File: pstrord.f

package info (click to toggle)
scalapack 2.1.0-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 36,184 kB
  • sloc: fortran: 338,772; ansic: 75,298; makefile: 1,392; sh: 56
file content (3454 lines) | stat: -rw-r--r-- 161,103 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
      SUBROUTINE PSTRORD( COMPQ, SELECT, PARA, N, T, IT, JT,
     $     DESCT, Q, IQ, JQ, DESCQ, WR, WI, M, WORK, LWORK,
     $     IWORK, LIWORK, INFO )
*
*     Contribution from the Department of Computing Science and HPC2N,
*     Umea University, Sweden
*
*  -- ScaLAPACK computational routine (version 2.0.2) --
*     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver
*     May 1 2012
*
      IMPLICIT NONE
*
*     .. Scalar Arguments ..
      CHARACTER          COMPQ
      INTEGER            INFO, LIWORK, LWORK, M, N,
     $                   IT, JT, IQ, JQ
*     ..
*     .. Array Arguments ..
      INTEGER            SELECT( * )
      INTEGER            PARA( 6 ), DESCT( * ), DESCQ( * ), IWORK( * )
      REAL               Q( * ), T( * ), WI( * ), WORK( * ), WR( * )
*     ..
*
*  Purpose
*  =======
*
*  PSTRORD reorders the real Schur factorization of a real matrix
*  A = Q*T*Q**T, so that a selected cluster of eigenvalues appears
*  in the leading diagonal blocks of the upper quasi-triangular matrix
*  T, and the leading columns of Q form an orthonormal basis of the
*  corresponding right invariant subspace.
*
*  T must be in Schur form (as returned by PSLAHQR), that is, block
*  upper triangular with 1-by-1 and 2-by-2 diagonal blocks.
*
*  This subroutine uses a delay and accumulate procedure for performing
*  the off-diagonal updates (see references for details).
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*
*  COMPQ   (global input) CHARACTER*1
*          = 'V': update the matrix Q of Schur vectors;
*          = 'N': do not update Q.
*
*  SELECT  (global input/output) INTEGER array, dimension (N)
*          SELECT specifies the eigenvalues in the selected cluster. To
*          select a real eigenvalue w(j), SELECT(j) must be set to 1.
*          To select a complex conjugate pair of eigenvalues
*          w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
*          either SELECT(j) or SELECT(j+1) or both must be set to 1;
*          a complex conjugate pair of eigenvalues must be
*          either both included in the cluster or both excluded.
*          On output, the (partial) reordering is displayed.
*
*  PARA    (global input) INTEGER*6
*          Block parameters (some should be replaced by calls to
*          PILAENV and others by meaningful default values):
*          PARA(1) = maximum number of concurrent computational windows
*                    allowed in the algorithm;
*                    0 < PARA(1) <= min(NPROW,NPCOL) must hold;
*          PARA(2) = number of eigenvalues in each window;
*                    0 < PARA(2) < PARA(3) must hold;
*          PARA(3) = window size; PARA(2) < PARA(3) < DESCT(MB_)
*                    must hold;
*          PARA(4) = minimal percentage of flops required for
*                    performing matrix-matrix multiplications instead
*                    of pipelined orthogonal transformations;
*                    0 <= PARA(4) <= 100 must hold;
*          PARA(5) = width of block column slabs for row-wise
*                    application of pipelined orthogonal
*                    transformations in their factorized form;
*                    0 < PARA(5) <= DESCT(MB_) must hold.
*          PARA(6) = the maximum number of eigenvalues moved together
*                    over a process border; in practice, this will be
*                    approximately half of the cross border window size
*                    0 < PARA(6) <= PARA(2) must hold;
*
*  N       (global input) INTEGER
*          The order of the globally distributed matrix T. N >= 0.
*
*  T       (local input/output) REAL array,
*          dimension (LLD_T,LOCc(N)).
*          On entry, the local pieces of the global distributed
*          upper quasi-triangular matrix T, in Schur form. On exit, T is
*          overwritten by the local pieces of the reordered matrix T,
*          again in Schur form, with the selected eigenvalues in the
*          globally leading diagonal blocks.
*
*  IT      (global input) INTEGER
*  JT      (global input) INTEGER
*          The row and column index in the global array T indicating the
*          first column of sub( T ). IT = JT = 1 must hold.
*
*  DESCT   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the global distributed matrix T.
*
*  Q       (local input/output) REAL array,
*          dimension (LLD_Q,LOCc(N)).
*          On entry, if COMPQ = 'V', the local pieces of the global
*          distributed matrix Q of Schur vectors.
*          On exit, if COMPQ = 'V', Q has been postmultiplied by the
*          global orthogonal transformation matrix which reorders T; the
*          leading M columns of Q form an orthonormal basis for the
*          specified invariant subspace.
*          If COMPQ = 'N', Q is not referenced.
*
*  IQ      (global input) INTEGER
*  JQ      (global input) INTEGER
*          The column index in the global array Q indicating the
*          first column of sub( Q ). IQ = JQ = 1 must hold.
*
*  DESCQ   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the global distributed matrix Q.
*
*  WR      (global output) REAL array, dimension (N)
*  WI      (global output) REAL array, dimension (N)
*          The real and imaginary parts, respectively, of the reordered
*          eigenvalues of T. The eigenvalues are in principle stored in
*          the same order as on the diagonal of T, with WR(i) = T(i,i)
*          and, if T(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) > 0
*          and WI(i+1) = -WI(i).
*          Note also that if a complex eigenvalue is sufficiently
*          ill-conditioned, then its value may differ significantly
*          from its value before reordering.
*
*  M       (global output) INTEGER
*          The dimension of the specified invariant subspace.
*          0 <= M <= N.
*
*  WORK    (local workspace/output) REAL array,
*          dimension (LWORK)
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (local input) INTEGER
*          The dimension of the array WORK.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by PXERBLA.
*
*  IWORK   (local workspace/output) INTEGER array, dimension (LIWORK)
*
*  LIWORK  (local input) INTEGER
*          The dimension of the array IWORK.
*
*          If LIWORK = -1, then a workspace query is assumed; the
*          routine only calculates the optimal size of the IWORK array,
*          returns this value as the first entry of the IWORK array, and
*          no error message related to LIWORK is issued by PXERBLA.
*
*  INFO    (global output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument had an illegal value.
*          If the i-th argument is an array and the j-entry had
*          an illegal value, then INFO = -(i*1000+j), if the i-th
*          argument is a scalar and had an illegal value, then INFO = -i.
*          > 0: here we have several possibilites
*            *) Reordering of T failed because some eigenvalues are too
*               close to separate (the problem is very ill-conditioned);
*               T may have been partially reordered, and WR and WI
*               contain the eigenvalues in the same order as in T.
*               On exit, INFO = {the index of T where the swap failed}.
*            *) A 2-by-2 block to be reordered split into two 1-by-1
*               blocks and the second block failed to swap with an
*               adjacent block.
*               On exit, INFO = {the index of T where the swap failed}.
*            *) If INFO = N+1, there is no valid BLACS context (see the
*               BLACS documentation for details).
*          In a future release this subroutine may distinguish between
*          the case 1 and 2 above.
*
*  Additional requirements
*  =======================
*
*  The following alignment requirements must hold:
*  (a) DESCT( MB_ ) = DESCT( NB_ ) = DESCQ( MB_ ) = DESCQ( NB_ )
*  (b) DESCT( RSRC_ ) = DESCQ( RSRC_ )
*  (c) DESCT( CSRC_ ) = DESCQ( CSRC_ )
*
*  All matrices must be blocked by a block factor larger than or
*  equal to two (3). This is to simplify reordering across processor
*  borders in the presence of 2-by-2 blocks.
*
*  Limitations
*  ===========
*
*  This algorithm cannot work on submatrices of T and Q, i.e.,
*  IT = JT = IQ = JQ = 1 must hold. This is however no limitation
*  since PDLAHQR does not compute Schur forms of submatrices anyway.
*
*  References
*  ==========
*
*  [1] Z. Bai and J. W. Demmel; On swapping diagonal blocks in real
*      Schur form, Linear Algebra Appl., 186:73--95, 1993. Also as
*      LAPACK Working Note 54.
*
*  [2] D. Kressner; Block algorithms for reordering standard and
*      generalized Schur forms, ACM TOMS, 32(4):521-532, 2006.
*      Also LAPACK Working Note 171.
*
*  [3] R. Granat, B. Kagstrom, and D. Kressner; Parallel eigenvalue
*      reordering in real Schur form, Concurrency and Computations:
*      Practice and Experience, 21(9):1225-1250, 2009. Also as
*      LAPACK Working Note 192.
*
*  Parallel execution recommendations
*  ==================================
*
*  Use a square grid, if possible, for maximum performance. The block
*  parameters in PARA should be kept well below the data distribution
*  block size. In particular, see [3] for recommended settings for
*  these parameters.
*
*  In general, the parallel algorithm strives to perform as much work
*  as possible without crossing the block borders on the main block
*  diagonal.
*
*  Contributors
*  ============
*
*  Implemented by Robert Granat, Dept. of Computing Science and HPC2N,
*  Umea University, Sweden, March 2007,
*  in collaboration with Bo Kagstrom and Daniel Kressner.
*  Modified by Meiyue Shao, October 2011.
*
*  Revisions
*  =========
*
*  Please send bug-reports to granat@cs.umu.se
*
*  Keywords
*  ========
*
*  Real Schur form, eigenvalue reordering
*
*  =====================================================================
*     ..
*     .. Parameters ..
      CHARACTER          TOP
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      REAL               ZERO, ONE
      PARAMETER          ( TOP = '1-Tree',
     $                     BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9,
     $                     ZERO = 0.0, ONE = 1.0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY, PAIR, SWAP, WANTQ,
     $                   ISHH, FIRST, SKIP1CR, BORDER, LASTWAIT
      INTEGER            NPROW, NPCOL, MYROW, MYCOL, NB, NPROCS,
     $                   IERR, DIM1, INDX, LLDT, TRSRC, TCSRC, ILOC1,
     $                   JLOC1, MYIERR, ICTXT,
     $                   RSRC1, CSRC1, ILOC3, JLOC3, TRSRC3,
     $                   TCSRC3, ILOC, JLOC, TRSRC4, TCSRC4,
     $                   FLOPS, I, ILO, IHI, J, K, KK, KKS,
     $                   KS, LIWMIN, LWMIN, MMULT, N1, N2,
     $                   NCB, NDTRAF, NITRAF, NWIN, NUMWIN, PDTRAF,
     $                   PITRAF, PDW, WINEIG, WINSIZ, LLDQ,
     $                   RSRC, CSRC, ILILO, ILIHI, ILSEL, IRSRC,
     $                   ICSRC, IPIW, IPW1, IPW2, IPW3, TIHI, TILO,
     $                   LIHI, WINDOW, LILO, LSEL, BUFFER,
     $                   NMWIN2, BUFFLEN, LROWS, LCOLS, ILOC2, JLOC2,
     $                   WNEICR, WINDOW0, RSRC4, CSRC4, LIHI4, RSRC3,
     $                   CSRC3, RSRC2, CSRC2, LIHIC, LIHI1, ILEN4,
     $                   SELI4, ILEN1, DIM4, IPW4, QROWS, TROWS,
     $                   TCOLS, IPW5, IPW6, IPW7, IPW8, JLOC4,
     $                   EAST, WEST, ILOC4, SOUTH, NORTH, INDXS,
     $                   ITT, JTT, ILEN, DLEN, INDXE, TRSRC1, TCSRC1,
     $                   TRSRC2, TCSRC2, ILOS, DIR, TLIHI, TLILO, TLSEL,
     $                   ROUND, LAST, WIN0S, WIN0E, WINE, MMAX, MMIN
      REAL               ELEM, ELEM1, ELEM2, ELEM3, ELEM4, SN, CS, TMP,
     $                   ELEM5
*     ..
*     .. Local Arrays ..
      INTEGER            IBUFF( 8 ), IDUM1( 1 ), IDUM2( 1 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            NUMROC, INDXG2P, INDXG2L
      EXTERNAL           LSAME, NUMROC, INDXG2P, INDXG2L
*     ..
*     .. External Subroutines ..
      EXTERNAL           PSLACPY, PXERBLA, PCHK1MAT, PCHK2MAT,
     $                   SGEMM, SLAMOV, ILACPY, CHK1MAT,
     $                   INFOG2L, DGSUM2D, SGESD2D, SGERV2D, SGEBS2D,
     $                   SGEBR2D, IGSUM2D, BLACS_GRIDINFO, IGEBS2D,
     $                   IGEBR2D, IGAMX2D, IGAMN2D, BSLAAPP, BDTREXC
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, SQRT, MIN
*     ..
*     .. Local Functions ..
      INTEGER            ICEIL
*     ..
*     .. Executable Statements ..
*
*     Get grid parameters.
