-II-1 )
                  SI( I-II ) = WI( DBLK-II )
               ELSE
                  SR( I-II-1 ) = ZERO
                  SR( I-II ) = ZERO
                  SI( I-II-1 ) = ZERO
                  SI( I-II ) = ZERO
               END IF
               II = II + 2
            END IF
         IF( II .LT. ND ) GOTO 160
      END IF
*
*     END OF PSLAQR2
*
      END