1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
|
RECURSIVE SUBROUTINE PSLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H,
$ DESCH, ILOZ, IHIZ, Z, DESCZ, NS, ND,
$ SR, SI, V, DESCV, NH, T, DESCT, NV,
$ WV, DESCW, WORK, LWORK, IWORK,
$ LIWORK, RECLEVEL )
*
* Contribution from the Department of Computing Science and HPC2N,
* Umea University, Sweden
*
* -- ScaLAPACK auxiliary routine (version 2.0.1) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* Univ. of Colorado Denver and University of California, Berkeley.
* January, 2012
*
IMPLICIT NONE
*
* .. Scalar Arguments ..
INTEGER IHIZ, ILOZ, KBOT, KTOP, LWORK, N, ND, NH, NS,
$ NV, NW, LIWORK, RECLEVEL
LOGICAL WANTT, WANTZ
* ..
* .. Array Arguments ..
INTEGER DESCH( * ), DESCZ( * ), DESCT( * ), DESCV( * ),
$ DESCW( * ), IWORK( * )
REAL H( * ), SI( KBOT ), SR( KBOT ), T( * ),
$ V( * ), WORK( * ), WV( * ),
$ Z( * )
* ..
*
* Purpose
* =======
*
* Aggressive early deflation:
*
* This subroutine accepts as input an upper Hessenberg matrix H and
* performs an orthogonal similarity transformation designed to detect
* and deflate fully converged eigenvalues from a trailing principal
* submatrix. On output H has been overwritten by a new Hessenberg
* matrix that is a perturbation of an orthogonal similarity
* transformation of H. It is to be hoped that the final version of H
* has many zero subdiagonal entries.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* WANTT (global input) LOGICAL
* If .TRUE., then the Hessenberg matrix H is fully updated
* so that the quasi-triangular Schur factor may be
* computed (in cooperation with the calling subroutine).
* If .FALSE., then only enough of H is updated to preserve
* the eigenvalues.
*
* WANTZ (global input) LOGICAL
* If .TRUE., then the orthogonal matrix Z is updated so
* so that the orthogonal Schur factor may be computed
* (in cooperation with the calling subroutine).
* If .FALSE., then Z is not referenced.
*
* N (global input) INTEGER
* The order of the matrix H and (if WANTZ is .TRUE.) the
* order of the orthogonal matrix Z.
*
* KTOP (global input) INTEGER
* It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
* KBOT and KTOP together determine an isolated block
* along the diagonal of the Hessenberg matrix.
*
* KBOT (global input) INTEGER
* It is assumed without a check that either
* KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together
* determine an isolated block along the diagonal of the
* Hessenberg matrix.
*
* NW (global input) INTEGER
* Deflation window size. 1 .LE. NW .LE. (KBOT-KTOP+1).
*
* H (local input/output) REAL array, dimension
* (DESCH(LLD_),*)
* On input the initial N-by-N section of H stores the
* Hessenberg matrix undergoing aggressive early deflation.
* On output H has been transformed by an orthogonal
* similarity transformation, perturbed, and the returned
* to Hessenberg form that (it is to be hoped) has some
* zero subdiagonal entries.
*
* DESCH (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix H.
*
* ILOZ (global input) INTEGER
* IHIZ (global input) INTEGER
* Specify the rows of Z to which transformations must be
* applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.
*
* Z (input/output) REAL array, dimension
* (DESCH(LLD_),*)
* IF WANTZ is .TRUE., then on output, the orthogonal
* similarity transformation mentioned above has been
* accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right.
* If WANTZ is .FALSE., then Z is unreferenced.
*
* DESCZ (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix Z.
*
* NS (global output) INTEGER
* The number of unconverged (ie approximate) eigenvalues
* returned in SR and SI that may be used as shifts by the
* calling subroutine.
*
* ND (global output) INTEGER
* The number of converged eigenvalues uncovered by this
* subroutine.
*
* SR (global output) REAL array, dimension KBOT
* SI (global output) REAL array, dimension KBOT
* On output, the real and imaginary parts of approximate
* eigenvalues that may be used for shifts are stored in
* SR(KBOT-ND-NS+1) through SR(KBOT-ND) and
* SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively.
* The real and imaginary parts of converged eigenvalues
* are stored in SR(KBOT-ND+1) through SR(KBOT) and
* SI(KBOT-ND+1) through SI(KBOT), respectively.
*
* V (global workspace) REAL array, dimension
* (DESCV(LLD_),*)
* An NW-by-NW distributed work array.
*
* DESCV (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix V.
*
* NH (input) INTEGER scalar
* The number of columns of T. NH.GE.NW.
*
* T (global workspace) REAL array, dimension
* (DESCV(LLD_),*)
*
* DESCT (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix T.
*
* NV (global input) INTEGER
* The number of rows of work array WV available for
* workspace. NV.GE.NW.
*
* WV (global workspace) REAL array, dimension
* (DESCW(LLD_),*)
*
* DESCW (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix WV.
*
* WORK (local workspace) REAL array, dimension LWORK.
* On exit, WORK(1) is set to an estimate of the optimal value
* of LWORK for the given values of N, NW, KTOP and KBOT.
*
* LWORK (local input) INTEGER
* The dimension of the work array WORK. LWORK = 2*NW
* suffices, but greater efficiency may result from larger
* values of LWORK.
*
* If LWORK = -1, then a workspace query is assumed; PSLAQR3
* only estimates the optimal workspace size for the given
* values of N, NW, KTOP and KBOT. The estimate is returned
* in WORK(1). No error message related to LWORK is issued
* by XERBLA. Neither H nor Z are accessed.
*
* IWORK (local workspace) INTEGER array, dimension (LIWORK)
*
* LIWORK (local input) INTEGER
* The length of the workspace array IWORK
*
* ================================================================
* Based on contributions by
* Robert Granat and Meiyue Shao,
* Department of Computing Science and HPC2N,
* Umea University, Sweden
*
* ================================================================
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
INTEGER RECMAX
LOGICAL SORTGRAD
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9, RECMAX = 3,
$ SORTGRAD = .FALSE. )
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0, ONE = 1.0 )
* ..
* .. Local Scalars ..
