File: pslaqr3.f

package info (click to toggle)
scalapack 2.1.0-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 36,184 kB
  • sloc: fortran: 338,772; ansic: 75,298; makefile: 1,392; sh: 56
file content (1156 lines) | stat: -rw-r--r-- 44,463 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
      RECURSIVE SUBROUTINE PSLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H,
     $                              DESCH, ILOZ, IHIZ, Z, DESCZ, NS, ND,
     $                              SR, SI, V, DESCV, NH, T, DESCT, NV,
     $                              WV, DESCW, WORK, LWORK, IWORK,
     $                              LIWORK, RECLEVEL )
*
*     Contribution from the Department of Computing Science and HPC2N,
*     Umea University, Sweden
*
*  -- ScaLAPACK auxiliary routine (version 2.0.1) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     Univ. of Colorado Denver and University of California, Berkeley.
*     January, 2012
*
      IMPLICIT NONE
*
*     .. Scalar Arguments ..
      INTEGER            IHIZ, ILOZ, KBOT, KTOP, LWORK, N, ND, NH, NS,
     $                   NV, NW, LIWORK, RECLEVEL
      LOGICAL            WANTT, WANTZ
*     ..
*     .. Array Arguments ..
      INTEGER            DESCH( * ), DESCZ( * ), DESCT( * ), DESCV( * ),
     $                   DESCW( * ), IWORK( * )
      REAL               H( * ), SI( KBOT ), SR( KBOT ), T( * ),
     $                   V( * ), WORK( * ), WV( * ),
     $                   Z( * )
*     ..
*
*  Purpose
*  =======
*
*  Aggressive early deflation:
*
*  This subroutine accepts as input an upper Hessenberg matrix H and
*  performs an orthogonal similarity transformation designed to detect
*  and deflate fully converged eigenvalues from a trailing principal
*  submatrix.  On output H has been overwritten by a new Hessenberg
*  matrix that is a perturbation of an orthogonal similarity
*  transformation of H.  It is to be hoped that the final version of H
*  has many zero subdiagonal entries.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  WANTT   (global input) LOGICAL
*          If .TRUE., then the Hessenberg matrix H is fully updated
*          so that the quasi-triangular Schur factor may be
*          computed (in cooperation with the calling subroutine).
*          If .FALSE., then only enough of H is updated to preserve
*          the eigenvalues.
*
*  WANTZ   (global input) LOGICAL
*          If .TRUE., then the orthogonal matrix Z is updated so
*          so that the orthogonal Schur factor may be computed
*          (in cooperation with the calling subroutine).
*          If .FALSE., then Z is not referenced.
*
*  N       (global input) INTEGER
*          The order of the matrix H and (if WANTZ is .TRUE.) the
*          order of the orthogonal matrix Z.
*
*  KTOP    (global input) INTEGER
*          It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
*          KBOT and KTOP together determine an isolated block
*          along the diagonal of the Hessenberg matrix.
*
*  KBOT    (global input) INTEGER
*          It is assumed without a check that either
*          KBOT = N or H(KBOT+1,KBOT)=0.  KBOT and KTOP together
*          determine an isolated block along the diagonal of the
*          Hessenberg matrix.
*
*  NW      (global input) INTEGER
*          Deflation window size.  1 .LE. NW .LE. (KBOT-KTOP+1).
*
*  H       (local input/output) REAL array, dimension
*             (DESCH(LLD_),*)
*          On input the initial N-by-N section of H stores the
*          Hessenberg matrix undergoing aggressive early deflation.
*          On output H has been transformed by an orthogonal
*          similarity transformation, perturbed, and the returned
*          to Hessenberg form that (it is to be hoped) has some
*          zero subdiagonal entries.
*
*  DESCH   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix H.
*
*  ILOZ    (global input) INTEGER
*  IHIZ    (global input) INTEGER
*          Specify the rows of Z to which transformations must be
*          applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.
*
*  Z       (input/output) REAL array, dimension
*             (DESCH(LLD_),*)
*          IF WANTZ is .TRUE., then on output, the orthogonal
*          similarity transformation mentioned above has been
*          accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right.
*          If WANTZ is .FALSE., then Z is unreferenced.
*
*  DESCZ   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix Z.
*
*  NS      (global output) INTEGER
*          The number of unconverged (ie approximate) eigenvalues
*          returned in SR and SI that may be used as shifts by the
*          calling subroutine.
*
*  ND      (global output) INTEGER
*          The number of converged eigenvalues uncovered by this
*          subroutine.
*
*  SR      (global output) REAL array, dimension KBOT
*  SI      (global output) REAL array, dimension KBOT
*          On output, the real and imaginary parts of approximate
*          eigenvalues that may be used for shifts are stored in
*          SR(KBOT-ND-NS+1) through SR(KBOT-ND) and
*          SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively.
*          The real and imaginary parts of converged eigenvalues
*          are stored in SR(KBOT-ND+1) through SR(KBOT) and
*          SI(KBOT-ND+1) through SI(KBOT), respectively.
*
*  V       (global workspace) REAL array, dimension 
*             (DESCV(LLD_),*)
*          An NW-by-NW distributed work array.
*
*  DESCV   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix V.
*
*  NH      (input) INTEGER scalar
*          The number of columns of T.  NH.GE.NW.
*
*  T       (global workspace) REAL array, dimension 
*             (DESCV(LLD_),*)
*
*  DESCT   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix T.
*
*  NV      (global input) INTEGER
*          The number of rows of work array WV available for
*          workspace.  NV.GE.NW.
*
*  WV      (global workspace) REAL array, dimension 
*             (DESCW(LLD_),*)
*
*  DESCW   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix WV.
*
*  WORK    (local workspace) REAL array, dimension LWORK.
*          On exit, WORK(1) is set to an estimate of the optimal value
*          of LWORK for the given values of N, NW, KTOP and KBOT.
*
*  LWORK   (local input) INTEGER
*          The dimension of the work array WORK.  LWORK = 2*NW
*          suffices, but greater efficiency may result from larger
*          values of LWORK.
*
*          If LWORK = -1, then a workspace query is assumed; PSLAQR3
*          only estimates the optimal workspace size for the given
*          values of N, NW, KTOP and KBOT.  The estimate is returned
*          in WORK(1).  No error message related to LWORK is issued
*          by XERBLA.  Neither H nor Z are accessed.
*
*  IWORK   (local workspace) INTEGER array, dimension (LIWORK)
*
*  LIWORK  (local input) INTEGER
*          The length of the workspace array IWORK
*
*  ================================================================
*  Based on contributions by
*        Robert Granat and Meiyue Shao,
*        Department of Computing Science and HPC2N,
*        Umea University, Sweden
*
*  ================================================================
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      INTEGER            RECMAX
      LOGICAL            SORTGRAD
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9, RECMAX = 3,
     $                     SORTGRAD = .FALSE. )
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0, ONE = 1.0 )
*     ..