*
      ICTXT = DESCT( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
      NPROCS = NPROW*NPCOL
*
*     Test if grid is O.K., i.e., the context is valid.
*
      INFO = 0
      IF( NPROW.EQ.-1 ) THEN
         INFO = N+1
      END IF
*
*     Check if workspace query.
*
      LQUERY = LWORK.EQ.-1 .OR. LIWORK.EQ.-1
*
*     Test dimensions for local sanity.
*
      IF( INFO.EQ.0 ) THEN
         CALL CHK1MAT( N, 5, N, 5, IT, JT, DESCT, 9, INFO )
      END IF
      IF( INFO.EQ.0 ) THEN
         CALL CHK1MAT( N, 5, N, 5, IQ, JQ, DESCQ, 13, INFO )
      END IF
*
*     Check the blocking sizes for alignment requirements.
*
      IF( INFO.EQ.0 ) THEN
         IF( DESCT( MB_ ).NE.DESCT( NB_ ) ) INFO = -(1000*9 + MB_)
      END IF
      IF( INFO.EQ.0 ) THEN
         IF( DESCQ( MB_ ).NE.DESCQ( NB_ ) ) INFO = -(1000*13 + MB_)
      END IF
      IF( INFO.EQ.0 ) THEN
         IF( DESCT( MB_ ).NE.DESCQ( MB_ ) ) INFO = -(1000*9 + MB_)
      END IF
*
*     Check the blocking sizes for minimum sizes.
*
      IF( INFO.EQ.0 ) THEN
         IF( N.NE.DESCT( MB_ ) .AND. DESCT( MB_ ).LT.3 )
     $      INFO = -(1000*9 + MB_)
         IF( N.NE.DESCQ( MB_ ) .AND. DESCQ( MB_ ).LT.3 )
     $      INFO = -(1000*13 + MB_)
      END IF
*
*     Check parameters in PARA.
*
      NB = DESCT( MB_ )
      IF( INFO.EQ.0 ) THEN
         IF( PARA(1).LT.1 .OR. PARA(1).GT.MIN(NPROW,NPCOL) )
     $      INFO = -(1000 * 4 + 1)
         IF( PARA(2).LT.1 .OR. PARA(2).GE.PARA(3) )
     $      INFO = -(1000 * 4 + 2)
         IF( PARA(3).LT.1 .OR. PARA(3).GT.NB )
     $      INFO = -(1000 * 4 + 3)
         IF( PARA(4).LT.0 .OR. PARA(4).GT.100 )
     $      INFO = -(1000 * 4 + 4)
         IF( PARA(5).LT.1 .OR. PARA(5).GT.NB )
     $      INFO = -(1000 * 4 + 5)
         IF( PARA(6).LT.1 .OR. PARA(6).GT.PARA(2) )
     $      INFO = -(1000 * 4 + 6)
      END IF
*
*     Check requirements on IT, JT, IQ and JQ.
*
      IF( INFO.EQ.0 ) THEN
         IF( IT.NE.1 ) INFO = -6
         IF( JT.NE.IT ) INFO = -7
         IF( IQ.NE.1 ) INFO = -10
         IF( JQ.NE.IQ ) INFO = -11
      END IF
*
*     Test input parameters for global sanity.
*
      IF( INFO.EQ.0 ) THEN
         CALL PCHK1MAT( N, 5, N, 5, IT, JT, DESCT, 9, 0, IDUM1,
     $        IDUM2, INFO )
      END IF
      IF( INFO.EQ.0 ) THEN
         CALL PCHK1MAT( N, 5, N, 5, IQ, JQ, DESCQ, 13, 0, IDUM1,
     $        IDUM2, INFO )
      END IF
      IF( INFO.EQ.0 ) THEN
         CALL PCHK2MAT( N, 5, N, 5, IT, JT, DESCT, 9, N, 5, N, 5,
     $        IQ, JQ, DESCQ, 13, 0, IDUM1, IDUM2, INFO )
      END IF
*
*     Decode and test the input parameters.
*
      IF( INFO.EQ.0 .OR. LQUERY ) THEN
*
         WANTQ = LSAME( COMPQ, 'V' )
         IF( N.LT.0 ) THEN
            INFO = -4
         ELSE
*
*           Extract local leading dimension.
*
            LLDT = DESCT( LLD_ )
            LLDQ = DESCQ( LLD_ )
*
*           Check the SELECT vector for consistency and set M to the
*           dimension of the specified invariant subspace.
*
            M = 0
            DO 10 K = 1, N
               IF( K.LT.N ) THEN
                  CALL INFOG2L( K+1, K, DESCT, NPROW, NPCOL,
     $                 MYROW, MYCOL, ITT, JTT, TRSRC, TCSRC )
                  IF( MYROW.EQ.TRSRC .AND. MYCOL.EQ.TCSRC ) THEN
                     ELEM = T( (JTT-1)*LLDT + ITT )
                     IF( ELEM.NE.ZERO ) THEN
                        IF( SELECT(K).NE.0 .AND.
     $                       SELECT(K+1).EQ.0 ) THEN
*                           INFO = -2
                           SELECT(K+1) = 1
                        ELSEIF( SELECT(K).EQ.0 .AND.
     $                          SELECT(K+1).NE.0 ) THEN
*                           INFO = -2
                           SELECT(K) = 1
                        END IF
                     END IF
                  END IF
               END IF
               IF( SELECT(K).NE.0 ) M = M + 1
 10         CONTINUE
            MMAX = M
            MMIN = M
            IF( NPROCS.GT.1 )
     $         CALL IGAMX2D( ICTXT, 'All', TOP, 1, 1, MMAX, 1, -1,
     $              -1, -1, -1, -1 )
            IF( NPROCS.GT.1 )
     $         CALL IGAMN2D( ICTXT, 'All', TOP, 1, 1, MMIN, 1, -1,
     $              -1, -1, -1, -1 )
            IF( MMAX.GT.MMIN ) THEN
               M = MMAX
               IF( NPROCS.GT.1 )
     $            CALL IGAMX2D( ICTXT, 'All', TOP, N, 1, SELECT, N,
     $                 -1, -1, -1, -1, -1 )
            END IF
*
*           Compute needed workspace.
*
            N1 = M
            N2 = N - M
*
            TROWS = NUMROC( N, NB, MYROW, DESCT(RSRC_), NPROW )
            TCOLS = NUMROC( N, NB, MYCOL, DESCT(CSRC_), NPCOL )
            LWMIN = N + 7*NB**2 + 2*TROWS*PARA( 3 ) + TCOLS*PARA( 3 ) +
     $           MAX( TROWS*PARA( 3 ), TCOLS*PARA( 3 ) )
            LIWMIN = 5*PARA( 1 ) + PARA( 2 )*PARA( 3 ) -
     $           PARA( 2 ) * ( PARA( 2 ) + 1 ) / 2
*
            IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
               INFO = -17
            ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
               INFO = -19
            END IF
         END IF
      END IF
*
*     Global maximum on info.
*
      IF( NPROCS.GT.1 )
     $   CALL IGAMX2D( ICTXT, 'All', TOP, 1, 1, INFO, 1, -1, -1, -1,
     $        -1, -1 )
*
*     Return if some argument is incorrect.
*
      IF( INFO.NE.0 .AND. .NOT.LQUERY ) THEN
         M = 0
         CALL PXERBLA( ICTXT, 'PSTRORD', -INFO )
         RETURN
      ELSEIF( LQUERY ) THEN
         WORK( 1 ) = FLOAT(LWMIN)
         IWORK( 1 ) = LIWMIN
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( M.EQ.N .OR. M.EQ.0 ) GO TO 545
*
*     Set parameters.
*
      NUMWIN = PARA( 1 )
      WINEIG = MAX( PARA( 2 ), 2 )
      WINSIZ = MIN( MAX( PARA( 3 ), PARA( 2 )*2 ), NB )
      MMULT  = PARA( 4 )
      NCB    = PARA( 5 )
      WNEICR = PARA( 6 )
*
*     Insert some pointers into INTEGER workspace.
*
*     Information about all the active windows is stored
*     in IWORK( 1:5*NUMWIN ). Each processor has a copy.
*       LILO: start position
*       LIHI: stop position
*       LSEL: number of selected eigenvalues
*       RSRC: processor id (row)
*       CSRC: processor id (col)
*     IWORK( IPIW+ ) contain information of orthogonal transformations.
*
      ILILO = 1
      ILIHI = ILILO + NUMWIN
      ILSEL = ILIHI + NUMWIN
      IRSRC = ILSEL + NUMWIN
      ICSRC = IRSRC + NUMWIN
      IPIW  = ICSRC + NUMWIN
*
*     Insert some pointers into REAL workspace - for now we
*     only need two pointers.
*
      IPW1 = 1
      IPW2 = IPW1 + NB
*
*     Collect the selected blocks at the top-left corner of T.
*
*     Globally: ignore eigenvalues that are already in order.
*     ILO is a global variable and is kept updated to be consistent
*     throughout the process mesh.
*
      ILO = 0
 40   CONTINUE
      ILO = ILO + 1
      IF( ILO.LE.N ) THEN
         IF( SELECT(ILO).NE.0 ) GO TO 40
      END IF
*
*     Globally: start the collection at the top of the matrix. Here,
*     IHI is a global variable and is kept updated to be consistent
*     throughout the process mesh.
*
      IHI = N
*
*     Globally:  While ( ILO <= M ) do
 50   CONTINUE
*
      IF( ILO.LE.M ) THEN
*
*        Depending on the value of ILO, find the diagonal block index J,
*        such that T(1+(J-1)*NB:1+J*NB,1+(J-1)*NB:1+J*NB) contains the
*        first unsorted eigenvalue. Check that J does not point to a
*        block with only one selected eigenvalue in the last position
*        which belongs to a splitted 2-by-2 block.
*
         ILOS = ILO - 1
 52      CONTINUE
         ILOS = ILOS + 1
         IF( SELECT(ILOS).EQ.0 ) GO TO 52
         IF( ILOS.LT.N ) THEN
            IF( SELECT(ILOS+1).NE.0 .AND. MOD(ILOS,NB).EQ.0 ) THEN
               CALL PSELGET( 'All', TOP, ELEM, T, ILOS+1, ILOS, DESCT )
               IF( ELEM.NE.ZERO ) GO TO 52
            END IF
         END IF
         J = ICEIL(ILOS,NB)
*
*        Globally: Set start values of LILO and LIHI for all processes.
*        Choose also the number of selected eigenvalues at top of each
*        diagonal block such that the number of eigenvalues which remain
*        to be reordered is an integer multiple of WINEIG.
*
*        All the information is saved into the INTEGER workspace such
*        that all processors are aware of each others operations.
*
*        Compute the number of concurrent windows.
*
         NMWIN2 = (ICEIL(IHI,NB)*NB - (ILO-MOD(ILO,NB)+1)+1) / NB
         NMWIN2 = MIN( MIN( NUMWIN, NMWIN2 ), ICEIL(N,NB) - J + 1 )
*
*        For all windows, set LSEL = 0 and find a proper start value of
*        LILO such that LILO points at the first non-selected entry in
*        the corresponding diagonal block of T.
*
         DO 80 K = 1, NMWIN2
            IWORK( ILSEL+K-1) = 0
            IWORK( ILILO+K-1) = MAX( ILO, (J-1)*NB+(K-1)*NB+1 )
            LILO = IWORK( ILILO+K-1 )
 82         CONTINUE
            IF( SELECT(LILO).NE.0 .AND. LILO.LT.(J+K-1)*NB ) THEN
               LILO = LILO + 1
               IF( LILO.LE.N ) GO TO 82
            END IF
            IWORK( ILILO+K-1 ) = LILO
*
*           Fix each LILO to ensure that no 2-by-2 block is cut in top
*           of the submatrix (LILO:LIHI,LILO:LIHI).
*
            LILO = IWORK(ILILO+K-1)
            IF( LILO.GT.NB ) THEN
               CALL PSELGET( 'All', TOP, ELEM, T, LILO, LILO-1, DESCT )
               IF( ELEM.NE.ZERO ) THEN
                  IF( LILO.LT.(J+K-1)*NB ) THEN
                     IWORK(ILILO+K-1) = IWORK(ILILO+K-1) + 1
                  ELSE
                     IWORK(ILILO+K-1) = IWORK(ILILO+K-1) - 1
                  END IF
               END IF
            END IF
*
*           Set a proper LIHI value for each window. Also find the
*           processors corresponding to the corresponding windows.