REAL AA, BB, BETA, CC, CS, DD, EVI, EVK, FOO, S,
$ SAFMAX, SAFMIN, SMLNUM, SN, TAU, ULP,
$ ELEM, ELEM1, ELEM2, ELEM3, R1, ANORM, RNORM,
$ RESAED
INTEGER I, IFST, ILST, INFO, INFQR, J, JW, K, KCOL,
$ KEND, KLN, KROW, KWTOP, LTOP, LWK1, LWK2, LWK3,
$ LWKOPT, NMIN, LLDH, LLDZ, LLDT, LLDV, LLDWV,
$ ICTXT, NPROW, NMAX, NPCOL, MYROW, MYCOL, NB,
$ IROFFH, M, RCOLS, TAUROWS, RROWS, TAUCOLS,
$ ITAU, IR, IPW, NPROCS, MLOC, IROFFHH,
$ ICOFFHH, HHRSRC, HHCSRC, HHROWS, HHCOLS,
$ IROFFZZ, ICOFFZZ, ZZRSRC, ZZCSRC, ZZROWS,
$ ZZCOLS, IERR, TZROWS0, TZCOLS0, IERR0, IPT0,
$ IPZ0, IPW0, NB2, ROUND, LILST, KK, LILST0,
$ IWRK1, RSRC, CSRC, LWK4, LWK5, IWRK2, LWK6,
$ LWK7, LWK8, ILWKOPT, TZROWS, TZCOLS, NSEL,
$ NPMIN, ICTXT_NEW, MYROW_NEW, MYCOL_NEW
LOGICAL BULGE, SORTED, LQUERY
* ..
* .. Local Arrays ..
INTEGER PAR( 6 ), DESCR( DLEN_ ),
$ DESCTAU( DLEN_ ), DESCHH( DLEN_ ),
$ DESCZZ( DLEN_ ), DESCTZ0( DLEN_ ),
$ PMAP( 64*64 )
REAL DDUM( 1 )
* ..
* .. External Functions ..
REAL SLAMCH, PSLANGE
INTEGER PILAENVX, NUMROC, INDXG2P, ICEIL, BLACS_PNUM
EXTERNAL SLAMCH, PILAENVX, NUMROC, INDXG2P, PSLANGE,
$ ICEIL, BLACS_PNUM
* ..
* .. External Subroutines ..
EXTERNAL PSCOPY, PSGEHRD, PSGEMM, SLABAD, PSLACPY,
$ PSLAQR1, SLANV2, PSLAQR0, PSLARF, PSLARFG,
$ PSLASET, PSTRORD, PSELGET, PSELSET,
$ PSLAMVE, BLACS_GRIDINFO, BLACS_GRIDMAP,
$ BLACS_GRIDEXIT, PSGEMR2D
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, FLOAT, INT, MAX, MIN, SQRT
* ..
* .. Executable Statements ..
ICTXT = DESCH( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
NPROCS = NPROW*NPCOL
*
* Extract local leading dimensions, blockfactors, offset for
* keeping the alignment requirements and size of deflation window.
*
LLDH = DESCH( LLD_ )
LLDZ = DESCZ( LLD_ )
LLDT = DESCT( LLD_ )
LLDV = DESCV( LLD_ )
LLDWV = DESCW( LLD_ )
NB = DESCH( MB_ )
IROFFH = MOD( KTOP - 1, NB )
JW = MIN( NW, KBOT-KTOP+1 )
NSEL = NB+JW
*
* Extract environment variables for parallel eigenvalue reordering.
*
PAR(1) = PILAENVX(ICTXT, 17, 'PSLAQR3', 'SV', JW, NB, -1, -1)
PAR(2) = PILAENVX(ICTXT, 18, 'PSLAQR3', 'SV', JW, NB, -1, -1)
PAR(3) = PILAENVX(ICTXT, 19, 'PSLAQR3', 'SV', JW, NB, -1, -1)
PAR(4) = PILAENVX(ICTXT, 20, 'PSLAQR3', 'SV', JW, NB, -1, -1)
PAR(5) = PILAENVX(ICTXT, 21, 'PSLAQR3', 'SV', JW, NB, -1, -1)
PAR(6) = PILAENVX(ICTXT, 22, 'PSLAQR3', 'SV', JW, NB, -1, -1)
*
* Check if workspace query.
*
LQUERY = LWORK.EQ.-1 .OR. LIWORK.EQ.-1
*
* Estimate optimal workspace.
*
IF( JW.LE.2 ) THEN
LWKOPT = 1
ELSE
*
* Workspace query calls to PSGEHRD and PSORMHR.
*
TAUROWS = NUMROC( 1, 1, MYCOL, DESCV(RSRC_), NPROW )
TAUCOLS = NUMROC( JW+IROFFH, NB, MYCOL, DESCV(CSRC_),
$ NPCOL )
CALL PSGEHRD( JW, 1, JW, T, 1, 1, DESCT, WORK, WORK, -1,
$ INFO )
LWK1 = INT( WORK( 1 ) ) + TAUROWS*TAUCOLS
*
* Workspace query call to PSORMHR.
*
CALL PSORMHR( 'Right', 'No', JW, JW, 1, JW, T, 1, 1, DESCT,
$ WORK, V, 1, 1, DESCV, WORK, -1, INFO )
LWK2 = INT( WORK( 1 ) )
*
* Workspace query call to PSLAQR0.
*
NMIN = PILAENVX( ICTXT, 12, 'PSLAQR3', 'SV', JW, 1, JW, LWORK )
NMAX = ( N-1 ) / 3
IF( JW+IROFFH.GT.NMIN .AND. JW+IROFFH.LE.NMAX
$ .AND. RECLEVEL.LT.RECMAX ) THEN
CALL PSLAQR0( .TRUE., .TRUE., JW+IROFFH, 1+IROFFH,
$ JW+IROFFH, T, DESCT, SR, SI, 1, JW, V, DESCV,
$ WORK, -1, IWORK, LIWORK-NSEL, INFQR,
$ RECLEVEL+1 )
LWK3 = INT( WORK( 1 ) )
IWRK1 = IWORK( 1 )
ELSE
RSRC = DESCT( RSRC_ )
CSRC = DESCT( CSRC_ )
DESCT( RSRC_ ) = 0
DESCT( CSRC_ ) = 0
CALL PSLAQR1( .TRUE., .TRUE., JW+IROFFH, 1, JW+IROFFH, T,
$ DESCT, SR, SI, 1, JW+IROFFH, V, DESCV, WORK, -1,
$ IWORK, LIWORK-NSEL, INFQR )
DESCT( RSRC_ ) = RSRC
DESCT( CSRC_ ) = CSRC
LWK3 = INT( WORK( 1 ) )
IWRK1 = IWORK( 1 )
END IF
*
* Workspace in case of alignment problems.