*     .. Local Scalars ..
      REAL               AA, BB, BETA, CC, CS, DD, EVI, EVK, FOO, S,
     $                   SAFMAX, SAFMIN, SMLNUM, SN, TAU, ULP,
     $                   ELEM, ELEM1, ELEM2, ELEM3, R1, ANORM, RNORM,
     $                   RESAED
      INTEGER            I, IFST, ILST, INFO, INFQR, J, JW, K, KCOL,
     $                   KEND, KLN, KROW, KWTOP, LTOP, LWK1, LWK2, LWK3,
     $                   LWKOPT, NMIN, LLDH, LLDZ, LLDT, LLDV, LLDWV,
     $                   ICTXT, NPROW, NMAX, NPCOL, MYROW, MYCOL, NB,
     $                   IROFFH, M, RCOLS, TAUROWS, RROWS, TAUCOLS,
     $                   ITAU, IR, IPW, NPROCS, MLOC, IROFFHH,
     $                   ICOFFHH, HHRSRC, HHCSRC, HHROWS, HHCOLS,
     $                   IROFFZZ, ICOFFZZ, ZZRSRC, ZZCSRC, ZZROWS,
     $                   ZZCOLS, IERR, TZROWS0, TZCOLS0, IERR0, IPT0,
     $                   IPZ0, IPW0, NB2, ROUND, LILST, KK, LILST0,
     $                   IWRK1, RSRC, CSRC, LWK4, LWK5, IWRK2, LWK6,
     $                   LWK7, LWK8, ILWKOPT, TZROWS, TZCOLS, NSEL,
     $                   NPMIN, ICTXT_NEW, MYROW_NEW, MYCOL_NEW
      LOGICAL            BULGE, SORTED, LQUERY
*     ..
*     .. Local Arrays ..
      INTEGER            PAR( 6 ), DESCR( DLEN_ ),
     $                   DESCTAU( DLEN_ ), DESCHH( DLEN_ ),
     $                   DESCZZ( DLEN_ ), DESCTZ0( DLEN_ ),
     $                   PMAP( 64*64 )
      REAL               DDUM( 1 )
*     ..
*     .. External Functions ..
      REAL               SLAMCH, PSLANGE
      INTEGER            PILAENVX, NUMROC, INDXG2P, ICEIL, BLACS_PNUM
      EXTERNAL           SLAMCH, PILAENVX, NUMROC, INDXG2P, PSLANGE,
     $                   ICEIL, BLACS_PNUM
*     ..
*     .. External Subroutines ..
      EXTERNAL           PSCOPY, PSGEHRD, PSGEMM, SLABAD, PSLACPY,
     $                   PSLAQR1, SLANV2, PSLAQR0, PSLARF, PSLARFG,
     $                   PSLASET, PSTRORD, PSELGET, PSELSET,
     $                   PSLAMVE, BLACS_GRIDINFO, BLACS_GRIDMAP,
     $                   BLACS_GRIDEXIT, PSGEMR2D
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, FLOAT, INT, MAX, MIN, SQRT
*     ..
*     .. Executable Statements ..
      ICTXT = DESCH( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
      NPROCS = NPROW*NPCOL
*
*     Extract local leading dimensions, blockfactors, offset for
*     keeping the alignment requirements and size of deflation window.
*
      LLDH  = DESCH( LLD_ )
      LLDZ  = DESCZ( LLD_ )
      LLDT  = DESCT( LLD_ )
      LLDV  = DESCV( LLD_ )
      LLDWV = DESCW( LLD_ )
      NB = DESCH( MB_ )
      IROFFH = MOD( KTOP - 1, NB )
      JW = MIN( NW, KBOT-KTOP+1 )
      NSEL = NB+JW
*
*     Extract environment variables for parallel eigenvalue reordering.
*
      PAR(1) = PILAENVX(ICTXT, 17, 'PSLAQR3', 'SV', JW, NB, -1, -1)
      PAR(2) = PILAENVX(ICTXT, 18, 'PSLAQR3', 'SV', JW, NB, -1, -1)
      PAR(3) = PILAENVX(ICTXT, 19, 'PSLAQR3', 'SV', JW, NB, -1, -1)
      PAR(4) = PILAENVX(ICTXT, 20, 'PSLAQR3', 'SV', JW, NB, -1, -1)
      PAR(5) = PILAENVX(ICTXT, 21, 'PSLAQR3', 'SV', JW, NB, -1, -1)
      PAR(6) = PILAENVX(ICTXT, 22, 'PSLAQR3', 'SV', JW, NB, -1, -1)
*
*     Check if workspace query.
*
      LQUERY = LWORK.EQ.-1 .OR. LIWORK.EQ.-1
*
*     Estimate optimal workspace.
*
      IF( JW.LE.2 ) THEN
         LWKOPT = 1
      ELSE
*
*        Workspace query calls to PSGEHRD and PSORMHR.
*
         TAUROWS = NUMROC( 1, 1, MYCOL, DESCV(RSRC_), NPROW )
         TAUCOLS = NUMROC( JW+IROFFH, NB, MYCOL, DESCV(CSRC_),
     $        NPCOL )
         CALL PSGEHRD( JW, 1, JW, T, 1, 1, DESCT, WORK, WORK, -1,
     $        INFO )
         LWK1 = INT( WORK( 1 ) ) + TAUROWS*TAUCOLS
*
*        Workspace query call to PSORMHR.
*
         CALL PSORMHR( 'Right', 'No', JW, JW, 1, JW, T, 1, 1, DESCT,
     $        WORK, V, 1, 1, DESCV, WORK, -1, INFO )
         LWK2 = INT( WORK( 1 ) )
*
*        Workspace query call to PSLAQR0.
*
         NMIN = PILAENVX( ICTXT, 12, 'PSLAQR3', 'SV', JW, 1, JW, LWORK )
         NMAX = ( N-1 ) / 3
         IF( JW+IROFFH.GT.NMIN .AND. JW+IROFFH.LE.NMAX
     $        .AND. RECLEVEL.LT.RECMAX ) THEN
            CALL PSLAQR0( .TRUE., .TRUE., JW+IROFFH, 1+IROFFH,
     $           JW+IROFFH, T, DESCT, SR, SI, 1, JW, V, DESCV,
     $           WORK, -1, IWORK, LIWORK-NSEL, INFQR,
     $           RECLEVEL+1 )
            LWK3 = INT( WORK( 1 ) )
            IWRK1 = IWORK( 1 )
         ELSE
            RSRC = DESCT( RSRC_ )
            CSRC = DESCT( CSRC_ )
            DESCT( RSRC_ ) = 0
            DESCT( CSRC_ ) = 0
            CALL PSLAQR1( .TRUE., .TRUE., JW+IROFFH, 1, JW+IROFFH, T,
     $           DESCT, SR, SI, 1, JW+IROFFH, V, DESCV, WORK, -1,
     $           IWORK, LIWORK-NSEL, INFQR )
            DESCT( RSRC_ ) = RSRC
            DESCT( CSRC_ ) = CSRC
            LWK3 = INT( WORK( 1 ) )
            IWRK1 = IWORK( 1 )
         END IF
*
*        Workspace in case of alignment problems.