*
            IWORK( ILIHI+K-1 ) =  IWORK( ILILO+K-1 )
            IWORK( IRSRC+K-1 ) = INDXG2P( IWORK(ILILO+K-1), NB, MYROW,
     $           DESCT( RSRC_ ), NPROW )
            IWORK( ICSRC+K-1 ) = INDXG2P( IWORK(ILILO+K-1), NB, MYCOL,
     $           DESCT( CSRC_ ), NPCOL )
            TILO = IWORK(ILILO+K-1)
            TIHI = MIN( N, ICEIL( TILO, NB ) * NB )
            DO 90 KK = TIHI, TILO, -1
               IF( SELECT(KK).NE.0 ) THEN
                  IWORK(ILIHI+K-1) = MAX(IWORK(ILIHI+K-1) , KK )
                  IWORK(ILSEL+K-1) = IWORK(ILSEL+K-1) + 1
                  IF( IWORK(ILSEL+K-1).GT.WINEIG ) THEN
                     IWORK(ILIHI+K-1) = KK
                     IWORK(ILSEL+K-1) = 1
                  END IF
               END IF
 90         CONTINUE
*
*           Fix each LIHI to avoid that bottom of window cuts 2-by-2
*           block. We exclude such a block if located on block (process)
*           border and on window border or if an inclusion would cause
*           violation on the maximum number of eigenvalues to reorder
*           inside each window. If only on window border, we include it.
*           The excluded block is included automatically later when a
*           subcluster is reordered into the block from South-East.
*
            LIHI = IWORK(ILIHI+K-1)
            IF( LIHI.LT.N ) THEN
               CALL PSELGET( 'All', TOP, ELEM, T, LIHI+1, LIHI, DESCT )
               IF( ELEM.NE.ZERO ) THEN
                  IF( ICEIL( LIHI, NB ) .NE. ICEIL( LIHI+1, NB ) .OR.
     $                 IWORK( ILSEL+K-1 ).EQ.WINEIG ) THEN
                     IWORK( ILIHI+K-1 ) = IWORK( ILIHI+K-1 ) - 1
                     IF( IWORK( ILSEL+K-1 ).GT.2 )
     $                  IWORK( ILSEL+K-1 ) = IWORK( ILSEL+K-1 ) - 1
                  ELSE
                     IWORK( ILIHI+K-1 ) = IWORK( ILIHI+K-1 ) + 1
                     IF( SELECT(LIHI+1).NE.0 )
     $                  IWORK( ILSEL+K-1 ) = IWORK( ILSEL+K-1 ) + 1
                  END IF
               END IF
            END IF
 80      CONTINUE
*
*        Fix the special cases of LSEL = 0 and LILO = LIHI for each
*        window by assuring that the stop-condition for local reordering
*        is fulfilled directly. Do this by setting LIHI = startposition
*        for the corresponding block and LILO = LIHI + 1.
*
         DO 85 K = 1, NMWIN2
            LILO = IWORK( ILILO + K - 1 )
            LIHI = IWORK( ILIHI + K - 1 )
            LSEL = IWORK( ILSEL + K - 1 )
            IF( LSEL.EQ.0 .OR. LILO.EQ.LIHI ) THEN
               LIHI = IWORK( ILIHI + K - 1 )
               IWORK( ILIHI + K - 1 ) = (ICEIL(LIHI,NB)-1)*NB + 1
               IWORK( ILILO + K - 1 ) = IWORK( ILIHI + K - 1 ) + 1
            END IF
 85      CONTINUE
*
*        Associate all processors with the first computational window
*        that should be activated, if possible.
*
         LILO = IHI
         LIHI = ILO
         LSEL = M
         FIRST = .TRUE.
         DO 95 WINDOW = 1, NMWIN2
            RSRC = IWORK(IRSRC+WINDOW-1)
            CSRC = IWORK(ICSRC+WINDOW-1)
            IF( MYROW.EQ.RSRC .OR. MYCOL.EQ.CSRC ) THEN
               TLILO = IWORK( ILILO + WINDOW - 1 )
               TLIHI = IWORK( ILIHI + WINDOW - 1 )
               TLSEL = IWORK( ILSEL + WINDOW - 1 )
               IF( (.NOT. ( LIHI .GE. LILO + LSEL ) ) .AND.
     $              ( (TLIHI .GE. TLILO + TLSEL) .OR. FIRST ) ) THEN
                  IF( FIRST ) FIRST = .FALSE.
                  LILO = TLILO
                  LIHI = TLIHI
                  LSEL = TLSEL
                  GO TO 97
               END IF
            END IF
 95      CONTINUE
 97      CONTINUE
*
*        Exclude all processors that are not involved in any
*        computational window right now.
*
         IERR = 0
         IF( LILO.EQ.IHI .AND. LIHI.EQ.ILO .AND. LSEL.EQ.M )
     $      GO TO 114
*
*        Make sure all processors associated with a compuational window
*        enter the local reordering the first time.
*
         FIRST = .TRUE.
*
*        Globally for all computational windows:
*        While ( LIHI >= LILO + LSEL ) do
         ROUND = 1
 130     CONTINUE
         IF( FIRST .OR. ( LIHI .GE. LILO + LSEL ) ) THEN
*
*           Perform computations in parallel: loop through all
*           compuational windows, do local reordering and accumulate
*           transformations, broadcast them in the corresponding block
*           row and columns and compute the corresponding updates.
*
            DO 110 WINDOW = 1, NMWIN2
               RSRC = IWORK(IRSRC+WINDOW-1)
               CSRC = IWORK(ICSRC+WINDOW-1)
*
*              The process on the block diagonal computes the
*              reordering.
*
               IF( MYROW.EQ.RSRC .AND. MYCOL.EQ.CSRC ) THEN
                  LILO = IWORK(ILILO+WINDOW-1)
                  LIHI = IWORK(ILIHI+WINDOW-1)
                  LSEL = IWORK(ILSEL+WINDOW-1)
*
*                 Compute the local value of I -- start position.
*
                  I = MAX( LILO, LIHI - WINSIZ + 1 )
*
*                 Fix my I to avoid that top of window cuts a 2-by-2
*                 block.
*
                  IF( I.GT.LILO ) THEN
                     CALL INFOG2L( I, I-1, DESCT, NPROW, NPCOL, MYROW,
     $                    MYCOL, ILOC, JLOC, RSRC, CSRC )
                     IF( T( LLDT*(JLOC-1) + ILOC ).NE.ZERO )
     $                  I = I + 1
                  END IF
*
*                 Compute local indicies for submatrix to operate on.
*
                  CALL INFOG2L( I, I, DESCT, NPROW, NPCOL,
     $                 MYROW, MYCOL, ILOC1, JLOC1, RSRC, CSRC )
*
*                 The active window is ( I:LIHI, I:LIHI ). Reorder
*                 eigenvalues within this window and pipeline
*                 transformations.
*
                  NWIN = LIHI - I + 1
                  KS = 0
                  PITRAF = IPIW
                  PDTRAF = IPW2
*
                  PAIR = .FALSE.
                  DO 140 K = I, LIHI
                     IF( PAIR ) THEN
                        PAIR = .FALSE.
                     ELSE
                        SWAP = SELECT( K ).NE.0
                        IF( K.LT.LIHI ) THEN
                           CALL INFOG2L( K+1, K, DESCT, NPROW, NPCOL,
     $                          MYROW, MYCOL, ILOC, JLOC, RSRC, CSRC )
                           IF( T( LLDT*(JLOC-1) + ILOC ).NE.ZERO )
     $                        PAIR = .TRUE.
                        END IF
                        IF( SWAP ) THEN
                           KS = KS + 1
*
*                       Swap the K-th block to position I+KS-1.
*
                           IERR = 0
                           KK  = K - I + 1
                           KKS = KS
                           IF( KK.NE.KS ) THEN
                              NITRAF = LIWORK - PITRAF + 1
                              NDTRAF = LWORK - PDTRAF + 1
                              CALL BSTREXC( NWIN,
     $                             T(LLDT*(JLOC1-1) + ILOC1), LLDT, KK,
     $                             KKS, NITRAF, IWORK( PITRAF ), NDTRAF,
     $                             WORK( PDTRAF ), WORK(IPW1), IERR )
                              PITRAF = PITRAF + NITRAF
                              PDTRAF = PDTRAF + NDTRAF
*
*                             Update array SELECT.
*
                              IF ( PAIR ) THEN
                                 DO 150 J = I+KK-1, I+KKS, -1
                                    SELECT(J+1) = SELECT(J-1)
 150                             CONTINUE
                                 SELECT(I+KKS-1) = 1
                                 SELECT(I+KKS) = 1
                              ELSE
                                 DO 160 J = I+KK-1, I+KKS, -1
                                    SELECT(J) = SELECT(J-1)
 160                             CONTINUE
                                 SELECT(I+KKS-1) = 1
                              END IF
*
                              IF ( IERR.EQ.1 .OR. IERR.EQ.2 ) THEN
*
*                                Some blocks are too close to swap:
*                                prepare to leave in a clean fashion. If
*                                IERR.EQ.2, we must update SELECT to
*                                account for the fact that the 2 by 2
*                                block to be reordered did split and the
*                                first part of this block is already
*                                reordered.
*
                                 IF ( IERR.EQ.2 ) THEN
                                    SELECT( I+KKS-3 ) = 1
                                    SELECT( I+KKS-1 ) = 0
                                    KKS = KKS + 1
                                 END IF
*
*                                Update off-diagonal blocks immediately.
*
                                 GO TO 170
                              END IF
                              KS = KKS
                           END IF
                           IF( PAIR )
     $                        KS = KS + 1
                        END IF
                     END IF
 140              CONTINUE
               END IF
 110        CONTINUE
 170        CONTINUE
*
*           The on-diagonal processes save their information from the
*           local reordering in the integer buffer. This buffer is
*           broadcasted to updating processors, see below.
*
            DO 175 WINDOW = 1, NMWIN2
               RSRC = IWORK(IRSRC+WINDOW-1)
               CSRC = IWORK(ICSRC+WINDOW-1)
               IF( MYROW.EQ.RSRC .AND. MYCOL.EQ.CSRC ) THEN
                  IBUFF( 1 ) = I
                  IBUFF( 2 ) = NWIN
                  IBUFF( 3 ) = PITRAF
                  IBUFF( 4 ) = KS
                  IBUFF( 5 ) = PDTRAF
                  IBUFF( 6 ) = NDTRAF
                  ILEN = PITRAF - IPIW
                  DLEN = PDTRAF - IPW2
                  IBUFF( 7 ) = ILEN
                  IBUFF( 8 ) = DLEN
               END IF
 175        CONTINUE
*
*           For the updates with respect to the local reordering, we
*           organize the updates in two phases where the update
*           "direction" (controlled by the DIR variable below) is first
*           chosen to be the corresponding rows, then the corresponding
*           columns.
*
            DO 1111 DIR = 1, 2
*
*           Broadcast information about the reordering and the
*           accumulated transformations: I, NWIN, PITRAF, NITRAF,
*           PDTRAF, NDTRAF. If no broadcast is performed, use an
*           artificial value of KS to prevent updating indicies for
*           windows already finished (use KS = -1).
*
            DO 111 WINDOW = 1, NMWIN2
               RSRC = IWORK(IRSRC+WINDOW-1)
               CSRC = IWORK(ICSRC+WINDOW-1)
               IF( MYROW.EQ.RSRC .OR. MYCOL.EQ.CSRC ) THEN
                  LILO = IWORK(ILILO+WINDOW-1)
                  LIHI = IWORK(ILIHI+WINDOW-1)
                  LSEL = IWORK(ILSEL+WINDOW-1)
               END IF
               IF( MYROW.EQ.RSRC .AND. MYCOL.EQ.CSRC ) THEN
                  IF( NPCOL.GT.1 .AND. DIR.EQ.1 )
     $               CALL IGEBS2D( ICTXT, 'Row', TOP, 8, 1, IBUFF, 8 )
                  IF( NPROW.GT.1 .AND. DIR.EQ.2 )
     $                 CALL IGEBS2D( ICTXT, 'Col', TOP, 8, 1, IBUFF, 8 )
               ELSEIF( MYROW.EQ.RSRC .OR. MYCOL.EQ.CSRC ) THEN
                  IF( NPCOL.GT.1 .AND. DIR.EQ.1 .AND. MYROW.EQ.RSRC )
     $                 THEN
                     IF( FIRST .OR. (LIHI .GE. LILO + LSEL) ) THEN
                        CALL IGEBR2D( ICTXT, 'Row', TOP, 8, 1, IBUFF, 8,
     $                       RSRC, CSRC )
                        I = IBUFF( 1 )
                        NWIN = IBUFF( 2 )
                        PITRAF = IBUFF( 3 )
                        KS = IBUFF( 4 )
                        PDTRAF = IBUFF( 5 )
                        NDTRAF = IBUFF( 6 )
                        ILEN = IBUFF( 7 )
                        DLEN = IBUFF( 8 )
                     ELSE
                        ILEN = 0
                        DLEN = 0
                        KS = -1
                     END IF
                  END IF
                  IF( NPROW.GT.1 .AND. DIR.EQ.2 .AND. MYCOL.EQ.CSRC )
     $                 THEN
                     IF( FIRST .OR. (LIHI .GE. LILO + LSEL) ) THEN
                        CALL IGEBR2D( ICTXT, 'Col', TOP, 8, 1, IBUFF, 8,
     $                       RSRC, CSRC )
                        I = IBUFF( 1 )
                        NWIN = IBUFF( 2 )
                        PITRAF = IBUFF( 3 )
                        KS = IBUFF( 4 )
                        PDTRAF = IBUFF( 5 )
                        NDTRAF = IBUFF( 6 )
                        ILEN = IBUFF( 7 )
                        DLEN = IBUFF( 8 )
                     ELSE
                        ILEN = 0
                        DLEN = 0
                        KS = -1
                     END IF
                  END IF
               END IF
*
*              Broadcast the accumulated transformations - copy all
*              information from IWORK(IPIW:PITRAF-1) and
*              WORK(IPW2:PDTRAF-1) to a buffer and broadcast this
*              buffer in the corresponding block row and column.  On
*              arrival, copy the information back to the correct part of
*              the workspace. This step is avoided if no computations
*              were performed at the diagonal processor, i.e.,
*              BUFFLEN = 0.