*
TZROWS0 = NUMROC( JW+IROFFH, NB, MYROW, 0, NPROW )
TZCOLS0 = NUMROC( JW+IROFFH, NB, MYCOL, 0, NPCOL )
LWK4 = 2 * TZROWS0*TZCOLS0
*
* Workspace check for reordering.
*
CALL PSTRORD( 'Vectors', IWORK, PAR, JW+IROFFH, T, 1, 1,
$ DESCT, V, 1, 1, DESCV, DDUM, DDUM, MLOC, WORK, -1,
$ IWORK, LIWORK-NSEL, INFO )
LWK5 = INT( WORK( 1 ) )
IWRK2 = IWORK( 1 )
*
* Extra workspace for reflecting back spike
* (workspace for PSLARF approximated for simplicity).
*
RROWS = NUMROC( N+IROFFH, NB, MYROW, DESCV(RSRC_), NPROW )
RCOLS = NUMROC( 1, 1, MYCOL, DESCV(CSRC_), NPCOL )
LWK6 = RROWS*RCOLS + TAUROWS*TAUCOLS +
$ 2*ICEIL(ICEIL(JW+IROFFH,NB),NPROW)*NB
$ *ICEIL(ICEIL(JW+IROFFH,NB),NPCOL)*NB
*
* Extra workspace needed by PBLAS update calls
* (also estimated for simplicity).
*
LWK7 = MAX( ICEIL(ICEIL(JW,NB),NPROW)*NB *
$ ICEIL(ICEIL(N-KBOT,NB),NPCOL)*NB,
$ ICEIL(ICEIL(IHIZ-ILOZ+1,NB),NPROW)*NB *
$ ICEIL(ICEIL(JW,NB),NPCOL)*NB,
$ ICEIL(ICEIL(KBOT-JW,NB),NPROW)*NB *
$ ICEIL(ICEIL(JW,NB),NPCOL)*NB )
*
* Residual check workspace.
*
TZROWS = NUMROC( JW+IROFFH, NB, MYROW, DESCT(RSRC_), NPROW )
TZCOLS = NUMROC( JW+IROFFH, NB, MYCOL, DESCT(CSRC_), NPCOL )
LWK8 = 2*TZROWS*TZCOLS
*
* Optimal workspace.
*
LWKOPT = MAX( LWK1, LWK2, LWK3+LWK4, LWK5, LWK6, LWK7, LWK8 )
ILWKOPT = MAX( IWRK1, IWRK2 )
END IF
*
* Quick return in case of workspace query.
*
WORK( 1 ) = FLOAT( LWKOPT )
*
* IWORK(1:NSEL) is used as the array SELECT for PSTRORD.
*
IWORK( 1 ) = ILWKOPT + NSEL
IF( LQUERY )
$ RETURN
*
* Nothing to do for an empty active block ...
NS = 0
ND = 0
IF( KTOP.GT.KBOT )
$ RETURN
* ... nor for an empty deflation window.
*
IF( NW.LT.1 )
$ RETURN
*
* Machine constants.
*
SAFMIN = SLAMCH( 'SAFE MINIMUM' )
SAFMAX = ONE / SAFMIN
CALL SLABAD( SAFMIN, SAFMAX )
ULP = SLAMCH( 'PRECISION' )
SMLNUM = SAFMIN*( FLOAT( N ) / ULP )
*
* Setup deflation window.
*
JW = MIN( NW, KBOT-KTOP+1 )
KWTOP = KBOT - JW + 1
IF( KWTOP.EQ.KTOP ) THEN
S = ZERO
ELSE
CALL PSELGET( 'All', '1-Tree', S, H, KWTOP, KWTOP-1, DESCH )
END IF
*
IF( KBOT.EQ.KWTOP ) THEN
*
* 1-by-1 deflation window: not much to do.
*
CALL PSELGET( 'All', '1-Tree', SR( KWTOP ), H, KWTOP, KWTOP,
$ DESCH )
SI( KWTOP ) = ZERO
NS = 1
ND = 0
IF( ABS( S ).LE.MAX( SMLNUM, ULP*ABS( SR( KWTOP ) ) ) )
$ THEN
NS = 0
ND = 1
IF( KWTOP.GT.KTOP )
$ CALL PSELSET( H, KWTOP, KWTOP-1 , DESCH, ZERO )
END IF
RETURN
END IF
*
IF( KWTOP.EQ.KTOP .AND. KBOT-KWTOP.EQ.1 ) THEN
*
* 2-by-2 deflation window: a little more to do.
*
CALL PSELGET( 'All', '1-Tree', AA, H, KWTOP, KWTOP, DESCH )
CALL PSELGET( 'All', '1-Tree', BB, H, KWTOP, KWTOP+1, DESCH )
CALL PSELGET( 'All', '1-Tree', CC, H, KWTOP+1, KWTOP, DESCH )
CALL PSELGET( 'All', '1-Tree', DD, H, KWTOP+1, KWTOP+1, DESCH )
CALL SLANV2( AA, BB, CC, DD, SR(KWTOP), SI(KWTOP),
$ SR(KWTOP+1), SI(KWTOP+1), CS, SN )
NS = 0
ND = 2
IF( CC.EQ.ZERO ) THEN
I = KWTOP
IF( I+2.LE.N .AND. WANTT )
$ CALL PSROT( N-I-1, H, I, I+2, DESCH, DESCH(M_), H, I+1,
$ I+2, DESCH, DESCH(M_), CS, SN, WORK, LWORK, INFO )
IF( I.GT.1 )
$ CALL PSROT( I-1, H, 1, I, DESCH, 1, H, 1, I+1, DESCH, 1,
$ CS, SN, WORK, LWORK, INFO )
IF( WANTZ )
$ CALL PSROT( IHIZ-ILOZ+1, Z, ILOZ, I, DESCZ, 1, Z, ILOZ,
$ I+1, DESCZ, 1, CS, SN, WORK, LWORK, INFO )
CALL PSELSET( H, I, I, DESCH, AA )
CALL PSELSET( H, I, I+1, DESCH, BB )
CALL PSELSET( H, I+1, I, DESCH, CC )
CALL PSELSET( H, I+1, I+1, DESCH, DD )
END IF
WORK( 1 ) = FLOAT( LWKOPT )
RETURN
END IF
*
* Calculate new value for IROFFH in case deflation window
* was adjusted.