*
         TZROWS0 = NUMROC( JW+IROFFH, NB, MYROW, 0, NPROW )
         TZCOLS0 = NUMROC( JW+IROFFH, NB, MYCOL, 0, NPCOL )
         LWK4 = 2 * TZROWS0*TZCOLS0
*
*        Workspace check for reordering.
*
         CALL PSTRORD( 'Vectors', IWORK, PAR, JW+IROFFH, T, 1, 1,
     $        DESCT, V, 1, 1, DESCV, DDUM, DDUM, MLOC, WORK, -1,
     $        IWORK, LIWORK-NSEL, INFO )
         LWK5 = INT( WORK( 1 ) )
         IWRK2 = IWORK( 1 )
*
*        Extra workspace for reflecting back spike
*        (workspace for PSLARF approximated for simplicity).
*
         RROWS =  NUMROC( N+IROFFH, NB, MYROW, DESCV(RSRC_), NPROW )
         RCOLS =  NUMROC( 1, 1, MYCOL, DESCV(CSRC_), NPCOL )
         LWK6 = RROWS*RCOLS + TAUROWS*TAUCOLS +
     $        2*ICEIL(ICEIL(JW+IROFFH,NB),NPROW)*NB
     $         *ICEIL(ICEIL(JW+IROFFH,NB),NPCOL)*NB
*
*        Extra workspace needed by PBLAS update calls
*        (also estimated for simplicity).
*
         LWK7 = MAX( ICEIL(ICEIL(JW,NB),NPROW)*NB *
     $               ICEIL(ICEIL(N-KBOT,NB),NPCOL)*NB,
     $               ICEIL(ICEIL(IHIZ-ILOZ+1,NB),NPROW)*NB *
     $               ICEIL(ICEIL(JW,NB),NPCOL)*NB,
     $               ICEIL(ICEIL(KBOT-JW,NB),NPROW)*NB *
     $               ICEIL(ICEIL(JW,NB),NPCOL)*NB )
*
*        Residual check workspace.
*
         TZROWS = NUMROC( JW+IROFFH, NB, MYROW, DESCT(RSRC_), NPROW )
         TZCOLS = NUMROC( JW+IROFFH, NB, MYCOL, DESCT(CSRC_), NPCOL )
         LWK8 = 2*TZROWS*TZCOLS
*
*        Optimal workspace.
*
         LWKOPT = MAX( LWK1, LWK2, LWK3+LWK4, LWK5, LWK6, LWK7, LWK8 )
         ILWKOPT = MAX( IWRK1, IWRK2 )
      END IF
*
*     Quick return in case of workspace query.
*
      WORK( 1 ) = FLOAT( LWKOPT )
*
*     IWORK(1:NSEL) is used as the array SELECT for PSTRORD.
*
      IWORK( 1 ) = ILWKOPT + NSEL
      IF( LQUERY )
     $   RETURN
*
*     Nothing to do for an empty active block ...
      NS = 0
      ND = 0
      IF( KTOP.GT.KBOT )
     $   RETURN
*     ... nor for an empty deflation window.
*
      IF( NW.LT.1 )
     $   RETURN
*
*     Machine constants.
*
      SAFMIN = SLAMCH( 'SAFE MINIMUM' )
      SAFMAX = ONE / SAFMIN
      CALL SLABAD( SAFMIN, SAFMAX )
      ULP = SLAMCH( 'PRECISION' )
      SMLNUM = SAFMIN*( FLOAT( N ) / ULP )
*
*     Setup deflation window.
*
      JW = MIN( NW, KBOT-KTOP+1 )
      KWTOP = KBOT - JW + 1
      IF( KWTOP.EQ.KTOP ) THEN
         S = ZERO
      ELSE
         CALL PSELGET( 'All', '1-Tree', S, H, KWTOP, KWTOP-1, DESCH )
      END IF
*
      IF( KBOT.EQ.KWTOP ) THEN
*
*        1-by-1 deflation window: not much to do.
*
         CALL PSELGET( 'All', '1-Tree', SR( KWTOP ), H, KWTOP, KWTOP,
     $        DESCH )
         SI( KWTOP ) = ZERO
         NS = 1
         ND = 0
         IF( ABS( S ).LE.MAX( SMLNUM, ULP*ABS( SR( KWTOP ) ) ) )
     $        THEN
            NS = 0
            ND = 1
            IF( KWTOP.GT.KTOP )
     $         CALL PSELSET( H, KWTOP, KWTOP-1 , DESCH, ZERO )
         END IF
         RETURN
      END IF
*
      IF( KWTOP.EQ.KTOP .AND. KBOT-KWTOP.EQ.1 ) THEN
*
*        2-by-2 deflation window: a little more to do.
*
         CALL PSELGET( 'All', '1-Tree', AA, H, KWTOP, KWTOP, DESCH )
         CALL PSELGET( 'All', '1-Tree', BB, H, KWTOP, KWTOP+1, DESCH )
         CALL PSELGET( 'All', '1-Tree', CC, H, KWTOP+1, KWTOP, DESCH )
         CALL PSELGET( 'All', '1-Tree', DD, H, KWTOP+1, KWTOP+1, DESCH )
         CALL SLANV2( AA, BB, CC, DD, SR(KWTOP), SI(KWTOP),
     $        SR(KWTOP+1), SI(KWTOP+1), CS, SN )
         NS = 0
         ND = 2
         IF( CC.EQ.ZERO ) THEN
            I = KWTOP
            IF( I+2.LE.N .AND. WANTT )
     $         CALL PSROT( N-I-1, H, I, I+2, DESCH, DESCH(M_), H, I+1,
     $              I+2, DESCH, DESCH(M_), CS, SN, WORK, LWORK, INFO )
            IF( I.GT.1 )
     $         CALL PSROT( I-1, H, 1, I, DESCH, 1, H, 1, I+1, DESCH, 1,
     $              CS, SN, WORK, LWORK, INFO )
            IF( WANTZ )
     $         CALL PSROT( IHIZ-ILOZ+1, Z, ILOZ, I, DESCZ, 1, Z, ILOZ,
     $              I+1, DESCZ, 1, CS, SN, WORK, LWORK, INFO )
            CALL PSELSET( H, I, I, DESCH, AA )
            CALL PSELSET( H, I, I+1, DESCH, BB )
            CALL PSELSET( H, I+1, I, DESCH, CC )
            CALL PSELSET( H, I+1, I+1, DESCH, DD )
         END IF
         WORK( 1 ) = FLOAT( LWKOPT )
         RETURN
      END IF
*
*     Calculate new value for IROFFH in case deflation window
*     was adjusted.