*
               IF( MYROW.EQ.RSRC .AND. MYCOL.EQ.CSRC ) THEN
                  BUFFER = PDTRAF
                  BUFFLEN = DLEN + ILEN
                  IF( BUFFLEN.NE.0 ) THEN
                     DO 180 INDX = 1, ILEN
                        WORK( BUFFER+INDX-1 ) =
     $                       FLOAT( IWORK(IPIW+INDX-1) )
 180                 CONTINUE
                     CALL SLAMOV( 'All', DLEN, 1, WORK( IPW2 ),
     $                    DLEN, WORK(BUFFER+ILEN), DLEN )
                     IF( NPCOL.GT.1 .AND. DIR.EQ.1 ) THEN
                        CALL SGEBS2D( ICTXT, 'Row', TOP, BUFFLEN, 1,
     $                       WORK(BUFFER), BUFFLEN )
                     END IF
                     IF( NPROW.GT.1 .AND. DIR.EQ.2 ) THEN
                        CALL SGEBS2D( ICTXT, 'Col', TOP, BUFFLEN, 1,
     $                       WORK(BUFFER), BUFFLEN )
                     END IF
                  END IF
               ELSEIF( MYROW.EQ.RSRC .OR. MYCOL.EQ.CSRC ) THEN
                  IF( NPCOL.GT.1 .AND. DIR.EQ.1 .AND. MYROW.EQ.RSRC )
     $                 THEN
                     BUFFER = PDTRAF
                     BUFFLEN = DLEN + ILEN
                     IF( BUFFLEN.NE.0 ) THEN
                        CALL SGEBR2D( ICTXT, 'Row', TOP, BUFFLEN, 1,
     $                       WORK(BUFFER), BUFFLEN, RSRC, CSRC )
                     END IF
                  END IF
                  IF( NPROW.GT.1 .AND. DIR.EQ.2 .AND. MYCOL.EQ.CSRC )
     $                 THEN
                     BUFFER = PDTRAF
                     BUFFLEN = DLEN + ILEN
                     IF( BUFFLEN.NE.0 ) THEN
                        CALL SGEBR2D( ICTXT, 'Col', TOP, BUFFLEN, 1,
     $                       WORK(BUFFER), BUFFLEN, RSRC, CSRC )
                     END IF
                  END IF
                  IF((NPCOL.GT.1.AND.DIR.EQ.1.AND.MYROW.EQ.RSRC).OR.
     $                 (NPROW.GT.1.AND.DIR.EQ.2.AND.MYCOL.EQ.CSRC ) )
     $                 THEN
                     IF( BUFFLEN.NE.0 ) THEN
                        DO 190 INDX = 1, ILEN
                           IWORK(IPIW+INDX-1) =
     $                          INT(WORK( BUFFER+INDX-1 ))
 190                    CONTINUE
                        CALL SLAMOV( 'All', DLEN, 1,
     $                       WORK( BUFFER+ILEN ), DLEN,
     $                       WORK( IPW2 ), DLEN )
                     END IF
                  END IF
               END IF
 111        CONTINUE
*
*           Now really perform the updates by applying the orthogonal
*           transformations to the out-of-window parts of T and Q. This
*           step is avoided if no reordering was performed by the on-
*           diagonal processor from the beginning, i.e., BUFFLEN = 0.
*
*           Count number of operations to decide whether to use
*           matrix-matrix multiplications for updating off-diagonal
*           parts or not.
*
            DO 112 WINDOW = 1, NMWIN2
               RSRC = IWORK(IRSRC+WINDOW-1)
               CSRC = IWORK(ICSRC+WINDOW-1)
*
               IF( (MYROW.EQ.RSRC .AND. DIR.EQ.1 ).OR.
     $              (MYCOL.EQ.CSRC .AND. DIR.EQ.2 ) ) THEN
                  LILO = IWORK(ILILO+WINDOW-1)
                  LIHI = IWORK(ILIHI+WINDOW-1)
                  LSEL = IWORK(ILSEL+WINDOW-1)
*
*                 Skip update part for current WINDOW if BUFFLEN = 0.
*
                  IF( BUFFLEN.EQ.0 ) GO TO 295
*
                  NITRAF = PITRAF - IPIW
                  ISHH = .FALSE.
                  FLOPS = 0
                  DO 200 K = 1, NITRAF
                     IF( IWORK( IPIW + K - 1 ).LE.NWIN ) THEN
                        FLOPS = FLOPS + 6
                     ELSE
                        FLOPS = FLOPS + 11
                        ISHH = .TRUE.
                     END IF
 200              CONTINUE
*
*                 Compute amount of work space necessary for performing
*                 matrix-matrix multiplications.
*
                  PDW = BUFFER
                  IPW3 = PDW + NWIN*NWIN
               ELSE
                  FLOPS = 0
               END IF
*
               IF( FLOPS.NE.0 .AND.
     $              ( FLOPS*100 ) / ( 2*NWIN*NWIN ) .GE. MMULT ) THEN
*
*                 Update off-diagonal blocks and Q using matrix-matrix
*                 multiplications; if there are no Householder
*                 reflectors it is preferable to take the triangular
*                 block structure of the transformation matrix into
*                 account.
*
                  CALL SLASET( 'All', NWIN, NWIN, ZERO, ONE,
     $                 WORK( PDW ), NWIN )
                  CALL BSLAAPP( 1, NWIN, NWIN, NCB, WORK( PDW ), NWIN,
     $                 NITRAF, IWORK(IPIW), WORK( IPW2 ), WORK(IPW3) )
*
                  IF( ISHH ) THEN
*
*                    Loop through the local blocks of the distributed
*                    matrices T and Q and update them according to the
*                    performed reordering.
*
*                    Update the columns of T and Q affected by the
*                    reordering.
*
                     IF( DIR.EQ.2 ) THEN
                        DO 210 INDX = 1, I-1, NB
                           CALL INFOG2L( INDX, I, DESCT, NPROW, NPCOL,
     $                          MYROW, MYCOL, ILOC, JLOC, RSRC1, CSRC1 )
                           IF( MYROW.EQ.RSRC1 .AND. MYCOL.EQ.CSRC1 )
     $                          THEN
                              LROWS = MIN(NB,I-INDX)
                              CALL SGEMM( 'No transpose',
     $                             'No transpose', LROWS, NWIN, NWIN,
     $                             ONE, T((JLOC-1)*LLDT+ILOC), LLDT,
     $                             WORK( PDW ), NWIN, ZERO,
     $                             WORK(IPW3), LROWS )
                              CALL SLAMOV( 'All', LROWS, NWIN,
     $                             WORK(IPW3), LROWS,
     $                             T((JLOC-1)*LLDT+ILOC), LLDT )
                           END IF
 210                    CONTINUE
                        IF( WANTQ ) THEN
                           DO 220 INDX = 1, N, NB
                              CALL INFOG2L( INDX, I, DESCQ, NPROW,
     $                             NPCOL, MYROW, MYCOL, ILOC, JLOC,
     $                             RSRC1, CSRC1 )
                              IF( MYROW.EQ.RSRC1.AND.MYCOL.EQ.CSRC1 )
     $                             THEN
                                 LROWS = MIN(NB,N-INDX+1)
                                 CALL SGEMM( 'No transpose',
     $                                'No transpose', LROWS, NWIN, NWIN,
     $                                ONE, Q((JLOC-1)*LLDQ+ILOC), LLDQ,
     $                                WORK( PDW ), NWIN, ZERO,
     $                                WORK(IPW3), LROWS )
                                 CALL SLAMOV( 'All', LROWS, NWIN,
     $                                WORK(IPW3), LROWS,
     $                                Q((JLOC-1)*LLDQ+ILOC), LLDQ )
                              END IF
 220                       CONTINUE
                        END IF
                     END IF
*
*                    Update the rows of T affected by the reordering
*
                     IF( DIR.EQ.1 ) THEN
                        IF( LIHI.LT.N ) THEN
                           IF( MOD(LIHI,NB).GT.0 ) THEN
                              INDX = LIHI + 1
                              CALL INFOG2L( I, INDX, DESCT, NPROW,
     $                            NPCOL, MYROW, MYCOL, ILOC, JLOC,
     $                            RSRC1, CSRC1 )
                              IF( MYROW.EQ.RSRC1.AND.MYCOL.EQ.CSRC1 )
     $                             THEN
                                 LCOLS = MOD( MIN( NB-MOD(LIHI,NB),
     $                                N-LIHI ), NB )
                                 CALL SGEMM( 'Transpose',
     $                                'No Transpose', NWIN, LCOLS, NWIN,
     $                                ONE, WORK( PDW ), NWIN,
     $                                T((JLOC-1)*LLDT+ILOC), LLDT, ZERO,
     $                                WORK(IPW3), NWIN )
                                 CALL SLAMOV( 'All', NWIN, LCOLS,
     $                                WORK(IPW3), NWIN,
     $                                T((JLOC-1)*LLDT+ILOC), LLDT )
                              END IF
                           END IF
                           INDXS = ICEIL(LIHI,NB)*NB + 1
                           DO 230 INDX = INDXS, N, NB
                              CALL INFOG2L( I, INDX, DESCT, NPROW,
     $                             NPCOL, MYROW, MYCOL, ILOC, JLOC,
     $                             RSRC1, CSRC1 )
                              IF( MYROW.EQ.RSRC1.AND.MYCOL.EQ.CSRC1 )
     $                             THEN
                                 LCOLS = MIN( NB, N-INDX+1 )
                                 CALL SGEMM( 'Transpose',
     $                                'No Transpose', NWIN, LCOLS, NWIN,
     $                                ONE, WORK( PDW ), NWIN,
     $                                T((JLOC-1)*LLDT+ILOC), LLDT, ZERO,
     $                                WORK(IPW3), NWIN )
                                 CALL SLAMOV( 'All', NWIN, LCOLS,
     $                                WORK(IPW3), NWIN,
     $                                T((JLOC-1)*LLDT+ILOC), LLDT )
                              END IF
 230                       CONTINUE
                        END IF
                     END IF
                  ELSE
*
*                    The NWIN-by-NWIN matrix U containing the
*                    accumulated orthogonal transformations has the
*                    following structure:
*
*                                  [ U11  U12 ]
*                              U = [          ],
*                                  [ U21  U22 ]
*
*                    where U21 is KS-by-KS upper triangular and U12 is
*                    (NWIN-KS)-by-(NWIN-KS) lower triangular.
*
*                    Update the columns of T and Q affected by the
*                    reordering.
*
*                    Compute T2*U21 + T1*U11 in workspace.
*
                     IF( DIR.EQ.2 ) THEN
                        DO 240 INDX = 1, I-1, NB
                           CALL INFOG2L( INDX, I, DESCT, NPROW, NPCOL,
     $                          MYROW, MYCOL, ILOC, JLOC, RSRC1, CSRC1 )
                           IF( MYROW.EQ.RSRC1 .AND. MYCOL.EQ.CSRC1 )
     $                          THEN
                              JLOC1 = INDXG2L( I+NWIN-KS, NB, MYCOL,
     $                             DESCT( CSRC_ ), NPCOL )
                              LROWS = MIN(NB,I-INDX)
                              CALL SLAMOV( 'All', LROWS, KS,
     $                             T((JLOC1-1)*LLDT+ILOC ), LLDT,
     $                             WORK(IPW3), LROWS )
                              CALL STRMM( 'Right', 'Upper',
     $                              'No transpose',
     $                             'Non-unit', LROWS, KS, ONE,
     $                             WORK( PDW+NWIN-KS ), NWIN,
     $                             WORK(IPW3), LROWS )
                              CALL SGEMM( 'No transpose',
     $                             'No transpose', LROWS, KS, NWIN-KS,
     $                             ONE, T((JLOC-1)*LLDT+ILOC), LLDT,
     $                             WORK( PDW ), NWIN, ONE, WORK(IPW3),
     $                             LROWS )
*
*                             Compute T1*U12 + T2*U22 in workspace.