*
IROFFH = MOD( KWTOP - 1, NB )
*
* Adjust number of rows and columns of T matrix descriptor
* to prepare for call to PDBTRORD.
*
DESCT( M_ ) = JW+IROFFH
DESCT( N_ ) = JW+IROFFH
*
* Convert to spike-triangular form. (In case of a rare QR failure,
* this routine continues to do aggressive early deflation using that
* part of the deflation window that converged using INFQR here and
* there to keep track.)
*
* Copy the trailing submatrix to the working space.
*
CALL PSLASET( 'All', IROFFH, JW+IROFFH, ZERO, ONE, T, 1, 1,
$ DESCT )
CALL PSLASET( 'All', JW, IROFFH, ZERO, ZERO, T, 1+IROFFH, 1,
$ DESCT )
CALL PSLACPY( 'All', 1, JW, H, KWTOP, KWTOP, DESCH, T, 1+IROFFH,
$ 1+IROFFH, DESCT )
CALL PSLACPY( 'Upper', JW-1, JW-1, H, KWTOP+1, KWTOP, DESCH, T,
$ 1+IROFFH+1, 1+IROFFH, DESCT )
IF( JW.GT.2 )
$ CALL PSLASET( 'Lower', JW-2, JW-2, ZERO, ZERO, T, 1+IROFFH+2,
$ 1+IROFFH, DESCT )
CALL PSLACPY( 'All', JW-1, 1, H, KWTOP+1, KWTOP+JW-1, DESCH, T,
$ 1+IROFFH+1, 1+IROFFH+JW-1, DESCT )
*
* Initialize the working orthogonal matrix.
*
CALL PSLASET( 'All', JW+IROFFH, JW+IROFFH, ZERO, ONE, V, 1, 1,
$ DESCV )
*
* Compute the Schur form of T.
*
NPMIN = PILAENVX( ICTXT, 23, 'PSLAQR3', 'SV', JW, NB, NPROW,
$ NPCOL )
NMIN = PILAENVX( ICTXT, 12, 'PSLAQR3', 'SV', JW, 1, JW, LWORK )
NMAX = ( N-1 ) / 3
IF( MIN(NPROW, NPCOL).LE.NPMIN+1 .OR. RECLEVEL.GE.1 ) THEN
*
* The AED window is large enough.
* Compute the Schur decomposition with all processors.
*
IF( JW+IROFFH.GT.NMIN .AND. JW+IROFFH.LE.NMAX
$ .AND. RECLEVEL.LT.RECMAX ) THEN
CALL PSLAQR0( .TRUE., .TRUE., JW+IROFFH, 1+IROFFH,
$ JW+IROFFH, T, DESCT, SR( KWTOP-IROFFH ),
$ SI( KWTOP-IROFFH ), 1+IROFFH, JW+IROFFH, V, DESCV,
$ WORK, LWORK, IWORK(NSEL+1), LIWORK-NSEL, INFQR,
$ RECLEVEL+1 )
ELSE
IF( DESCT(RSRC_).EQ.0 .AND. DESCT(CSRC_).EQ.0 ) THEN
IF( JW+IROFFH.GT.DESCT( MB_ ) ) THEN
CALL PSLAQR1( .TRUE., .TRUE., JW+IROFFH, 1,
$ JW+IROFFH, T, DESCT, SR( KWTOP-IROFFH ),
$ SI( KWTOP-IROFFH ), 1, JW+IROFFH, V,
$ DESCV, WORK, LWORK, IWORK(NSEL+1), LIWORK-NSEL,
$ INFQR )
ELSE
IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
CALL SLAHQR( .TRUE., .TRUE., JW+IROFFH, 1+IROFFH,
$ JW+IROFFH, T, DESCT(LLD_),
$ SR( KWTOP-IROFFH ), SI( KWTOP-IROFFH ),
$ 1+IROFFH, JW+IROFFH, V, DESCV(LLD_), INFQR )
ELSE
INFQR = 0
END IF
IF( NPROCS.GT.1 )
$ CALL IGAMN2D( ICTXT, 'All', '1-Tree', 1, 1, INFQR,
$ 1, -1, -1, -1, -1, -1 )
END IF
ELSEIF( JW+IROFFH.LE.DESCT( MB_ ) ) THEN
IF( MYROW.EQ.DESCT(RSRC_) .AND. MYCOL.EQ.DESCT(CSRC_) )
$ THEN
CALL SLAHQR( .TRUE., .TRUE., JW+IROFFH, 1+IROFFH,
$ JW+IROFFH, T, DESCT(LLD_),
$ SR( KWTOP-IROFFH ), SI( KWTOP-IROFFH ),
$ 1+IROFFH, JW+IROFFH, V, DESCV(LLD_), INFQR )
ELSE
INFQR = 0
END IF
IF( NPROCS.GT.1 )
$ CALL IGAMN2D( ICTXT, 'All', '1-Tree', 1, 1, INFQR,
$ 1, -1, -1, -1, -1, -1 )
ELSE
TZROWS0 = NUMROC( JW+IROFFH, NB, MYROW, 0, NPROW )
TZCOLS0 = NUMROC( JW+IROFFH, NB, MYCOL, 0, NPCOL )
CALL DESCINIT( DESCTZ0, JW+IROFFH, JW+IROFFH, NB, NB, 0,
$ 0, ICTXT, MAX(1,TZROWS0), IERR0 )
IPT0 = 1
IPZ0 = IPT0 + MAX(1,TZROWS0)*TZCOLS0
IPW0 = IPZ0 + MAX(1,TZROWS0)*TZCOLS0
CALL PSLAMVE( 'All', JW+IROFFH, JW+IROFFH, T, 1, 1,
$ DESCT, WORK(IPT0), 1, 1, DESCTZ0, WORK(IPW0) )
CALL PSLASET( 'All', JW+IROFFH, JW+IROFFH, ZERO, ONE,
$ WORK(IPZ0), 1, 1, DESCTZ0 )
CALL PSLAQR1( .TRUE., .TRUE., JW+IROFFH, 1,
$ JW+IROFFH, WORK(IPT0), DESCTZ0,
$ SR( KWTOP-IROFFH ), SI( KWTOP-IROFFH ),
$ 1, JW+IROFFH, WORK(IPZ0),
$ DESCTZ0, WORK(IPW0), LWORK-IPW0+1, IWORK(NSEL+1),
$ LIWORK-NSEL, INFQR )
CALL PSLAMVE( 'All', JW+IROFFH, JW+IROFFH, WORK(IPT0), 1,
$ 1, DESCTZ0, T, 1, 1, DESCT, WORK(IPW0) )
CALL PSLAMVE( 'All', JW+IROFFH, JW+IROFFH, WORK(IPZ0), 1,
$ 1, DESCTZ0, V, 1, 1, DESCV, WORK(IPW0) )
END IF
END IF
ELSE
*
* The AED window is too small.