*
      IROFFH = MOD( KWTOP - 1, NB )
*
*     Adjust number of rows and columns of T matrix descriptor
*     to prepare for call to PDBTRORD.
*
      DESCT( M_ ) = JW+IROFFH
      DESCT( N_ ) = JW+IROFFH
*
*     Convert to spike-triangular form.  (In case of a rare QR failure,
*     this routine continues to do aggressive early deflation using that
*     part of the deflation window that converged using INFQR here and
*     there to keep track.)
*
*     Copy the trailing submatrix to the working space.
*
      CALL PSLASET( 'All', IROFFH, JW+IROFFH, ZERO, ONE, T, 1, 1,
     $     DESCT )
      CALL PSLASET( 'All', JW, IROFFH, ZERO, ZERO, T, 1+IROFFH, 1,
     $     DESCT )
      CALL PSLACPY( 'All', 1, JW, H, KWTOP, KWTOP, DESCH, T, 1+IROFFH,
     $     1+IROFFH, DESCT )
      CALL PSLACPY( 'Upper', JW-1, JW-1, H, KWTOP+1, KWTOP, DESCH, T,
     $     1+IROFFH+1, 1+IROFFH, DESCT )
      IF( JW.GT.2 )
     $   CALL PSLASET( 'Lower', JW-2, JW-2, ZERO, ZERO, T, 1+IROFFH+2,
     $        1+IROFFH, DESCT )
      CALL PSLACPY( 'All', JW-1, 1, H, KWTOP+1, KWTOP+JW-1, DESCH, T,
     $     1+IROFFH+1, 1+IROFFH+JW-1, DESCT )
*
*     Initialize the working orthogonal matrix.
*
      CALL PSLASET( 'All', JW+IROFFH, JW+IROFFH, ZERO, ONE, V, 1, 1,
     $     DESCV )
*
*     Compute the Schur form of T.
*
      NPMIN = PILAENVX( ICTXT, 23, 'PSLAQR3', 'SV', JW, NB, NPROW,
     $     NPCOL )
      NMIN = PILAENVX( ICTXT, 12, 'PSLAQR3', 'SV', JW, 1, JW, LWORK )
      NMAX = ( N-1 ) / 3
      IF( MIN(NPROW, NPCOL).LE.NPMIN+1 .OR. RECLEVEL.GE.1 ) THEN
*
*        The AED window is large enough.
*        Compute the Schur decomposition with all processors.
*
         IF( JW+IROFFH.GT.NMIN .AND. JW+IROFFH.LE.NMAX
     $        .AND. RECLEVEL.LT.RECMAX ) THEN
            CALL PSLAQR0( .TRUE., .TRUE., JW+IROFFH, 1+IROFFH,
     $           JW+IROFFH, T, DESCT, SR( KWTOP-IROFFH ),
     $           SI( KWTOP-IROFFH ), 1+IROFFH, JW+IROFFH, V, DESCV,
     $           WORK, LWORK, IWORK(NSEL+1), LIWORK-NSEL, INFQR,
     $           RECLEVEL+1 )
         ELSE
            IF( DESCT(RSRC_).EQ.0 .AND. DESCT(CSRC_).EQ.0 ) THEN
               IF( JW+IROFFH.GT.DESCT( MB_ ) ) THEN
                  CALL PSLAQR1( .TRUE., .TRUE., JW+IROFFH, 1,
     $                 JW+IROFFH, T, DESCT, SR( KWTOP-IROFFH ),
     $                 SI( KWTOP-IROFFH ), 1, JW+IROFFH, V,
     $                 DESCV, WORK, LWORK, IWORK(NSEL+1), LIWORK-NSEL,
     $                 INFQR )
               ELSE
                  IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
                     CALL SLAHQR( .TRUE., .TRUE., JW+IROFFH, 1+IROFFH,
     $                    JW+IROFFH, T, DESCT(LLD_),
     $                    SR( KWTOP-IROFFH ), SI( KWTOP-IROFFH ),
     $                    1+IROFFH, JW+IROFFH, V, DESCV(LLD_), INFQR )
                  ELSE
                     INFQR = 0
                  END IF
                  IF( NPROCS.GT.1 )
     $               CALL IGAMN2D( ICTXT, 'All', '1-Tree', 1, 1, INFQR,
     $                    1, -1, -1, -1, -1, -1 )
               END IF
            ELSEIF( JW+IROFFH.LE.DESCT( MB_ ) ) THEN
               IF( MYROW.EQ.DESCT(RSRC_) .AND. MYCOL.EQ.DESCT(CSRC_) )
     $              THEN
                  CALL SLAHQR( .TRUE., .TRUE., JW+IROFFH, 1+IROFFH,
     $                 JW+IROFFH, T, DESCT(LLD_),
     $                 SR( KWTOP-IROFFH ), SI( KWTOP-IROFFH ),
     $                 1+IROFFH, JW+IROFFH, V, DESCV(LLD_), INFQR )
               ELSE
                  INFQR = 0
               END IF
               IF( NPROCS.GT.1 )
     $         CALL IGAMN2D( ICTXT, 'All', '1-Tree', 1, 1, INFQR,
     $              1, -1, -1, -1, -1, -1 )
            ELSE
               TZROWS0 = NUMROC( JW+IROFFH, NB, MYROW, 0, NPROW )
               TZCOLS0 = NUMROC( JW+IROFFH, NB, MYCOL, 0, NPCOL )
               CALL DESCINIT( DESCTZ0, JW+IROFFH, JW+IROFFH, NB, NB, 0,
     $              0, ICTXT, MAX(1,TZROWS0), IERR0 )
               IPT0 = 1
               IPZ0 = IPT0 + MAX(1,TZROWS0)*TZCOLS0
               IPW0 = IPZ0 + MAX(1,TZROWS0)*TZCOLS0
               CALL PSLAMVE( 'All', JW+IROFFH, JW+IROFFH, T, 1, 1,
     $              DESCT, WORK(IPT0), 1, 1, DESCTZ0, WORK(IPW0) )
               CALL PSLASET( 'All', JW+IROFFH, JW+IROFFH, ZERO, ONE,
     $              WORK(IPZ0), 1, 1, DESCTZ0 )
               CALL PSLAQR1( .TRUE., .TRUE., JW+IROFFH, 1,
     $              JW+IROFFH, WORK(IPT0), DESCTZ0,
     $              SR( KWTOP-IROFFH ), SI( KWTOP-IROFFH ),
     $              1, JW+IROFFH, WORK(IPZ0),
     $              DESCTZ0, WORK(IPW0), LWORK-IPW0+1, IWORK(NSEL+1),
     $              LIWORK-NSEL, INFQR )
               CALL PSLAMVE( 'All', JW+IROFFH, JW+IROFFH, WORK(IPT0), 1,
     $              1, DESCTZ0, T, 1, 1, DESCT, WORK(IPW0) )
               CALL PSLAMVE( 'All', JW+IROFFH, JW+IROFFH, WORK(IPZ0), 1,
     $              1, DESCTZ0, V, 1, 1, DESCV, WORK(IPW0) )
            END IF
         END IF
      ELSE
*
*        The AED window is too small.