*
                              CALL SLAMOV( 'All', LROWS, NWIN-KS,
     $                             T((JLOC-1)*LLDT+ILOC), LLDT,
     $                             WORK( IPW3+KS*LROWS ), LROWS )
                              CALL STRMM( 'Right', 'Lower',
     $                             'No transpose', 'Non-unit',
     $                             LROWS, NWIN-KS, ONE,
     $                             WORK( PDW+NWIN*KS ), NWIN,
     $                             WORK( IPW3+KS*LROWS ), LROWS )
                              CALL SGEMM( 'No transpose',
     $                             'No transpose', LROWS, NWIN-KS, KS,
     $                             ONE, T((JLOC1-1)*LLDT+ILOC), LLDT,
     $                             WORK( PDW+NWIN*KS+NWIN-KS ), NWIN,
     $                             ONE, WORK( IPW3+KS*LROWS ), LROWS )
*
*                             Copy workspace to T.
*
                              CALL SLAMOV( 'All', LROWS, NWIN,
     $                             WORK(IPW3), LROWS,
     $                             T((JLOC-1)*LLDT+ILOC), LLDT )
                           END IF
 240                    CONTINUE
                        IF( WANTQ ) THEN
*
*                          Compute Q2*U21 + Q1*U11 in workspace.
*
                           DO 250 INDX = 1, N, NB
                              CALL INFOG2L( INDX, I, DESCQ, NPROW,
     $                             NPCOL, MYROW, MYCOL, ILOC, JLOC,
     $                             RSRC1, CSRC1 )
                              IF( MYROW.EQ.RSRC1.AND.MYCOL.EQ.CSRC1 )
     $                             THEN
                                 JLOC1 = INDXG2L( I+NWIN-KS, NB,
     $                                MYCOL, DESCQ( CSRC_ ), NPCOL )
                                 LROWS = MIN(NB,N-INDX+1)
                                 CALL SLAMOV( 'All', LROWS, KS,
     $                                Q((JLOC1-1)*LLDQ+ILOC ), LLDQ,
     $                                WORK(IPW3), LROWS )
                                 CALL STRMM( 'Right', 'Upper',
     $                                'No transpose', 'Non-unit',
     $                                LROWS, KS, ONE,
     $                                WORK( PDW+NWIN-KS ), NWIN,
     $                                WORK(IPW3), LROWS )
                                 CALL SGEMM( 'No transpose',
     $                                'No transpose', LROWS, KS,
     $                                NWIN-KS, ONE,
     $                                Q((JLOC-1)*LLDQ+ILOC), LLDQ,
     $                                WORK( PDW ), NWIN, ONE,
     $                                WORK(IPW3), LROWS )
*
*                                Compute Q1*U12 + Q2*U22 in workspace.
*
                                 CALL SLAMOV( 'All', LROWS, NWIN-KS,
     $                                Q((JLOC-1)*LLDQ+ILOC), LLDQ,
     $                                WORK( IPW3+KS*LROWS ), LROWS)
                                 CALL STRMM( 'Right', 'Lower',
     $                                'No transpose', 'Non-unit',
     $                                LROWS, NWIN-KS, ONE,
     $                                WORK( PDW+NWIN*KS ), NWIN,
     $                                WORK( IPW3+KS*LROWS ), LROWS)
                                 CALL SGEMM( 'No transpose',
     $                                'No transpose', LROWS, NWIN-KS,
     $                                KS, ONE, Q((JLOC1-1)*LLDQ+ILOC),
     $                                LLDQ, WORK(PDW+NWIN*KS+NWIN-KS),
     $                                NWIN, ONE, WORK( IPW3+KS*LROWS ),
     $                                LROWS )
*
*                                Copy workspace to Q.
*
                                 CALL SLAMOV( 'All', LROWS, NWIN,
     $                                WORK(IPW3), LROWS,
     $                                Q((JLOC-1)*LLDQ+ILOC), LLDQ )
                              END IF
 250                       CONTINUE
                        END IF
                     END IF
*
                     IF( DIR.EQ.1 ) THEN
                        IF ( LIHI.LT.N ) THEN
*
*                          Compute U21**T*T2 + U11**T*T1 in workspace.
*
                           IF( MOD(LIHI,NB).GT.0 ) THEN
                              INDX = LIHI + 1
                              CALL INFOG2L( I, INDX, DESCT, NPROW,
     $                             NPCOL, MYROW, MYCOL, ILOC, JLOC,
     $                             RSRC1, CSRC1 )
                              IF( MYROW.EQ.RSRC1.AND.MYCOL.EQ.CSRC1 )
     $                             THEN
                                 ILOC1 = INDXG2L( I+NWIN-KS, NB, MYROW,
     $                                DESCT( RSRC_ ), NPROW )
                                 LCOLS = MOD( MIN( NB-MOD(LIHI,NB),
     $                                N-LIHI ), NB )
                                 CALL SLAMOV( 'All', KS, LCOLS,
     $                                T((JLOC-1)*LLDT+ILOC1), LLDT,
     $                                WORK(IPW3), NWIN )
                                 CALL STRMM( 'Left', 'Upper',
     $                                'Transpose', 'Non-unit', KS,
     $                                LCOLS, ONE, WORK( PDW+NWIN-KS ),
     $                                NWIN, WORK(IPW3), NWIN )
                                 CALL SGEMM( 'Transpose',
     $                                'No transpose', KS, LCOLS,
     $                                NWIN-KS, ONE, WORK(PDW), NWIN,
     $                                T((JLOC-1)*LLDT+ILOC), LLDT, ONE,
     $                                WORK(IPW3), NWIN )
*
*                                Compute U12**T*T1 + U22**T*T2 in
*                                workspace.
*
                                 CALL SLAMOV( 'All', NWIN-KS, LCOLS,
     $                                T((JLOC-1)*LLDT+ILOC), LLDT,
     $                                WORK( IPW3+KS ), NWIN )
                                 CALL STRMM( 'Left', 'Lower',
     $                                'Transpose', 'Non-unit',
     $                                NWIN-KS, LCOLS, ONE,
     $                                WORK( PDW+NWIN*KS ), NWIN,
     $                                WORK( IPW3+KS ), NWIN )
                                 CALL SGEMM( 'Transpose',
     $                                'No Transpose', NWIN-KS, LCOLS,
     $                                KS, ONE,
     $                                WORK( PDW+NWIN*KS+NWIN-KS ),
     $                                NWIN, T((JLOC-1)*LLDT+ILOC1),
     $                                LLDT, ONE, WORK( IPW3+KS ),
     $                                NWIN )
*
*                                Copy workspace to T.
*
                                 CALL SLAMOV( 'All', NWIN, LCOLS,
     $                                WORK(IPW3), NWIN,
     $                                T((JLOC-1)*LLDT+ILOC), LLDT )
                              END IF
                           END IF
                           INDXS = ICEIL(LIHI,NB)*NB + 1
                           DO 260 INDX = INDXS, N, NB
                              CALL INFOG2L( I, INDX, DESCT, NPROW,
     $                             NPCOL, MYROW, MYCOL, ILOC, JLOC,
     $                             RSRC1, CSRC1 )
                              IF( MYROW.EQ.RSRC1.AND.MYCOL.EQ.CSRC1 )
     $                             THEN
*
*                                Compute U21**T*T2 + U11**T*T1 in
*                                workspace.
*
                                 ILOC1 = INDXG2L( I+NWIN-KS, NB,
     $                                MYROW, DESCT( RSRC_ ), NPROW )
                                 LCOLS = MIN( NB, N-INDX+1 )
                                 CALL SLAMOV( 'All', KS, LCOLS,
     $                                T((JLOC-1)*LLDT+ILOC1), LLDT,
     $                                WORK(IPW3), NWIN )
                                 CALL STRMM( 'Left', 'Upper',
     $                                'Transpose', 'Non-unit', KS,
     $                                LCOLS, ONE,
     $                                WORK( PDW+NWIN-KS ), NWIN,
     $                                WORK(IPW3), NWIN )
                                 CALL SGEMM( 'Transpose',
     $                                'No transpose', KS, LCOLS,
     $                                NWIN-KS, ONE, WORK(PDW), NWIN,
     $                                T((JLOC-1)*LLDT+ILOC), LLDT, ONE,
     $                                WORK(IPW3), NWIN )
*
*                                Compute U12**T*T1 + U22**T*T2 in
*                                workspace.
*
                                 CALL SLAMOV( 'All', NWIN-KS, LCOLS,
     $                                T((JLOC-1)*LLDT+ILOC), LLDT,
     $                                WORK( IPW3+KS ), NWIN )
                                 CALL STRMM( 'Left', 'Lower',
     $                                'Transpose', 'Non-unit',
     $                                NWIN-KS, LCOLS, ONE,
     $                                WORK( PDW+NWIN*KS ), NWIN,
     $                                WORK( IPW3+KS ), NWIN )
                                 CALL SGEMM( 'Transpose',
     $                                'No Transpose', NWIN-KS, LCOLS,
     $                                KS, ONE,
     $                                WORK( PDW+NWIN*KS+NWIN-KS ),
     $                                NWIN, T((JLOC-1)*LLDT+ILOC1),
     $                                LLDT, ONE, WORK(IPW3+KS), NWIN )
*
*                                Copy workspace to T.
*
                                 CALL SLAMOV( 'All', NWIN, LCOLS,
     $                                WORK(IPW3), NWIN,
     $                                T((JLOC-1)*LLDT+ILOC), LLDT )
                              END IF
 260                       CONTINUE
                        END IF
                     END IF
                  END IF
               ELSEIF( FLOPS.NE.0 ) THEN
*
*                 Update off-diagonal blocks and Q using the pipelined
*                 elementary transformations.
*
                  IF( DIR.EQ.2 ) THEN
                     DO 270 INDX = 1, I-1, NB
                        CALL INFOG2L( INDX, I, DESCT, NPROW, NPCOL,
     $                       MYROW, MYCOL, ILOC, JLOC, RSRC1, CSRC1 )
                        IF( MYROW.EQ.RSRC1 .AND. MYCOL.EQ.CSRC1 ) THEN
                           LROWS = MIN(NB,I-INDX)
                           CALL BSLAAPP( 1, LROWS, NWIN, NCB,
     $                          T((JLOC-1)*LLDT+ILOC ), LLDT, NITRAF,
     $                          IWORK(IPIW), WORK( IPW2 ),
     $                          WORK(IPW3) )
                        END IF
 270                 CONTINUE
                     IF( WANTQ ) THEN
                        DO 280 INDX = 1, N, NB
                           CALL INFOG2L( INDX, I, DESCQ, NPROW, NPCOL,
     $                          MYROW, MYCOL, ILOC, JLOC, RSRC1, CSRC1 )
                           IF( MYROW.EQ.RSRC1 .AND. MYCOL.EQ.CSRC1 )
     $                          THEN
                              LROWS = MIN(NB,N-INDX+1)
                              CALL BSLAAPP( 1, LROWS, NWIN, NCB,
     $                             Q((JLOC-1)*LLDQ+ILOC), LLDQ, NITRAF,
     $                             IWORK(IPIW), WORK( IPW2 ),
     $                             WORK(IPW3) )
                           END IF
 280                    CONTINUE
                     END IF
                  END IF
                  IF( DIR.EQ.1 ) THEN
                     IF( LIHI.LT.N ) THEN
                        IF( MOD(LIHI,NB).GT.0 ) THEN
                           INDX = LIHI + 1
                           CALL INFOG2L( I, INDX, DESCT, NPROW, NPCOL,
     $                          MYROW, MYCOL, ILOC, JLOC, RSRC1, CSRC1 )
                           IF( MYROW.EQ.RSRC1 .AND. MYCOL.EQ.CSRC1 )
     $                          THEN
                              LCOLS = MOD( MIN( NB-MOD(LIHI,NB),
     $                             N-LIHI ), NB )
                              CALL BSLAAPP( 0, NWIN, LCOLS, NCB,
     $                             T((JLOC-1)*LLDT+ILOC), LLDT, NITRAF,
     $                             IWORK(IPIW), WORK( IPW2 ),
     $                             WORK(IPW3) )
                           END IF
                        END IF
                        INDXS = ICEIL(LIHI,NB)*NB + 1
                        DO 290 INDX = INDXS, N, NB
                           CALL INFOG2L( I, INDX, DESCT, NPROW, NPCOL,
     $                          MYROW, MYCOL, ILOC, JLOC, RSRC1, CSRC1 )
                           IF( MYROW.EQ.RSRC1 .AND. MYCOL.EQ.CSRC1 )
     $                          THEN
                              LCOLS = MIN( NB, N-INDX+1 )
                              CALL BSLAAPP( 0, NWIN, LCOLS, NCB,
     $                             T((JLOC-1)*LLDT+ILOC), LLDT, NITRAF,
     $                             IWORK(IPIW), WORK( IPW2 ),
     $                             WORK(IPW3) )
                           END IF
 290                    CONTINUE
                     END IF
                  END IF
               END IF
*
*              If I was not involved in the updates for the current
*              window or the window was fully processed, I go here and
*              try again for the next window.