* Redistribute the AED window to a subgrid
* and do the computation on the subgrid.
*
ICTXT_NEW = ICTXT
DO 20 I = 0, NPMIN-1
DO 10 J = 0, NPMIN-1
PMAP( J+1+I*NPMIN ) = BLACS_PNUM( ICTXT, I, J )
10 CONTINUE
20 CONTINUE
CALL BLACS_GRIDMAP( ICTXT_NEW, PMAP, NPMIN, NPMIN, NPMIN )
CALL BLACS_GRIDINFO( ICTXT_NEW, NPMIN, NPMIN, MYROW_NEW,
$ MYCOL_NEW )
IF( MYROW.GE.NPMIN .OR. MYCOL.GE.NPMIN ) ICTXT_NEW = -1
IF( ICTXT_NEW.GE.0 ) THEN
TZROWS0 = NUMROC( JW, NB, MYROW_NEW, 0, NPMIN )
TZCOLS0 = NUMROC( JW, NB, MYCOL_NEW, 0, NPMIN )
CALL DESCINIT( DESCTZ0, JW, JW, NB, NB, 0,
$ 0, ICTXT_NEW, MAX(1,TZROWS0), IERR0 )
IPT0 = 1
IPZ0 = IPT0 + MAX(1,TZROWS0)*MAX(1,TZCOLS0)
IPW0 = IPZ0 + MAX(1,TZROWS0)*MAX(1,TZCOLS0)
ELSE
IPT0 = 1
IPZ0 = 2
IPW0 = 3
DESCTZ0( CTXT_ ) = -1
INFQR = 0
END IF
CALL PSGEMR2D( JW, JW, T, 1+IROFFH, 1+IROFFH, DESCT,
$ WORK(IPT0), 1, 1, DESCTZ0, ICTXT )
IF( ICTXT_NEW.GE.0 ) THEN
CALL PSLASET( 'All', JW, JW, ZERO, ONE, WORK(IPZ0), 1, 1,
$ DESCTZ0 )
NMIN = PILAENVX( ICTXT_NEW, 12, 'PSLAQR3', 'SV', JW, 1, JW,
$ LWORK )
IF( JW.GT.NMIN .AND. JW.LE.NMAX .AND. RECLEVEL.LT.1 ) THEN
CALL PSLAQR0( .TRUE., .TRUE., JW, 1, JW, WORK(IPT0),
$ DESCTZ0, SR( KWTOP ), SI( KWTOP ), 1, JW,
$ WORK(IPZ0), DESCTZ0, WORK(IPW0), LWORK-IPW0+1,
$ IWORK(NSEL+1), LIWORK-NSEL, INFQR,
$ RECLEVEL+1 )
ELSE
CALL PSLAQR1( .TRUE., .TRUE., JW, 1, JW, WORK(IPT0),
$ DESCTZ0, SR( KWTOP ), SI( KWTOP ), 1, JW,
$ WORK(IPZ0), DESCTZ0, WORK(IPW0), LWORK-IPW0+1,
$ IWORK(NSEL+1), LIWORK-NSEL, INFQR )
END IF
END IF
CALL PSGEMR2D( JW, JW, WORK(IPT0), 1, 1, DESCTZ0, T, 1+IROFFH,
$ 1+IROFFH, DESCT, ICTXT )
CALL PSGEMR2D( JW, JW, WORK(IPZ0), 1, 1, DESCTZ0, V, 1+IROFFH,
$ 1+IROFFH, DESCV, ICTXT )
IF( ICTXT_NEW.GE.0 )
$ CALL BLACS_GRIDEXIT( ICTXT_NEW )
IF( MYROW+MYCOL.GT.0 ) THEN
DO 40 J = 0, JW-1
SR( KWTOP+J ) = ZERO
SI( KWTOP+J ) = ZERO
40 CONTINUE
END IF
CALL IGAMN2D( ICTXT, 'All', '1-Tree', 1, 1, INFQR, 1, -1, -1,
$ -1, -1, -1 )
CALL SGSUM2D( ICTXT, 'All', ' ', JW, 1, SR(KWTOP), JW, -1, -1 )
CALL SGSUM2D( ICTXT, 'All', ' ', JW, 1, SI(KWTOP), JW, -1, -1 )
END IF
*
* Adjust INFQR for offset from block border in submatrices.
*
IF( INFQR.NE.0 )
$ INFQR = INFQR - IROFFH
*
* PSTRORD needs a clean margin near the diagonal.
*
DO 50 J = 1, JW - 3
CALL PSELSET( T, J+2, J, DESCT, ZERO )
CALL PSELSET( T, J+3, J, DESCT, ZERO )
50 CONTINUE
IF( JW.GT.2 )
$ CALL PSELSET( T, JW, JW-2, DESCT, ZERO )
*
* Check local residual for AED Schur decomposition.
*
RESAED = 0.0
*
* Clean up the array SELECT for PSTRORD.
*
DO 60 J = 1, NSEL
IWORK( J ) = 0
60 CONTINUE
*
* Set local M counter to zero.
*
MLOC = 0
*
* Outer deflation detection loop (label 80).
* In this loop a bunch of undeflatable eigenvalues
* are moved simultaneously.
*
DO 70 J = 1, IROFFH + INFQR
IWORK( J ) = 1
70 CONTINUE
*
NS = JW
ILST = INFQR + 1 + IROFFH
IF( ILST.GT.1 ) THEN
CALL PSELGET( 'All', '1-Tree', ELEM, T, ILST, ILST-1, DESCT )
BULGE = ELEM.NE.ZERO
IF( BULGE ) ILST = ILST+1
END IF
*
80 CONTINUE
IF( ILST.LE.NS+IROFFH ) THEN
*
* Find the top-left corner of the local window.
*
LILST = MAX(ILST,NS+IROFFH-NB+1)
IF( LILST.GT.1 ) THEN
CALL PSELGET( 'All', '1-Tree', ELEM, T, LILST, LILST-1,
$ DESCT )
BULGE = ELEM.NE.ZERO
IF( BULGE ) LILST = LILST+1
END IF
*
* Lock all eigenvalues outside the local window.