*        Redistribute the AED window to a subgrid
*        and do the computation on the subgrid.
*
         ICTXT_NEW = ICTXT
         DO 20 I = 0, NPMIN-1
            DO 10 J = 0, NPMIN-1
               PMAP( J+1+I*NPMIN ) = BLACS_PNUM( ICTXT, I, J )
 10         CONTINUE
 20      CONTINUE
         CALL BLACS_GRIDMAP( ICTXT_NEW, PMAP, NPMIN, NPMIN, NPMIN )
         CALL BLACS_GRIDINFO( ICTXT_NEW, NPMIN, NPMIN, MYROW_NEW,
     $        MYCOL_NEW )
         IF( MYROW.GE.NPMIN .OR. MYCOL.GE.NPMIN ) ICTXT_NEW = -1
         IF( ICTXT_NEW.GE.0 ) THEN
            TZROWS0 = NUMROC( JW, NB, MYROW_NEW, 0, NPMIN )
            TZCOLS0 = NUMROC( JW, NB, MYCOL_NEW, 0, NPMIN )
            CALL DESCINIT( DESCTZ0, JW, JW, NB, NB, 0,
     $           0, ICTXT_NEW, MAX(1,TZROWS0), IERR0 )
            IPT0 = 1
            IPZ0 = IPT0 + MAX(1,TZROWS0)*MAX(1,TZCOLS0)
            IPW0 = IPZ0 + MAX(1,TZROWS0)*MAX(1,TZCOLS0)
         ELSE
            IPT0 = 1
            IPZ0 = 2
            IPW0 = 3
            DESCTZ0( CTXT_ ) = -1
            INFQR = 0
         END IF
         CALL PSGEMR2D( JW, JW, T, 1+IROFFH, 1+IROFFH, DESCT,
     $        WORK(IPT0), 1, 1, DESCTZ0, ICTXT )
         IF( ICTXT_NEW.GE.0 ) THEN
            CALL PSLASET( 'All', JW, JW, ZERO, ONE, WORK(IPZ0), 1, 1,
     $           DESCTZ0 )
            NMIN = PILAENVX( ICTXT_NEW, 12, 'PSLAQR3', 'SV', JW, 1, JW,
     $           LWORK )
            IF( JW.GT.NMIN .AND. JW.LE.NMAX .AND. RECLEVEL.LT.1 ) THEN
               CALL PSLAQR0( .TRUE., .TRUE., JW, 1, JW, WORK(IPT0),
     $              DESCTZ0, SR( KWTOP ), SI( KWTOP ), 1, JW,
     $              WORK(IPZ0), DESCTZ0, WORK(IPW0), LWORK-IPW0+1,
     $              IWORK(NSEL+1), LIWORK-NSEL, INFQR,
     $              RECLEVEL+1 )
            ELSE
               CALL PSLAQR1( .TRUE., .TRUE., JW, 1, JW, WORK(IPT0),
     $              DESCTZ0, SR( KWTOP ), SI( KWTOP ), 1, JW,
     $              WORK(IPZ0), DESCTZ0, WORK(IPW0), LWORK-IPW0+1,
     $              IWORK(NSEL+1), LIWORK-NSEL, INFQR )
            END IF
         END IF
         CALL PSGEMR2D( JW, JW, WORK(IPT0), 1, 1, DESCTZ0, T, 1+IROFFH,
     $        1+IROFFH, DESCT, ICTXT )
         CALL PSGEMR2D( JW, JW, WORK(IPZ0), 1, 1, DESCTZ0, V, 1+IROFFH,
     $        1+IROFFH, DESCV, ICTXT )
         IF( ICTXT_NEW.GE.0 )
     $      CALL BLACS_GRIDEXIT( ICTXT_NEW )
         IF( MYROW+MYCOL.GT.0 ) THEN
            DO 40 J = 0, JW-1
               SR( KWTOP+J ) = ZERO
               SI( KWTOP+J ) = ZERO
 40         CONTINUE
         END IF
         CALL IGAMN2D( ICTXT, 'All', '1-Tree', 1, 1, INFQR, 1, -1, -1,
     $        -1, -1, -1 )
         CALL SGSUM2D( ICTXT, 'All', ' ', JW, 1, SR(KWTOP), JW, -1, -1 )
         CALL SGSUM2D( ICTXT, 'All', ' ', JW, 1, SI(KWTOP), JW, -1, -1 )
      END IF
*
*     Adjust INFQR for offset from block border in submatrices.
*
      IF( INFQR.NE.0 )
     $   INFQR = INFQR - IROFFH
*
*     PSTRORD needs a clean margin near the diagonal.
*
      DO 50 J = 1, JW - 3
         CALL PSELSET( T, J+2, J, DESCT, ZERO )
         CALL PSELSET( T, J+3, J, DESCT, ZERO )
 50   CONTINUE
      IF( JW.GT.2 )
     $   CALL PSELSET( T, JW, JW-2, DESCT, ZERO )
*
*     Check local residual for AED Schur decomposition.
*
      RESAED = 0.0
*
*     Clean up the array SELECT for PSTRORD.
*
      DO 60 J = 1, NSEL
         IWORK( J ) = 0
 60   CONTINUE
*
*     Set local M counter to zero.
*
      MLOC = 0
*
*     Outer deflation detection loop (label 80).
*     In this loop a bunch of undeflatable eigenvalues
*     are moved simultaneously.
*
      DO 70 J = 1, IROFFH + INFQR
         IWORK( J ) = 1
 70   CONTINUE
*
      NS = JW
      ILST = INFQR + 1 + IROFFH
      IF( ILST.GT.1 ) THEN
         CALL PSELGET( 'All', '1-Tree', ELEM, T, ILST, ILST-1, DESCT )
         BULGE = ELEM.NE.ZERO
         IF( BULGE ) ILST = ILST+1
      END IF
*
 80   CONTINUE
      IF( ILST.LE.NS+IROFFH ) THEN
*
*        Find the top-left corner of the local window.
*
         LILST = MAX(ILST,NS+IROFFH-NB+1)
         IF( LILST.GT.1 ) THEN
            CALL PSELGET( 'All', '1-Tree', ELEM, T, LILST, LILST-1,
     $           DESCT )
            BULGE = ELEM.NE.ZERO
            IF( BULGE ) LILST = LILST+1
         END IF
*
*        Lock all eigenvalues outside the local window.