*
 295           CONTINUE
*
*              Update LIHI and LIHI depending on the number of
*              eigenvalues really moved - for on-diagonal processes we
*              do this update only once since each on-diagonal process
*              is only involved with one window at one time. The
*              indicies are updated in three cases:
*                1) When some reordering was really performed
*                   -- indicated by BUFFLEN > 0.
*                2) When no selected eigenvalues was found in the
*                   current window -- indicated by KS = 0.
*                3) When some selected eigenvalues was found in the
*                   current window but no one of them was moved
*                   (KS > 0 and BUFFLEN = 0)
*              False index updating is avoided by sometimes setting
*              KS = -1. This will affect processors involved in more
*              than one window and where the first one ends up with
*              KS = 0 and for the second one is done already.
*
               IF( MYROW.EQ.RSRC.AND.MYCOL.EQ.CSRC ) THEN
                  IF( DIR.EQ.2 ) THEN
                     IF( BUFFLEN.NE.0 .OR. KS.EQ.0 .OR.
     $                    ( BUFFLEN.EQ.0 .AND. KS.GT.0 ) )
     $                  LIHI = I + KS - 1
                     IWORK( ILIHI+WINDOW-1 ) = LIHI
                     IF( .NOT. LIHI.GE.LILO+LSEL ) THEN
                        LILO = LILO + LSEL
                        IWORK( ILILO+WINDOW-1 ) = LILO
                     END IF
                  END IF
               ELSEIF( MYROW.EQ.RSRC .AND. DIR.EQ.1 ) THEN
                  IF( BUFFLEN.NE.0 .OR. KS.EQ.0 .OR.
     $                 ( BUFFLEN.EQ.0 .AND. KS.GT.0 ) )
     $               LIHI = I + KS - 1
                  IWORK( ILIHI+WINDOW-1 ) = LIHI
                  IF( .NOT. LIHI.GE.LILO+LSEL ) THEN
                     LILO = LILO + LSEL
                     IWORK( ILILO+WINDOW-1 ) = LILO
                  END IF
               ELSEIF( MYCOL.EQ.CSRC .AND. DIR.EQ.2 ) THEN
                  IF( BUFFLEN.NE.0 .OR. KS.EQ.0 .OR.
     $                 ( BUFFLEN.EQ.0 .AND. KS.GT.0 ) )
     $               LIHI = I + KS - 1
                  IWORK( ILIHI+WINDOW-1 ) = LIHI
                  IF( .NOT. LIHI.GE.LILO+LSEL ) THEN
                     LILO = LILO + LSEL
                     IWORK( ILILO+WINDOW-1 ) = LILO
                  END IF
               END IF
*
 112        CONTINUE
*
*           End of direction loop for updates with respect to local
*           reordering.
*
 1111       CONTINUE
*
*           Associate each process with one of the corresponding
*           computational windows such that the test for another round
*           of local reordering is carried out properly. Since the
*           column updates were computed after the row updates, it is
*           sufficient to test for changing the association to the
*           window in the corresponding process row.
*
            DO 113 WINDOW = 1, NMWIN2
               RSRC = IWORK( IRSRC + WINDOW - 1 )
               IF( MYROW.EQ.RSRC .AND. (.NOT. LIHI.GE.LILO+LSEL ) ) THEN
                  LILO = IWORK( ILILO + WINDOW - 1 )
                  LIHI = IWORK( ILIHI + WINDOW - 1 )
                  LSEL = IWORK( ILSEL + WINDOW - 1 )
               END IF
 113        CONTINUE
*
*           End While ( LIHI >= LILO + LSEL )
            ROUND = ROUND + 1
            IF( FIRST ) FIRST = .FALSE.
            GO TO 130
         END IF
*
*        All processors excluded from the local reordering go here.
*
 114     CONTINUE
*
*        Barrier to collect the processes before proceeding.
*
         CALL BLACS_BARRIER( ICTXT, 'All' )
*
*        Compute global maximum of IERR so that we know if some process
*        experienced a failure in the reordering.
*
         MYIERR = IERR
         IF( NPROCS.GT.1 )
     $      CALL IGAMX2D( ICTXT, 'All', TOP, 1, 1, IERR, 1, -1,
     $           -1, -1, -1, -1 )
*
         IF( IERR.NE.0 ) THEN
*
*           When calling BDTREXC, the block at position I+KKS-1 failed
*           to swap.
*
            IF( MYIERR.NE.0 ) INFO = MAX(1,I+KKS-1)
            IF( NPROCS.GT.1 )
     $         CALL IGAMX2D( ICTXT, 'All', TOP, 1, 1, INFO, 1, -1,
     $              -1, -1, -1, -1 )
            GO TO 300
         END IF
*
*        Now, for each compuational window, move the selected
*        eigenvalues across the process border. Do this by forming the
*        processors into groups of four working together to bring the
*        window over the border. The processes are numbered as follows
*
*                1 | 2
*                --+--
*                3 | 4
*
*        where '|' and '-' denotes the process (and block) borders.
*        This implies that the cluster to be reordered over the border
*        is held by process 4, process 1 will receive the cluster after
*        the reordering, process 3 holds the local (2,1)th element of a
*        2-by-2 diagonal block located on the block border and process 2
*        holds the closest off-diagonal part of the window that is
*        affected by the cross-border reordering.
*
*        The active window is now ( I : LIHI[4], I : LIHI[4] ), where
*        I = MAX( ILO, LIHI - 2*MOD(LIHI,NB) ). If this active window is
*        too large compared to the value of PARA( 6 ), it will be
*        truncated in both ends such that a maximum of PARA( 6 )
*        eigenvalues is reordered across the border this time.
*
*        The active window will be collected and built in workspace at
*        process 1 and 4, which both compute the reordering and return
*        the updated parts to the corresponding processes 2-3. Next, the
*        accumulated transformations are broadcasted for updates in the
*        block rows and column that corresponds to the process rows and
*        columns where process 1 and 4 reside.
*
*        The off-diagonal blocks are updated by the processes receiving
*        from the broadcasts of the orthogonal transformations. Since
*        the active window is split over the process borders, the
*        updates of T and Q requires that stripes of block rows of
*        columns are exchanged between neighboring processes in the
*        corresponding process rows and columns.
*
*        First, form each group of processors involved in the
*        crossborder reordering. Do this in two (or three) phases:
*        1) Reorder each odd window over the border.
*        2) Reorder each even window over the border.
*        3) Reorder the last odd window over the border, if it was not
*           processed in the first phase.
*
*        When reordering the odd windows over the border, we must make
*        sure that no process row or column is involved in both the
*        first and the last window at the same time. This happens when
*        the total number of windows is odd, greater than one and equal
*        to the minumum process mesh dimension. Therefore the last odd
*        window may be reordered over the border at last.
*
         LASTWAIT = NMWIN2.GT.1 .AND. MOD(NMWIN2,2).EQ.1 .AND.
     $        NMWIN2.EQ.MIN(NPROW,NPCOL)
*
         LAST = 0
 308     CONTINUE
         IF( LASTWAIT ) THEN
            IF( LAST.EQ.0 ) THEN
               WIN0S = 1
               WIN0E = 2
               WINE = NMWIN2 - 1
            ELSE
               WIN0S = NMWIN2
               WIN0E = NMWIN2
               WINE = NMWIN2
            END IF
         ELSE
            WIN0S = 1
            WIN0E = 2
            WINE = NMWIN2
         END IF
         DO 310 WINDOW0 = WIN0S, WIN0E
            DO 320 WINDOW = WINDOW0, WINE, 2
*
*              Define the process holding the down-right part of the
*              window.
*
               RSRC4 = IWORK(IRSRC+WINDOW-1)
               CSRC4 = IWORK(ICSRC+WINDOW-1)
*
*              Define the other processes in the group of four.
*
               RSRC3 = RSRC4
               CSRC3 = MOD( CSRC4 - 1 + NPCOL, NPCOL )
               RSRC2 = MOD( RSRC4 - 1 + NPROW, NPROW )
               CSRC2 = CSRC4
               RSRC1 = RSRC2
               CSRC1 = CSRC3
               IF( ( MYROW.EQ.RSRC1 .AND. MYCOL.EQ.CSRC1 ) .OR.
     $             ( MYROW.EQ.RSRC2 .AND. MYCOL.EQ.CSRC2 ) .OR.
     $             ( MYROW.EQ.RSRC3 .AND. MYCOL.EQ.CSRC3 ) .OR.
     $             ( MYROW.EQ.RSRC4 .AND. MYCOL.EQ.CSRC4 ) ) THEN
*
*                 Compute the correct active window - for reordering
*                 into a block that has not been active at all before,
*                 we try to reorder as many of our eigenvalues over the
*                 border as possible without knowing of the situation on
*                 the other side - this may cause very few eigenvalues
*                 to be reordered over the border this time (perhaps not
*                 any) but this should be an initial problem.  Anyway,
*                 the bottom-right position of the block will be at
*                 position LIHIC.
*
                  IF( MYROW.EQ.RSRC4 .AND. MYCOL.EQ.CSRC4 ) THEN
                     LIHI4 = ( IWORK( ILILO + WINDOW - 1 ) +
     $                    IWORK( ILIHI + WINDOW - 1 ) ) / 2
                     LIHIC = MIN(LIHI4,(ICEIL(LIHI4,NB)-1)*NB+WNEICR)
*
*                    Fix LIHIC to avoid that bottom of window cuts
*                    2-by-2 block and make sure all processors in the
*                    group knows about the correct value.
*
                     IF( (.NOT. LIHIC.LE.NB) .AND. LIHIC.LT.N ) THEN
                        ILOC = INDXG2L( LIHIC+1, NB, MYROW,
     $                       DESCT( RSRC_ ), NPROW )
                        JLOC = INDXG2L( LIHIC, NB, MYCOL,
     $                       DESCT( CSRC_ ), NPCOL )
                        IF( T( (JLOC-1)*LLDT+ILOC ).NE.ZERO ) THEN
                           IF( MOD( LIHIC, NB ).EQ.1 .OR.
     $                          ( MOD( LIHIC, NB ).EQ.2 .AND.
     $                          SELECT(LIHIC-2).EQ.0 ) )
     $                          THEN
                              LIHIC = LIHIC + 1
                           ELSE
                              LIHIC = LIHIC - 1
                           END IF
                        END IF
                     END IF
                     IF( RSRC4.NE.RSRC1 .OR. CSRC4.NE.CSRC1 )
     $                  CALL IGESD2D( ICTXT, 1, 1, LIHIC, 1, RSRC1,
     $                       CSRC1 )
                     IF( RSRC4.NE.RSRC2 .OR. CSRC4.NE.CSRC2 )
     $                  CALL IGESD2D( ICTXT, 1, 1, LIHIC, 1, RSRC2,
     $                       CSRC2 )
                     IF( RSRC4.NE.RSRC3 .OR. CSRC4.NE.CSRC3 )
     $                  CALL IGESD2D( ICTXT, 1, 1, LIHIC, 1, RSRC3,
     $                       CSRC3 )
                  END IF
                  IF( MYROW.EQ.RSRC1 .AND. MYCOL.EQ.CSRC1 ) THEN
                     IF( RSRC4.NE.RSRC1 .OR. CSRC4.NE.CSRC1 )
     $                  CALL IGERV2D( ICTXT, 1, 1, LIHIC, 1, RSRC4,
     $                       CSRC4 )
                  END IF
                  IF( MYROW.EQ.RSRC2 .AND. MYCOL.EQ.CSRC2 ) THEN
                     IF( RSRC4.NE.RSRC2 .OR. CSRC4.NE.CSRC2 )
     $                  CALL IGERV2D( ICTXT, 1, 1, LIHIC, 1, RSRC4,
     $                       CSRC4 )
                  END IF
                  IF( MYROW.EQ.RSRC3 .AND. MYCOL.EQ.CSRC3 ) THEN
                     IF( RSRC4.NE.RSRC3 .OR. CSRC4.NE.CSRC3 )
     $                  CALL IGERV2D( ICTXT, 1, 1, LIHIC, 1, RSRC4,
     $                       CSRC4 )
                  END IF
*
*                 Avoid going over the border with the first window if
*                 it resides in the block where the last global position
*                 T(ILO,ILO) is or ILO has been updated to point to a
*                 position right of T(LIHIC,LIHIC).
*
                  SKIP1CR = WINDOW.EQ.1 .AND.
     $                 ICEIL(LIHIC,NB).LE.ICEIL(ILO,NB)
*
*                 Decide I, where to put top of window, such that top of
*                 window does not cut 2-by-2 block. Make sure that we do
*                 not end up in a situation where a 2-by-2 block
*                 splitted on the border is left in its original place
*                 -- this can cause infinite loops.