*
DO 90 J = IROFFH+1, LILST-1
IWORK( J ) = 1
90 CONTINUE
LILST0 = LILST
*
* Inner deflation detection loop (label 100).
* In this loop, the undeflatable eigenvalues are moved to the
* top-left corner of the local window.
*
100 CONTINUE
IF( LILST.LE.NS+IROFFH ) THEN
IF( NS.EQ.1 ) THEN
BULGE = .FALSE.
ELSE
CALL PSELGET( 'All', '1-Tree', ELEM, T, NS+IROFFH,
$ NS+IROFFH-1, DESCT )
BULGE = ELEM.NE.ZERO
END IF
*
* Small spike tip test for deflation.
*
IF( .NOT.BULGE ) THEN
*
* Real eigenvalue.
*
CALL PSELGET( 'All', '1-Tree', ELEM, T, NS+IROFFH,
$ NS+IROFFH, DESCT )
FOO = ABS( ELEM )
IF( FOO.EQ.ZERO )
$ FOO = ABS( S )
CALL PSELGET( 'All', '1-Tree', ELEM, V, 1+IROFFH,
$ NS+IROFFH, DESCV )
IF( ABS( S*ELEM ).LE.MAX( SMLNUM, ULP*FOO ) ) THEN
*
* Deflatable.
*
NS = NS - 1
ELSE
*
* Undeflatable: move it up out of the way.
*
IFST = NS
DO 110 J = LILST, JW+IROFFH
IWORK( J ) = 0
110 CONTINUE
IWORK( IFST+IROFFH ) = 1
CALL PSTRORD( 'Vectors', IWORK, PAR, JW+IROFFH, T, 1,
$ 1, DESCT, V, 1, 1, DESCV, WORK,
$ WORK(JW+IROFFH+1), MLOC,
$ WORK(2*(JW+IROFFH)+1), LWORK-2*(JW+IROFFH),
$ IWORK(NSEL+1), LIWORK-NSEL, INFO )
*
* Adjust the array SELECT explicitly so that it does not
* rely on the output of PSTRORD.
*
IWORK( IFST+IROFFH ) = 0
IWORK( LILST ) = 1
LILST = LILST + 1
*
* In case of a rare exchange failure, adjust the
* pointers ILST and LILST to the current place to avoid
* unexpected behaviors.
*
IF( INFO.NE.0 ) THEN
LILST = MAX(INFO, LILST)
ILST = MAX(INFO, ILST)
END IF
END IF
ELSE
*
* Complex conjugate pair.
*
CALL PSELGET( 'All', '1-Tree', ELEM1, T, NS+IROFFH,
$ NS+IROFFH, DESCT )
CALL PSELGET( 'All', '1-Tree', ELEM2, T, NS+IROFFH,
$ NS+IROFFH-1, DESCT )
CALL PSELGET( 'All', '1-Tree', ELEM3, T, NS+IROFFH-1,
$ NS+IROFFH, DESCT )
FOO = ABS( ELEM1 ) + SQRT( ABS( ELEM2 ) )*
$ SQRT( ABS( ELEM3 ) )
IF( FOO.EQ.ZERO )
$ FOO = ABS( S )
CALL PSELGET( 'All', '1-Tree', ELEM1, V, 1+IROFFH,
$ NS+IROFFH, DESCV )
CALL PSELGET( 'All', '1-Tree', ELEM2, V, 1+IROFFH,
$ NS+IROFFH-1, DESCV )
IF( MAX( ABS( S*ELEM1 ), ABS( S*ELEM2 ) ).LE.
$ MAX( SMLNUM, ULP*FOO ) ) THEN
*
* Deflatable.
*
NS = NS - 2
ELSE
*
* Undeflatable: move them up out of the way.
*
IFST = NS
DO 120 J = LILST, JW+IROFFH
IWORK( J ) = 0
120 CONTINUE
IWORK( IFST+IROFFH ) = 1
IWORK( IFST+IROFFH-1 ) = 1
CALL PSTRORD( 'Vectors', IWORK, PAR, JW+IROFFH, T, 1,
$ 1, DESCT, V, 1, 1, DESCV, WORK,
$ WORK(JW+IROFFH+1), MLOC,
$ WORK(2*(JW+IROFFH)+1), LWORK-2*(JW+IROFFH),
$ IWORK(NSEL+1), LIWORK-NSEL, INFO )
*
* Adjust the array SELECT explicitly so that it does not
* rely on the output of PSTRORD.
*
IWORK( IFST+IROFFH ) = 0
IWORK( IFST+IROFFH-1 ) = 0
IWORK( LILST ) = 1
IWORK( LILST+1 ) = 1
LILST = LILST + 2
*
* In case of a rare exchange failure, adjust the
* pointers ILST and LILST to the current place to avoid
* unexpected behaviors.
*
IF( INFO.NE.0 ) THEN
LILST = MAX(INFO, LILST)
ILST = MAX(INFO, ILST)
END IF
END IF
END IF
*
* End of inner deflation detection loop.
*
GO TO 100
END IF
*
* Unlock the eigenvalues outside the local window.
* Then undeflatable eigenvalues are moved to the proper position.
*
DO 130 J = ILST, LILST0-1
IWORK( J ) = 0
130 CONTINUE
CALL PSTRORD( 'Vectors', IWORK, PAR, JW+IROFFH, T, 1, 1,
$ DESCT, V, 1, 1, DESCV, WORK, WORK(JW+IROFFH+1),
$ M, WORK(2*(JW+IROFFH)+1), LWORK-2*(JW+IROFFH),
$ IWORK(NSEL+1), LIWORK-NSEL, INFO )
ILST = M + 1
*
* In case of a rare exchange failure, adjust the pointer ILST to
* the current place to avoid unexpected behaviors.
*
IF( INFO.NE.0 )
$ ILST = MAX(INFO, ILST)
*
* End of outer deflation detection loop.
*
GO TO 80
END IF
*
* Post-reordering step: copy output eigenvalues to output.
*
CALL SCOPY( JW, WORK(1+IROFFH), 1, SR( KWTOP ), 1 )
CALL SCOPY( JW, WORK(JW+2*IROFFH+1), 1, SI( KWTOP ), 1 )
*
* Check local residual for reordered AED Schur decomposition.
*
RESAED = 0.0
*
* Return to Hessenberg form.
*
IF( NS.EQ.0 )
$ S = ZERO
*
IF( NS.LT.JW .AND. SORTGRAD ) THEN
*
* Sorting diagonal blocks of T improves accuracy for
* graded matrices. Bubble sort deals well with exchange
* failures. Eigenvalues/shifts from T are also restored.