*
         DO 90 J = IROFFH+1, LILST-1
            IWORK( J ) = 1
 90      CONTINUE
         LILST0 = LILST
*
*        Inner deflation detection loop (label 100).
*        In this loop, the undeflatable eigenvalues are moved to the
*        top-left corner of the local window.
*
 100     CONTINUE
         IF( LILST.LE.NS+IROFFH ) THEN
            IF( NS.EQ.1 ) THEN
               BULGE = .FALSE.
            ELSE
               CALL PSELGET( 'All', '1-Tree', ELEM, T, NS+IROFFH,
     $              NS+IROFFH-1, DESCT )
               BULGE = ELEM.NE.ZERO
            END IF
*
*           Small spike tip test for deflation.
*
            IF( .NOT.BULGE ) THEN
*
*              Real eigenvalue.
*
               CALL PSELGET( 'All', '1-Tree', ELEM, T, NS+IROFFH,
     $              NS+IROFFH, DESCT )
               FOO = ABS( ELEM )
               IF( FOO.EQ.ZERO )
     $            FOO = ABS( S )
               CALL PSELGET( 'All', '1-Tree', ELEM, V, 1+IROFFH,
     $              NS+IROFFH, DESCV )
               IF( ABS( S*ELEM ).LE.MAX( SMLNUM, ULP*FOO ) ) THEN
*
*                 Deflatable.
*
                  NS = NS - 1
               ELSE
*
*                 Undeflatable: move it up out of the way.
*
                  IFST = NS
                  DO 110 J = LILST, JW+IROFFH
                     IWORK( J ) = 0
 110              CONTINUE
                  IWORK( IFST+IROFFH ) = 1
                  CALL PSTRORD( 'Vectors', IWORK, PAR, JW+IROFFH, T, 1,
     $                 1, DESCT, V, 1, 1, DESCV, WORK,
     $                 WORK(JW+IROFFH+1), MLOC,
     $                 WORK(2*(JW+IROFFH)+1), LWORK-2*(JW+IROFFH),
     $                 IWORK(NSEL+1), LIWORK-NSEL, INFO )
*
*                 Adjust the array SELECT explicitly so that it does not
*                 rely on the output of PSTRORD.
*
                  IWORK( IFST+IROFFH ) = 0
                  IWORK( LILST ) = 1
                  LILST = LILST + 1
*
*                 In case of a rare exchange failure, adjust the
*                 pointers ILST and LILST to the current place to avoid
*                 unexpected behaviors.
*
                  IF( INFO.NE.0 ) THEN
                     LILST = MAX(INFO, LILST)
                     ILST = MAX(INFO, ILST)
                  END IF
               END IF
            ELSE
*
*              Complex conjugate pair.
*
               CALL PSELGET( 'All', '1-Tree', ELEM1, T, NS+IROFFH,
     $              NS+IROFFH, DESCT )
               CALL PSELGET( 'All', '1-Tree', ELEM2, T, NS+IROFFH,
     $              NS+IROFFH-1, DESCT )
               CALL PSELGET( 'All', '1-Tree', ELEM3, T, NS+IROFFH-1,
     $              NS+IROFFH, DESCT )
               FOO = ABS( ELEM1 ) + SQRT( ABS( ELEM2 ) )*
     $              SQRT( ABS( ELEM3 ) )
               IF( FOO.EQ.ZERO )
     $            FOO = ABS( S )
               CALL PSELGET( 'All', '1-Tree', ELEM1, V, 1+IROFFH,
     $              NS+IROFFH, DESCV )
               CALL PSELGET( 'All', '1-Tree', ELEM2, V, 1+IROFFH,
     $              NS+IROFFH-1, DESCV )
               IF( MAX( ABS( S*ELEM1 ), ABS( S*ELEM2 ) ).LE.
     $              MAX( SMLNUM, ULP*FOO ) ) THEN
*
*                 Deflatable.
*
                  NS = NS - 2
               ELSE
*
*                 Undeflatable: move them up out of the way.
*
                  IFST = NS
                  DO 120 J = LILST, JW+IROFFH
                     IWORK( J ) = 0
 120              CONTINUE
                  IWORK( IFST+IROFFH ) = 1
                  IWORK( IFST+IROFFH-1 ) = 1
                  CALL PSTRORD( 'Vectors', IWORK, PAR, JW+IROFFH, T, 1,
     $                 1, DESCT, V, 1, 1, DESCV, WORK,
     $                 WORK(JW+IROFFH+1), MLOC,
     $                 WORK(2*(JW+IROFFH)+1), LWORK-2*(JW+IROFFH),
     $                 IWORK(NSEL+1), LIWORK-NSEL, INFO )
*
*                 Adjust the array SELECT explicitly so that it does not
*                 rely on the output of PSTRORD.
*
                  IWORK( IFST+IROFFH ) = 0
                  IWORK( IFST+IROFFH-1 ) = 0
                  IWORK( LILST ) = 1
                  IWORK( LILST+1 ) = 1
                  LILST = LILST + 2
*
*                 In case of a rare exchange failure, adjust the
*                 pointers ILST and LILST to the current place to avoid
*                 unexpected behaviors.
*
                  IF( INFO.NE.0 ) THEN
                     LILST = MAX(INFO, LILST)
                     ILST = MAX(INFO, ILST)
                  END IF
               END IF
            END IF
*
*           End of inner deflation detection loop.
*
            GO TO 100
         END IF
*
*        Unlock the eigenvalues outside the local window.
*        Then undeflatable eigenvalues are moved to the proper position.
*
         DO 130 J = ILST, LILST0-1
            IWORK( J ) = 0
 130     CONTINUE
         CALL PSTRORD( 'Vectors', IWORK, PAR, JW+IROFFH, T, 1, 1,
     $        DESCT, V, 1, 1, DESCV, WORK, WORK(JW+IROFFH+1),
     $        M, WORK(2*(JW+IROFFH)+1), LWORK-2*(JW+IROFFH),
     $        IWORK(NSEL+1), LIWORK-NSEL, INFO )
         ILST = M + 1
*
*        In case of a rare exchange failure, adjust the pointer ILST to
*        the current place to avoid unexpected behaviors.
*
         IF( INFO.NE.0 )
     $      ILST = MAX(INFO, ILST)
*
*        End of outer deflation detection loop.
*
         GO TO 80
      END IF

*
*     Post-reordering step: copy output eigenvalues to output.
*
      CALL SCOPY( JW, WORK(1+IROFFH), 1, SR( KWTOP ), 1 )
      CALL SCOPY( JW, WORK(JW+2*IROFFH+1), 1, SI( KWTOP ), 1 )
*
*     Check local residual for reordered AED Schur decomposition.
*
      RESAED = 0.0
*
*     Return to Hessenberg form.