*                 Remedy: make sure that the part of the window that
*                 resides left to the border is at least of dimension
*                 two (2) in case we have 2-by-2 blocks in top of the
*                 cross border window.
*
*                 Also make sure all processors in the group knows about
*                 the correct value of I. When skipping the crossborder
*                 reordering, just set I = LIHIC.
*
                  IF( .NOT. SKIP1CR ) THEN
                     IF( MYROW.EQ.RSRC1 .AND. MYCOL.EQ.CSRC1 ) THEN
                        IF( WINDOW.EQ.1 ) THEN
                           LIHI1 = ILO
                        ELSE
                           LIHI1 = IWORK( ILIHI + WINDOW - 2 )
                        END IF
                        I = MAX( LIHI1,
     $                       MIN( LIHIC-2*MOD(LIHIC,NB) + 1,
     $                       (ICEIL(LIHIC,NB)-1)*NB - 1  ) )
                        ILOC = INDXG2L( I, NB, MYROW, DESCT( RSRC_ ),
     $                       NPROW )
                        JLOC = INDXG2L( I-1, NB, MYCOL, DESCT( CSRC_ ),
     $                       NPCOL )
                        IF( T( (JLOC-1)*LLDT+ILOC ).NE.ZERO )
     $                     I = I - 1
                        IF( RSRC1.NE.RSRC4 .OR. CSRC1.NE.CSRC4 )
     $                     CALL IGESD2D( ICTXT, 1, 1, I, 1, RSRC4,
     $                          CSRC4 )
                        IF( RSRC1.NE.RSRC2 .OR. CSRC1.NE.CSRC2 )
     $                     CALL IGESD2D( ICTXT, 1, 1, I, 1, RSRC2,
     $                          CSRC2 )
                        IF( RSRC1.NE.RSRC3 .OR. CSRC1.NE.CSRC3 )
     $                     CALL IGESD2D( ICTXT, 1, 1, I, 1, RSRC3,
     $                          CSRC3 )
                     END IF
                     IF( MYROW.EQ.RSRC2 .AND. MYCOL.EQ.CSRC2 ) THEN
                        IF( RSRC1.NE.RSRC2 .OR. CSRC1.NE.CSRC2 )
     $                     CALL IGERV2D( ICTXT, 1, 1, I, 1, RSRC1,
     $                          CSRC1 )
                     END IF
                     IF( MYROW.EQ.RSRC3 .AND. MYCOL.EQ.CSRC3 ) THEN
                        IF( RSRC1.NE.RSRC3 .OR. CSRC1.NE.CSRC3 )
     $                     CALL IGERV2D( ICTXT, 1, 1, I, 1, RSRC1,
     $                          CSRC1 )
                     END IF
                     IF( MYROW.EQ.RSRC4 .AND. MYCOL.EQ.CSRC4 ) THEN
                        IF( RSRC1.NE.RSRC4 .OR. CSRC1.NE.CSRC4 )
     $                     CALL IGERV2D( ICTXT, 1, 1, I, 1, RSRC1,
     $                          CSRC1 )
                     END IF
                  ELSE
                     I = LIHIC
                  END IF
*
*                 Finalize computation of window size: active window is
*                 now (I:LIHIC,I:LIHIC).
*
                  NWIN = LIHIC - I + 1
                  KS = 0
*
*                 Skip rest of this part if appropriate.
*
                  IF( SKIP1CR ) GO TO 360
*
*                 Divide workspace -- put active window in
*                 WORK(IPW2:IPW2+NWIN**2-1) and orthogonal
*                 transformations in WORK(IPW3:...).
*
                  CALL SLASET( 'All', NWIN, NWIN, ZERO, ZERO,
     $                 WORK( IPW2 ), NWIN )
*
                  PITRAF = IPIW
                  IPW3 = IPW2 + NWIN*NWIN
                  PDTRAF = IPW3
*
*                 Exchange the current view of SELECT for the active
*                 window between process 1 and 4 to make sure that
*                 exactly the same job is performed for both processes.
*
                  IF( RSRC1.NE.RSRC4 .OR. CSRC1.NE.CSRC4 ) THEN
                     ILEN4 = MOD(LIHIC,NB)
                     SELI4 = ICEIL(I,NB)*NB+1
                     ILEN1 = NWIN - ILEN4
                     IF( MYROW.EQ.RSRC1 .AND. MYCOL.EQ.CSRC1 ) THEN
                        CALL IGESD2D( ICTXT, ILEN1, 1, SELECT(I),
     $                       ILEN1, RSRC4, CSRC4 )
                        CALL IGERV2D( ICTXT, ILEN4, 1, SELECT(SELI4),
     $                       ILEN4, RSRC4, CSRC4 )
                     END IF
                     IF( MYROW.EQ.RSRC4 .AND. MYCOL.EQ.CSRC4 ) THEN
                        CALL IGESD2D( ICTXT, ILEN4, 1, SELECT(SELI4),
     $                       ILEN4, RSRC1, CSRC1 )
                        CALL IGERV2D( ICTXT, ILEN1, 1, SELECT(I),
     $                       ILEN1, RSRC1, CSRC1 )
                     END IF
                  END IF
*
*                 Form the active window by a series of point-to-point
*                 sends and receives.
*
                  DIM1 = NB - MOD(I-1,NB)
                  DIM4 = NWIN - DIM1
                  IF( MYROW.EQ.RSRC1 .AND. MYCOL.EQ.CSRC1 ) THEN
                     ILOC = INDXG2L( I, NB, MYROW, DESCT( RSRC_ ),
     $                    NPROW )
                     JLOC = INDXG2L( I, NB, MYCOL, DESCT( CSRC_ ),
     $                    NPCOL )
                     CALL SLAMOV( 'All', DIM1, DIM1,
     $                    T((JLOC-1)*LLDT+ILOC), LLDT, WORK(IPW2),
     $                    NWIN )
                     IF( RSRC1.NE.RSRC4 .OR. CSRC1.NE.CSRC4 ) THEN
                        CALL SGESD2D( ICTXT, DIM1, DIM1,
     $                       WORK(IPW2), NWIN, RSRC4, CSRC4 )
                        CALL SGERV2D( ICTXT, DIM4, DIM4,
     $                       WORK(IPW2+DIM1*NWIN+DIM1), NWIN, RSRC4,
     $                       CSRC4 )
                     END IF
                  END IF
                  IF( MYROW.EQ.RSRC4 .AND. MYCOL.EQ.CSRC4 ) THEN
                     ILOC = INDXG2L( I+DIM1, NB, MYROW, DESCT( RSRC_ ),
     $                    NPROW )
                     JLOC = INDXG2L( I+DIM1, NB, MYCOL, DESCT( CSRC_ ),
     $                    NPCOL )
                     CALL SLAMOV( 'All', DIM4, DIM4,
     $                    T((JLOC-1)*LLDT+ILOC), LLDT,
     $                    WORK(IPW2+DIM1*NWIN+DIM1), NWIN )
                     IF( RSRC4.NE.RSRC1 .OR. CSRC4.NE.CSRC1 ) THEN
                        CALL SGESD2D( ICTXT, DIM4, DIM4,
     $                       WORK(IPW2+DIM1*NWIN+DIM1), NWIN, RSRC1,
     $                       CSRC1 )
                        CALL SGERV2D( ICTXT, DIM1, DIM1,
     $                       WORK(IPW2), NWIN, RSRC1, CSRC1 )
                     END IF
                  END IF
                  IF( MYROW.EQ.RSRC2 .AND. MYCOL.EQ.CSRC2 ) THEN
                     ILOC = INDXG2L( I, NB, MYROW, DESCT( RSRC_ ),
     $                    NPROW )
                     JLOC = INDXG2L( I+DIM1, NB, MYCOL, DESCT( CSRC_ ),
     $                    NPCOL )
                     CALL SLAMOV( 'All', DIM1, DIM4,
     $                    T((JLOC-1)*LLDT+ILOC), LLDT,
     $                    WORK(IPW2+DIM1*NWIN), NWIN )
                     IF( RSRC2.NE.RSRC1 .OR. CSRC2.NE.CSRC1 ) THEN
                        CALL SGESD2D( ICTXT, DIM1, DIM4,
     $                       WORK(IPW2+DIM1*NWIN), NWIN, RSRC1, CSRC1 )
                     END IF
                  END IF
                  IF( MYROW.EQ.RSRC2 .AND. MYCOL.EQ.CSRC2 ) THEN
                     IF( RSRC2.NE.RSRC4 .OR. CSRC2.NE.CSRC4 ) THEN
                        CALL SGESD2D( ICTXT, DIM1, DIM4,
     $                       WORK(IPW2+DIM1*NWIN), NWIN, RSRC4, CSRC4 )
                     END IF
                  END IF
                  IF( MYROW.EQ.RSRC3 .AND. MYCOL.EQ.CSRC3 ) THEN
                     ILOC = INDXG2L( I+DIM1, NB, MYROW, DESCT( RSRC_ ),
     $                    NPROW )
                     JLOC = INDXG2L( I+DIM1-1, NB, MYCOL,
     $                    DESCT( CSRC_ ), NPCOL )
                     CALL SLAMOV( 'All', 1, 1,
     $                    T((JLOC-1)*LLDT+ILOC), LLDT,
     $                    WORK(IPW2+(DIM1-1)*NWIN+DIM1), NWIN )
                     IF( RSRC3.NE.RSRC1 .OR. CSRC3.NE.CSRC1 ) THEN
                        CALL SGESD2D( ICTXT, 1, 1,
     $                       WORK(IPW2+(DIM1-1)*NWIN+DIM1), NWIN,
     $                       RSRC1, CSRC1 )
                     END IF
                  END IF
                  IF( MYROW.EQ.RSRC3 .AND. MYCOL.EQ.CSRC3 ) THEN
                     IF( RSRC3.NE.RSRC4 .OR. CSRC3.NE.CSRC4 ) THEN
                        CALL SGESD2D( ICTXT, 1, 1,
     $                       WORK(IPW2+(DIM1-1)*NWIN+DIM1), NWIN,
     $                       RSRC4, CSRC4 )
                     END IF
                  END IF
                  IF( MYROW.EQ.RSRC1 .AND. MYCOL.EQ.CSRC1 ) THEN
                     IF( RSRC1.NE.RSRC2 .OR. CSRC1.NE.CSRC2 ) THEN
                        CALL SGERV2D( ICTXT, DIM1, DIM4,
     $                       WORK(IPW2+DIM1*NWIN), NWIN, RSRC2,
     $                       CSRC2 )
                     END IF
                     IF( RSRC1.NE.RSRC3 .OR. CSRC1.NE.CSRC3 ) THEN
                        CALL SGERV2D( ICTXT, 1, 1,
     $                       WORK(IPW2+(DIM1-1)*NWIN+DIM1), NWIN,
     $                       RSRC3, CSRC3 )
                     END IF
                  END IF
                  IF( MYROW.EQ.RSRC4 .AND. MYCOL.EQ.CSRC4 ) THEN
                     IF( RSRC4.NE.RSRC2 .OR. CSRC4.NE.CSRC2 ) THEN
                        CALL SGERV2D( ICTXT, DIM1, DIM4,
     $                       WORK(IPW2+DIM1*NWIN), NWIN, RSRC2,
     $                       CSRC2 )
                     END IF
                     IF( RSRC4.NE.RSRC3 .OR. CSRC4.NE.CSRC3 ) THEN
                        CALL SGERV2D( ICTXT, 1, 1,
     $                       WORK(IPW2+(DIM1-1)*NWIN+DIM1), NWIN,
     $                       RSRC3, CSRC3 )
                     END IF
                  END IF
*
*                 Compute the reordering (just as in the total local
*                 case) and accumulate the transformations (ONLY
*                 ON-DIAGONAL PROCESSES).
*
                  IF( ( MYROW.EQ.RSRC1 .AND. MYCOL.EQ.CSRC1 ) .OR.
     $                ( MYROW.EQ.RSRC4 .AND. MYCOL.EQ.CSRC4 ) ) THEN
                     PAIR = .FALSE.
                     DO 330 K = I, LIHIC
                        IF( PAIR ) THEN
                           PAIR = .FALSE.
                        ELSE
                           SWAP = SELECT( K ).NE.0
                           IF( K.LT.LIHIC ) THEN
                              ELEM = WORK(IPW2+(K-I)*NWIN+K-I+1)
                              IF( ELEM.NE.ZERO )
     $                           PAIR = .TRUE.
                           END IF
                           IF( SWAP ) THEN
                              KS = KS + 1
*
*                             Swap the K-th block to position I+KS-1.