*
ROUND = 0
SORTED = .FALSE.
I = NS + 1 + IROFFH
140 CONTINUE
IF( SORTED )
$ GO TO 180
SORTED = .TRUE.
ROUND = ROUND + 1
*
KEND = I - 1
I = INFQR + 1 + IROFFH
IF( I.EQ.NS+IROFFH ) THEN
K = I + 1
ELSE IF( SI( KWTOP-IROFFH + I-1 ).EQ.ZERO ) THEN
K = I + 1
ELSE
K = I + 2
END IF
150 CONTINUE
IF( K.LE.KEND ) THEN
IF( K.EQ.I+1 ) THEN
EVI = ABS( SR( KWTOP-IROFFH+I-1 ) )
ELSE
EVI = ABS( SR( KWTOP-IROFFH+I-1 ) ) +
$ ABS( SI( KWTOP-IROFFH+I-1 ) )
END IF
*
IF( K.EQ.KEND ) THEN
EVK = ABS( SR( KWTOP-IROFFH+K-1 ) )
ELSEIF( SI( KWTOP-IROFFH+K-1 ).EQ.ZERO ) THEN
EVK = ABS( SR( KWTOP-IROFFH+K-1 ) )
ELSE
EVK = ABS( SR( KWTOP-IROFFH+K-1 ) ) +
$ ABS( SI( KWTOP-IROFFH+K-1 ) )
END IF
*
IF( EVI.GE.EVK ) THEN
I = K
ELSE
MLOC = 0
SORTED = .FALSE.
IFST = I
ILST = K
DO 160 J = 1, I-1
IWORK( J ) = 1
MLOC = MLOC + 1
160 CONTINUE
IF( K.EQ.I+2 ) THEN
IWORK( I ) = 0
IWORK(I+1) = 0
ELSE
IWORK( I ) = 0
END IF
IF( K.NE.KEND .AND. SI( KWTOP-IROFFH+K-1 ).NE.ZERO ) THEN
IWORK( K ) = 1
IWORK(K+1) = 1
MLOC = MLOC + 2
ELSE
IWORK( K ) = 1
IF( K.LT.KEND ) IWORK(K+1) = 0
MLOC = MLOC + 1
END IF
DO 170 J = K+2, JW+IROFFH
IWORK( J ) = 0
170 CONTINUE
CALL PSTRORD( 'Vectors', IWORK, PAR, JW+IROFFH, T, 1, 1,
$ DESCT, V, 1, 1, DESCV, WORK, WORK(JW+IROFFH+1), M,
$ WORK(2*(JW+IROFFH)+1), LWORK-2*(JW+IROFFH),
$ IWORK(NSEL+1), LIWORK-NSEL, IERR )
CALL SCOPY( JW, WORK(1+IROFFH), 1, SR( KWTOP ), 1 )
CALL SCOPY( JW, WORK(JW+2*IROFFH+1), 1, SI( KWTOP ), 1 )
IF( IERR.EQ.0 ) THEN
I = ILST
ELSE
I = K
END IF
END IF
IF( I.EQ.KEND ) THEN
K = I + 1
ELSE IF( SI( KWTOP-IROFFH+I-1 ).EQ.ZERO ) THEN
K = I + 1
ELSE
K = I + 2
END IF
GO TO 150
END IF
GO TO 140
180 CONTINUE
END IF
*
* Restore number of rows and columns of T matrix descriptor.
*
DESCT( M_ ) = NW+IROFFH
DESCT( N_ ) = NH+IROFFH
*
IF( NS.LT.JW .OR. S.EQ.ZERO ) THEN
IF( NS.GT.1 .AND. S.NE.ZERO ) THEN
*
* Reflect spike back into lower triangle.
*
RROWS = NUMROC( NS+IROFFH, NB, MYROW, DESCV(RSRC_), NPROW )
RCOLS = NUMROC( 1, 1, MYCOL, DESCV(CSRC_), NPCOL )
CALL DESCINIT( DESCR, NS+IROFFH, 1, NB, 1, DESCV(RSRC_),
$ DESCV(CSRC_), ICTXT, MAX(1, RROWS), INFO )
TAUROWS = NUMROC( 1, 1, MYCOL, DESCV(RSRC_), NPROW )
TAUCOLS = NUMROC( JW+IROFFH, NB, MYCOL, DESCV(CSRC_),
$ NPCOL )
CALL DESCINIT( DESCTAU, 1, JW+IROFFH, 1, NB, DESCV(RSRC_),
$ DESCV(CSRC_), ICTXT, MAX(1, TAUROWS), INFO )
*
IR = 1
ITAU = IR + DESCR( LLD_ ) * RCOLS
IPW = ITAU + DESCTAU( LLD_ ) * TAUCOLS
*
CALL PSLASET( 'All', NS+IROFFH, 1, ZERO, ZERO, WORK(ITAU),
$ 1, 1, DESCTAU )
*
CALL PSCOPY( NS, V, 1+IROFFH, 1+IROFFH, DESCV, DESCV(M_),
$ WORK(IR), 1+IROFFH, 1, DESCR, 1 )
CALL PSLARFG( NS, BETA, 1+IROFFH, 1, WORK(IR), 2+IROFFH, 1,
$ DESCR, 1, WORK(ITAU+IROFFH) )
CALL PSELSET( WORK(IR), 1+IROFFH, 1, DESCR, ONE )
*
CALL PSLASET( 'Lower', JW-2, JW-2, ZERO, ZERO, T, 3+IROFFH,
$ 1+IROFFH, DESCT )
*
CALL PSLARF( 'Left', NS, JW, WORK(IR), 1+IROFFH, 1, DESCR,
$ 1, WORK(ITAU+IROFFH), T, 1+IROFFH, 1+IROFFH,
$ DESCT, WORK( IPW ) )
CALL PSLARF( 'Right', NS, NS, WORK(IR), 1+IROFFH, 1, DESCR,
$ 1, WORK(ITAU+IROFFH), T, 1+IROFFH, 1+IROFFH,
$ DESCT, WORK( IPW ) )
CALL PSLARF( 'Right', JW, NS, WORK(IR), 1+IROFFH, 1, DESCR,
$ 1, WORK(ITAU+IROFFH), V, 1+IROFFH, 1+IROFFH,
$ DESCV, WORK( IPW ) )
*
ITAU = 1
IPW = ITAU + DESCTAU( LLD_ ) * TAUCOLS
CALL PSGEHRD( JW+IROFFH, 1+IROFFH, NS+IROFFH, T, 1, 1,
$ DESCT, WORK(ITAU), WORK( IPW ), LWORK-IPW+1, INFO )
END IF
*
* Copy updated reduced window into place.