*
      IF( NS.EQ.0 )
     $   S = ZERO
*
      IF( NS.LT.JW .AND. SORTGRAD ) THEN
*
*        Sorting diagonal blocks of T improves accuracy for
*        graded matrices.  Bubble sort deals well with exchange
*        failures. Eigenvalues/shifts from T are also restored.
*
         ROUND = 0
         SORTED = .FALSE.
         I = NS + 1 + IROFFH
 140     CONTINUE
         IF( SORTED )
     $      GO TO 180
         SORTED = .TRUE.
         ROUND = ROUND + 1
*
         KEND = I - 1
         I = INFQR + 1 + IROFFH
         IF( I.EQ.NS+IROFFH ) THEN
            K = I + 1
         ELSE IF( SI( KWTOP-IROFFH + I-1 ).EQ.ZERO ) THEN
            K = I + 1
         ELSE
            K = I + 2
         END IF
 150     CONTINUE
         IF( K.LE.KEND ) THEN
            IF( K.EQ.I+1 ) THEN
               EVI = ABS( SR( KWTOP-IROFFH+I-1 ) )
            ELSE
               EVI = ABS( SR( KWTOP-IROFFH+I-1 ) ) +
     $              ABS( SI( KWTOP-IROFFH+I-1 ) )
            END IF
*
            IF( K.EQ.KEND ) THEN
               EVK = ABS( SR( KWTOP-IROFFH+K-1 ) )
            ELSEIF( SI( KWTOP-IROFFH+K-1 ).EQ.ZERO ) THEN
               EVK = ABS( SR( KWTOP-IROFFH+K-1 ) )
            ELSE
               EVK = ABS( SR( KWTOP-IROFFH+K-1 ) ) +
     $              ABS( SI( KWTOP-IROFFH+K-1 ) )
            END IF
*
            IF( EVI.GE.EVK ) THEN
               I = K
            ELSE
               MLOC = 0
               SORTED = .FALSE.
               IFST = I
               ILST = K
               DO 160 J = 1, I-1
                  IWORK( J ) = 1
                  MLOC = MLOC + 1
 160           CONTINUE
               IF( K.EQ.I+2 ) THEN
                  IWORK( I ) = 0
                  IWORK(I+1) = 0
               ELSE
                  IWORK( I ) = 0
               END IF
               IF( K.NE.KEND .AND. SI( KWTOP-IROFFH+K-1 ).NE.ZERO ) THEN
                  IWORK( K ) = 1
                  IWORK(K+1) = 1
                  MLOC = MLOC + 2
               ELSE
                  IWORK( K ) = 1
                  IF( K.LT.KEND ) IWORK(K+1) = 0
                  MLOC = MLOC + 1
               END IF
               DO 170 J = K+2, JW+IROFFH
                  IWORK( J ) = 0
 170           CONTINUE
               CALL PSTRORD( 'Vectors', IWORK, PAR, JW+IROFFH, T, 1, 1,
     $              DESCT, V, 1, 1, DESCV, WORK, WORK(JW+IROFFH+1), M,
     $              WORK(2*(JW+IROFFH)+1), LWORK-2*(JW+IROFFH),
     $              IWORK(NSEL+1), LIWORK-NSEL, IERR )
               CALL SCOPY( JW, WORK(1+IROFFH), 1, SR( KWTOP ), 1 )
               CALL SCOPY( JW, WORK(JW+2*IROFFH+1), 1, SI( KWTOP ), 1 )
               IF( IERR.EQ.0 ) THEN
                  I = ILST
               ELSE
                  I = K
               END IF
            END IF
            IF( I.EQ.KEND ) THEN
               K = I + 1
            ELSE IF( SI( KWTOP-IROFFH+I-1 ).EQ.ZERO ) THEN
               K = I + 1
            ELSE
               K = I + 2
            END IF
            GO TO 150
         END IF
         GO TO 140
 180     CONTINUE
      END IF
*
*     Restore number of rows and columns of T matrix descriptor.
*
      DESCT( M_ ) = NW+IROFFH
      DESCT( N_ ) = NH+IROFFH
*
      IF( NS.LT.JW .OR. S.EQ.ZERO ) THEN
         IF( NS.GT.1 .AND. S.NE.ZERO ) THEN
*
*           Reflect spike back into lower triangle.
*
            RROWS = NUMROC( NS+IROFFH, NB, MYROW, DESCV(RSRC_), NPROW )
            RCOLS = NUMROC( 1, 1, MYCOL, DESCV(CSRC_), NPCOL )
            CALL DESCINIT( DESCR, NS+IROFFH, 1, NB, 1, DESCV(RSRC_),
     $           DESCV(CSRC_), ICTXT, MAX(1, RROWS), INFO )
            TAUROWS = NUMROC( 1, 1, MYCOL, DESCV(RSRC_), NPROW )
            TAUCOLS = NUMROC( JW+IROFFH, NB, MYCOL, DESCV(CSRC_),
     $           NPCOL )
            CALL DESCINIT( DESCTAU, 1, JW+IROFFH, 1, NB, DESCV(RSRC_),
     $           DESCV(CSRC_), ICTXT, MAX(1, TAUROWS), INFO )
*
            IR = 1
            ITAU = IR + DESCR( LLD_ ) * RCOLS
            IPW  = ITAU + DESCTAU( LLD_ ) * TAUCOLS
*
            CALL PSLASET( 'All', NS+IROFFH, 1, ZERO, ZERO, WORK(ITAU),
     $           1, 1, DESCTAU )
*
            CALL PSCOPY( NS, V, 1+IROFFH, 1+IROFFH, DESCV, DESCV(M_),
     $           WORK(IR), 1+IROFFH, 1, DESCR, 1 )
            CALL PSLARFG( NS, BETA, 1+IROFFH, 1, WORK(IR), 2+IROFFH, 1,
     $           DESCR, 1, WORK(ITAU+IROFFH) )
            CALL PSELSET( WORK(IR), 1+IROFFH, 1, DESCR, ONE )
*
            CALL PSLASET( 'Lower', JW-2, JW-2, ZERO, ZERO, T, 3+IROFFH,
     $           1+IROFFH, DESCT )
*
            CALL PSLARF( 'Left', NS, JW, WORK(IR), 1+IROFFH, 1, DESCR,
     $           1, WORK(ITAU+IROFFH), T, 1+IROFFH, 1+IROFFH,
     $           DESCT, WORK( IPW ) )
            CALL PSLARF( 'Right', NS, NS, WORK(IR), 1+IROFFH, 1, DESCR,
     $           1, WORK(ITAU+IROFFH), T, 1+IROFFH, 1+IROFFH,
     $           DESCT, WORK( IPW ) )
            CALL PSLARF( 'Right', JW, NS, WORK(IR), 1+IROFFH, 1, DESCR,
     $           1, WORK(ITAU+IROFFH), V, 1+IROFFH, 1+IROFFH,
     $           DESCV, WORK( IPW ) )
*
            ITAU = 1
            IPW = ITAU + DESCTAU( LLD_ ) * TAUCOLS
            CALL PSGEHRD( JW+IROFFH, 1+IROFFH, NS+IROFFH, T, 1, 1,
     $           DESCT, WORK(ITAU), WORK( IPW ), LWORK-IPW+1, INFO )
         END IF
*
*        Copy updated reduced window into place.