*
IF( KWTOP.GT.1 ) THEN
CALL PSELGET( 'All', '1-Tree', ELEM, V, 1+IROFFH,
$ 1+IROFFH, DESCV )
CALL PSELSET( H, KWTOP, KWTOP-1, DESCH, S*ELEM )
END IF
CALL PSLACPY( 'Upper', JW-1, JW-1, T, 1+IROFFH+1, 1+IROFFH,
$ DESCT, H, KWTOP+1, KWTOP, DESCH )
CALL PSLACPY( 'All', 1, JW, T, 1+IROFFH, 1+IROFFH, DESCT, H,
$ KWTOP, KWTOP, DESCH )
CALL PSLACPY( 'All', JW-1, 1, T, 1+IROFFH+1, 1+IROFFH+JW-1,
$ DESCT, H, KWTOP+1, KWTOP+JW-1, DESCH )
*
* Accumulate orthogonal matrix in order to update
* H and Z, if requested.
*
IF( NS.GT.1 .AND. S.NE.ZERO ) THEN
CALL PSORMHR( 'Right', 'No', JW+IROFFH, NS+IROFFH, 1+IROFFH,
$ NS+IROFFH, T, 1, 1, DESCT, WORK(ITAU), V, 1,
$ 1, DESCV, WORK( IPW ), LWORK-IPW+1, INFO )
END IF
*
* Update vertical slab in H.
*
IF( WANTT ) THEN
LTOP = 1
ELSE
LTOP = KTOP
END IF
KLN = MAX( 0, KWTOP-LTOP )
IROFFHH = MOD( LTOP-1, NB )
ICOFFHH = MOD( KWTOP-1, NB )
HHRSRC = INDXG2P( LTOP, NB, MYROW, DESCH(RSRC_), NPROW )
HHCSRC = INDXG2P( KWTOP, NB, MYCOL, DESCH(CSRC_), NPCOL )
HHROWS = NUMROC( KLN+IROFFHH, NB, MYROW, HHRSRC, NPROW )
HHCOLS = NUMROC( JW+ICOFFHH, NB, MYCOL, HHCSRC, NPCOL )
CALL DESCINIT( DESCHH, KLN+IROFFHH, JW+ICOFFHH, NB, NB,
$ HHRSRC, HHCSRC, ICTXT, MAX(1, HHROWS), IERR )
CALL PSGEMM( 'No', 'No', KLN, JW, JW, ONE, H, LTOP,
$ KWTOP, DESCH, V, 1+IROFFH, 1+IROFFH, DESCV, ZERO,
$ WORK, 1+IROFFHH, 1+ICOFFHH, DESCHH )
CALL PSLACPY( 'All', KLN, JW, WORK, 1+IROFFHH, 1+ICOFFHH,
$ DESCHH, H, LTOP, KWTOP, DESCH )
*
* Update horizontal slab in H.
*
IF( WANTT ) THEN
KLN = N-KBOT
IROFFHH = MOD( KWTOP-1, NB )
ICOFFHH = MOD( KBOT, NB )
HHRSRC = INDXG2P( KWTOP, NB, MYROW, DESCH(RSRC_), NPROW )
HHCSRC = INDXG2P( KBOT+1, NB, MYCOL, DESCH(CSRC_), NPCOL )
HHROWS = NUMROC( JW+IROFFHH, NB, MYROW, HHRSRC, NPROW )
HHCOLS = NUMROC( KLN+ICOFFHH, NB, MYCOL, HHCSRC, NPCOL )
CALL DESCINIT( DESCHH, JW+IROFFHH, KLN+ICOFFHH, NB, NB,
$ HHRSRC, HHCSRC, ICTXT, MAX(1, HHROWS), IERR )
CALL PSGEMM( 'Tr', 'No', JW, KLN, JW, ONE, V,
$ 1+IROFFH, 1+IROFFH, DESCV, H, KWTOP, KBOT+1,
$ DESCH, ZERO, WORK, 1+IROFFHH, 1+ICOFFHH, DESCHH )
CALL PSLACPY( 'All', JW, KLN, WORK, 1+IROFFHH, 1+ICOFFHH,
$ DESCHH, H, KWTOP, KBOT+1, DESCH )
END IF
*
* Update vertical slab in Z.
*
IF( WANTZ ) THEN
KLN = IHIZ-ILOZ+1
IROFFZZ = MOD( ILOZ-1, NB )
ICOFFZZ = MOD( KWTOP-1, NB )
ZZRSRC = INDXG2P( ILOZ, NB, MYROW, DESCZ(RSRC_), NPROW )
ZZCSRC = INDXG2P( KWTOP, NB, MYCOL, DESCZ(CSRC_), NPCOL )
ZZROWS = NUMROC( KLN+IROFFZZ, NB, MYROW, ZZRSRC, NPROW )
ZZCOLS = NUMROC( JW+ICOFFZZ, NB, MYCOL, ZZCSRC, NPCOL )
CALL DESCINIT( DESCZZ, KLN+IROFFZZ, JW+ICOFFZZ, NB, NB,
$ ZZRSRC, ZZCSRC, ICTXT, MAX(1, ZZROWS), IERR )
CALL PSGEMM( 'No', 'No', KLN, JW, JW, ONE, Z, ILOZ,
$ KWTOP, DESCZ, V, 1+IROFFH, 1+IROFFH, DESCV,
$ ZERO, WORK, 1+IROFFZZ, 1+ICOFFZZ, DESCZZ )
CALL PSLACPY( 'All', KLN, JW, WORK, 1+IROFFZZ, 1+ICOFFZZ,
$ DESCZZ, Z, ILOZ, KWTOP, DESCZ )
END IF
END IF
*
* Return the number of deflations (ND) and the number of shifts (NS).
* (Subtracting INFQR from the spike length takes care of the case of
* a rare QR failure while calculating eigenvalues of the deflation
* window.)
*
ND = JW - NS
NS = NS - INFQR
*
* Return optimal workspace.
*
WORK( 1 ) = FLOAT( LWKOPT )
IWORK( 1 ) = ILWKOPT + NSEL
*
* End of PSLAQR3
*
END
|