*
         IF( KWTOP.GT.1 ) THEN
            CALL PSELGET( 'All', '1-Tree', ELEM, V, 1+IROFFH,
     $           1+IROFFH, DESCV )
            CALL PSELSET( H, KWTOP, KWTOP-1, DESCH, S*ELEM )
         END IF
         CALL PSLACPY( 'Upper', JW-1, JW-1, T, 1+IROFFH+1, 1+IROFFH,
     $        DESCT, H, KWTOP+1, KWTOP, DESCH )
         CALL PSLACPY( 'All', 1, JW, T, 1+IROFFH, 1+IROFFH, DESCT, H,
     $        KWTOP, KWTOP, DESCH )
         CALL PSLACPY( 'All', JW-1, 1, T, 1+IROFFH+1, 1+IROFFH+JW-1,
     $        DESCT, H, KWTOP+1, KWTOP+JW-1, DESCH )
*
*        Accumulate orthogonal matrix in order to update
*        H and Z, if requested.
*
         IF( NS.GT.1 .AND. S.NE.ZERO ) THEN
            CALL PSORMHR( 'Right', 'No', JW+IROFFH, NS+IROFFH, 1+IROFFH,
     $           NS+IROFFH, T, 1, 1, DESCT, WORK(ITAU), V, 1,
     $           1, DESCV, WORK( IPW ), LWORK-IPW+1, INFO )
         END IF
*
*        Update vertical slab in H.
*
         IF( WANTT ) THEN
            LTOP = 1
         ELSE
            LTOP = KTOP
         END IF
         KLN = MAX( 0, KWTOP-LTOP )
         IROFFHH = MOD( LTOP-1, NB )
         ICOFFHH = MOD( KWTOP-1, NB )
         HHRSRC = INDXG2P( LTOP, NB, MYROW, DESCH(RSRC_), NPROW )
         HHCSRC = INDXG2P( KWTOP, NB, MYCOL, DESCH(CSRC_), NPCOL )
         HHROWS = NUMROC( KLN+IROFFHH, NB, MYROW, HHRSRC, NPROW )
         HHCOLS = NUMROC( JW+ICOFFHH, NB, MYCOL, HHCSRC, NPCOL )
         CALL DESCINIT( DESCHH, KLN+IROFFHH, JW+ICOFFHH, NB, NB,
     $        HHRSRC, HHCSRC, ICTXT, MAX(1, HHROWS), IERR )
         CALL PSGEMM( 'No', 'No', KLN, JW, JW, ONE, H, LTOP,
     $        KWTOP, DESCH, V, 1+IROFFH, 1+IROFFH, DESCV, ZERO,
     $        WORK, 1+IROFFHH, 1+ICOFFHH, DESCHH )
         CALL PSLACPY( 'All', KLN, JW, WORK, 1+IROFFHH, 1+ICOFFHH,
     $        DESCHH, H, LTOP, KWTOP, DESCH )
*
*        Update horizontal slab in H.
*
         IF( WANTT ) THEN
            KLN = N-KBOT
            IROFFHH = MOD( KWTOP-1, NB )
            ICOFFHH = MOD( KBOT, NB )
            HHRSRC = INDXG2P( KWTOP, NB, MYROW, DESCH(RSRC_), NPROW )
            HHCSRC = INDXG2P( KBOT+1, NB, MYCOL, DESCH(CSRC_), NPCOL )
            HHROWS = NUMROC( JW+IROFFHH, NB, MYROW, HHRSRC, NPROW )
            HHCOLS = NUMROC( KLN+ICOFFHH, NB, MYCOL, HHCSRC, NPCOL )
            CALL DESCINIT( DESCHH, JW+IROFFHH, KLN+ICOFFHH, NB, NB,
     $           HHRSRC, HHCSRC, ICTXT, MAX(1, HHROWS), IERR )
            CALL PSGEMM( 'Tr', 'No', JW, KLN, JW, ONE, V,
     $           1+IROFFH, 1+IROFFH, DESCV, H, KWTOP, KBOT+1,
     $           DESCH, ZERO, WORK, 1+IROFFHH, 1+ICOFFHH, DESCHH )
            CALL PSLACPY( 'All', JW, KLN, WORK, 1+IROFFHH, 1+ICOFFHH,
     $           DESCHH, H, KWTOP, KBOT+1, DESCH )
         END IF
*
*        Update vertical slab in Z.
*
         IF( WANTZ ) THEN
            KLN = IHIZ-ILOZ+1
            IROFFZZ = MOD( ILOZ-1, NB )
            ICOFFZZ = MOD( KWTOP-1, NB )
            ZZRSRC = INDXG2P( ILOZ, NB, MYROW, DESCZ(RSRC_), NPROW )
            ZZCSRC = INDXG2P( KWTOP, NB, MYCOL, DESCZ(CSRC_), NPCOL )
            ZZROWS = NUMROC( KLN+IROFFZZ, NB, MYROW, ZZRSRC, NPROW )
            ZZCOLS = NUMROC( JW+ICOFFZZ, NB, MYCOL, ZZCSRC, NPCOL )
            CALL DESCINIT( DESCZZ, KLN+IROFFZZ, JW+ICOFFZZ, NB, NB,
     $           ZZRSRC, ZZCSRC, ICTXT, MAX(1, ZZROWS), IERR )
            CALL PSGEMM( 'No', 'No', KLN, JW, JW, ONE, Z, ILOZ,
     $           KWTOP, DESCZ, V, 1+IROFFH, 1+IROFFH, DESCV,
     $           ZERO, WORK, 1+IROFFZZ, 1+ICOFFZZ, DESCZZ )
            CALL PSLACPY( 'All', KLN, JW, WORK, 1+IROFFZZ, 1+ICOFFZZ,
     $           DESCZZ, Z, ILOZ, KWTOP, DESCZ )
         END IF
      END IF
*
*     Return the number of deflations (ND) and the number of shifts (NS).
*     (Subtracting INFQR from the spike length takes care of the case of
*     a rare QR failure while calculating eigenvalues of the deflation
*     window.)
*
      ND = JW - NS
      NS = NS - INFQR
*
*     Return optimal workspace.
*
      WORK( 1 ) = FLOAT( LWKOPT )
      IWORK( 1 ) = ILWKOPT + NSEL
*
*     End of PSLAQR3
*
      END