*
                              IERR = 0
                              KK  = K - I + 1
                              KKS = KS
                              IF( KK.NE.KS ) THEN
                                 NITRAF = LIWORK - PITRAF + 1
                                 NDTRAF = LWORK - PDTRAF + 1
                                 CALL BSTREXC( NWIN, WORK(IPW2), NWIN,
     $                                KK, KKS, NITRAF, IWORK( PITRAF ),
     $                                NDTRAF, WORK( PDTRAF ),
     $                                WORK(IPW1), IERR )
                                 PITRAF = PITRAF + NITRAF
                                 PDTRAF = PDTRAF + NDTRAF
*
*                                Update array SELECT.
*
                                 IF ( PAIR ) THEN
                                    DO 340 J = I+KK-1, I+KKS, -1
                                       SELECT(J+1) = SELECT(J-1)
 340                                CONTINUE
                                    SELECT(I+KKS-1) = 1
                                    SELECT(I+KKS) = 1
                                 ELSE
                                    DO 350 J = I+KK-1, I+KKS, -1
                                       SELECT(J) = SELECT(J-1)
 350                                CONTINUE
                                    SELECT(I+KKS-1) = 1
                                 END IF
*
                                 IF ( IERR.EQ.1 .OR. IERR.EQ.2 ) THEN
*
                                    IF ( IERR.EQ.2 ) THEN
                                       SELECT( I+KKS-3 ) = 1
                                       SELECT( I+KKS-1 ) = 0
                                       KKS = KKS + 1
                                    END IF
*
                                    GO TO 360
                                 END IF
                                 KS = KKS
                              END IF
                              IF( PAIR )
     $                           KS = KS + 1
                           END IF
                        END IF
 330                 CONTINUE
                  END IF
 360              CONTINUE
*
*                 Save information about the reordering.
*
                  IF( ( MYROW.EQ.RSRC1 .AND. MYCOL.EQ.CSRC1 ) .OR.
     $                 ( MYROW.EQ.RSRC4 .AND. MYCOL.EQ.CSRC4 ) ) THEN
                     IBUFF( 1 ) = I
                     IBUFF( 2 ) = NWIN
                     IBUFF( 3 ) = PITRAF
                     IBUFF( 4 ) = KS
                     IBUFF( 5 ) = PDTRAF
                     IBUFF( 6 ) = NDTRAF
                     ILEN = PITRAF - IPIW + 1
                     DLEN = PDTRAF - IPW3 + 1
                     IBUFF( 7 ) = ILEN
                     IBUFF( 8 ) = DLEN
*
*                    Put reordered data back into global matrix if a
*                    reordering took place.
*
                     IF( .NOT. SKIP1CR ) THEN
                        IF( MYROW.EQ.RSRC1 .AND. MYCOL.EQ.CSRC1 ) THEN
                           ILOC = INDXG2L( I, NB, MYROW, DESCT( RSRC_ ),
     $                          NPROW )
                           JLOC = INDXG2L( I, NB, MYCOL, DESCT( CSRC_ ),
     $                          NPCOL )
                           CALL SLAMOV( 'All', DIM1, DIM1, WORK(IPW2),
     $                          NWIN, T((JLOC-1)*LLDT+ILOC), LLDT )
                        END IF
                        IF( MYROW.EQ.RSRC4 .AND. MYCOL.EQ.CSRC4 ) THEN
                           ILOC = INDXG2L( I+DIM1, NB, MYROW,
     $                          DESCT( RSRC_ ), NPROW )
                           JLOC = INDXG2L( I+DIM1, NB, MYCOL,
     $                          DESCT( CSRC_ ), NPCOL )
                           CALL SLAMOV( 'All', DIM4, DIM4,
     $                          WORK(IPW2+DIM1*NWIN+DIM1), NWIN,
     $                          T((JLOC-1)*LLDT+ILOC), LLDT )
                        END IF
                     END IF
                  END IF
*
*                 Break if appropriate -- IBUFF(3:8) may now contain
*                 nonsens, but that's no problem. The processors outside
*                 the cross border group only needs to know about I and
*                 NWIN to get a correct value of SKIP1CR (see below) and
*                 to skip the cross border updates if necessary.
*
                  IF( WINDOW.EQ.1 .AND. SKIP1CR ) GO TO 325
*
*                 Return reordered data to process 2 and 3.
*
                  IF( MYROW.EQ.RSRC1 .AND. MYCOL.EQ.CSRC1 ) THEN
                     IF( RSRC1.NE.RSRC3 .OR. CSRC1.NE.CSRC3 ) THEN
                        CALL SGESD2D( ICTXT, 1, 1,
     $                       WORK( IPW2+(DIM1-1)*NWIN+DIM1 ), NWIN,
     $                       RSRC3, CSRC3 )
                     END IF
                  END IF
                  IF( MYROW.EQ.RSRC4 .AND. MYCOL.EQ.CSRC4 ) THEN
                     IF( RSRC4.NE.RSRC2 .OR. CSRC4.NE.CSRC2 ) THEN
                        CALL SGESD2D( ICTXT, DIM1, DIM4,
     $                       WORK( IPW2+DIM1*NWIN), NWIN, RSRC2,
     $                       CSRC2 )
                     END IF
                  END IF
                  IF( MYROW.EQ.RSRC2 .AND. MYCOL.EQ.CSRC2 ) THEN
                     ILOC = INDXG2L( I, NB, MYROW, DESCT( RSRC_ ),
     $                    NPROW )
                     JLOC = INDXG2L( I+DIM1, NB, MYCOL,
     $                    DESCT( CSRC_ ), NPCOL )
                     IF( RSRC2.NE.RSRC4 .OR. CSRC2.NE.CSRC4 ) THEN
                        CALL SGERV2D( ICTXT, DIM1, DIM4,
     $                       WORK(IPW2+DIM1*NWIN), NWIN, RSRC4, CSRC4 )
                     END IF
                     CALL SLAMOV( 'All', DIM1, DIM4,
     $                    WORK( IPW2+DIM1*NWIN ), NWIN,
     $                    T((JLOC-1)*LLDT+ILOC), LLDT )
                  END IF
                  IF( MYROW.EQ.RSRC3 .AND. MYCOL.EQ.CSRC3 ) THEN
                     ILOC = INDXG2L( I+DIM1, NB, MYROW,
     $                    DESCT( RSRC_ ), NPROW )
                     JLOC = INDXG2L( I+DIM1-1, NB, MYCOL,
     $                    DESCT( CSRC_ ), NPCOL )
                     IF( RSRC3.NE.RSRC1 .OR. CSRC3.NE.CSRC1 ) THEN
                        CALL SGERV2D( ICTXT, 1, 1,
     $                       WORK( IPW2+(DIM1-1)*NWIN+DIM1 ), NWIN,
     $                       RSRC1, CSRC1 )
                     END IF
                     T((JLOC-1)*LLDT+ILOC) =
     $                    WORK( IPW2+(DIM1-1)*NWIN+DIM1 )
                  END IF
               END IF
*
 325           CONTINUE
*
 320        CONTINUE
*
*           For the crossborder updates, we use the same directions as
*           in the local reordering case above.
*
            DO 2222 DIR = 1, 2
*
*              Broadcast information about the reordering.
*
               DO 321 WINDOW = WINDOW0, WINE, 2
                  RSRC4 = IWORK(IRSRC+WINDOW-1)
                  CSRC4 = IWORK(ICSRC+WINDOW-1)
                  RSRC1 = MOD( RSRC4 - 1 + NPROW, NPROW )
                  CSRC1 = MOD( CSRC4 - 1 + NPCOL, NPCOL )
                  IF( MYROW.EQ.RSRC1 .AND. MYCOL.EQ.CSRC1 ) THEN
                     IF( NPCOL.GT.1 .AND. DIR.EQ.1 )
     $                  CALL IGEBS2D( ICTXT, 'Row', TOP, 8, 1,
     $                       IBUFF, 8 )
                     IF( NPROW.GT.1 .AND. DIR.EQ.2 )
     $                  CALL IGEBS2D( ICTXT, 'Col', TOP, 8, 1,
     $                       IBUFF, 8 )
                     SKIP1CR = WINDOW.EQ.1 .AND.
     $                    ICEIL(LIHIC,NB).LE.ICEIL(ILO,NB)
                  ELSEIF( MYROW.EQ.RSRC1 .OR. MYCOL.EQ.CSRC1 ) THEN
                     IF( NPCOL.GT.1 .AND. DIR.EQ.1 .AND.
     $                    MYROW.EQ.RSRC1 ) THEN
                        CALL IGEBR2D( ICTXT, 'Row', TOP, 8, 1,
     $                       IBUFF, 8, RSRC1, CSRC1 )
                        I = IBUFF( 1 )
                        NWIN = IBUFF( 2 )
                        PITRAF = IBUFF( 3 )
                        KS = IBUFF( 4 )
                        PDTRAF = IBUFF( 5 )
                        NDTRAF = IBUFF( 6 )
                        ILEN = IBUFF( 7 )
                        DLEN = IBUFF( 8 )
                        BUFFLEN = ILEN + DLEN
                        IPW3 = IPW2 + NWIN*NWIN
                        DIM1 = NB - MOD(I-1,NB)
                        DIM4 = NWIN - DIM1
                        LIHIC = NWIN + I - 1
                        SKIP1CR = WINDOW.EQ.1 .AND.
     $                       ICEIL(LIHIC,NB).LE.ICEIL(ILO,NB)
                     END IF
                     IF( NPROW.GT.1 .AND. DIR.EQ.2 .AND.
     $                    MYCOL.EQ.CSRC1 ) THEN
                        CALL IGEBR2D( ICTXT, 'Col', TOP, 8, 1,
     $                       IBUFF, 8, RSRC1, CSRC1 )
                        I = IBUFF( 1 )
                        NWIN = IBUFF( 2 )
                        PITRAF = IBUFF( 3 )
                        KS = IBUFF( 4 )
                        PDTRAF = IBUFF( 5 )
                        NDTRAF = IBUFF( 6 )
                        ILEN = IBUFF( 7 )
                        DLEN = IBUFF( 8 )
                        BUFFLEN = ILEN + DLEN
                        IPW3 = IPW2 + NWIN*NWIN
                        DIM1 = NB - MOD(I-1,NB)
                        DIM4 = NWIN - DIM1
                        LIHIC = NWIN + I - 1
                        SKIP1CR = WINDOW.EQ.1 .AND.
     $                       ICEIL(LIHIC,NB).LE.ICEIL(ILO,NB)
                     END IF
                  END IF
                  IF( RSRC1.NE.RSRC4 ) THEN
                     IF( MYROW.EQ.RSRC4 .AND. MYCOL.EQ.CSRC4 ) THEN
                        IF( NPCOL.GT.1 .AND. DIR.EQ.1 )
     $                     CALL IGEBS2D( ICTXT, 'Row', TOP, 8, 1,
     $                          IBUFF, 8 )
                        SKIP1CR = WINDOW.EQ.1 .AND.
     $                       ICEIL(LIHIC,NB).LE.ICEIL(ILO,NB)
                     ELSEIF( MYROW.EQ.RSRC4 ) THEN
                        IF( NPCOL.GT.1 .AND. DIR.EQ.1 ) THEN
                           CALL IGEBR2D( ICTXT, 'Row', TOP, 8, 1,
     $                          IBUFF, 8, RSRC4, CSRC4 )
                           I = IBUFF( 1 )
                           NWIN = IBUFF( 2 )
                           PITRAF = IBUFF( 3 )
                           KS = IBUFF( 4 )
                           PDTRAF = IBUFF( 5 )
                           NDTRAF = IBUFF( 6 )
                           ILEN = IBUFF( 7 )
                           DLEN = IBUFF( 8 )
                           BUFFLEN = ILEN + DLEN
                           IPW3 = IPW2 + NWIN*NWIN
                           DIM1 = NB - MOD(I-1,NB)
                           DIM4 = NWIN - DIM1
                           LIHIC = NWIN + I - 1
                           SKIP1CR = WINDOW.EQ.1 .AND.
     $                          ICEIL(LIHIC,NB).LE.ICEIL(ILO,NB)
                        END IF
                     END IF
                  END IF
                  IF( CSRC1.NE.CSRC4 ) THEN
                     IF( MYROW.EQ.RSRC4 .AND. MYCOL.EQ.CSRC4 ) THEN
                        IF( NPROW.GT.1 .AND. DIR.EQ.2 )
     $                     CALL IGEBS2D( ICTXT, 'Col', TOP, 8, 1,
     $                          IBUFF, 8 )
                        SKIP1CR = WINDOW.EQ.1 .AND.
     $                       ICEIL(LIHIC,NB).LE.ICEIL(ILO,NB)
                     ELSEIF( MYCOL.EQ.CSRC4 ) THEN
                        IF( NPROW.GT.1 .AND. DIR.EQ.2 ) THEN
                           CALL IGEBR2D( ICTXT, 'Col', TOP, 8, 1,
     $                          IBUFF, 8, RSRC4, CSRC4 )
                           I = IBUFF( 1 )
                           NWIN = IBUFF( 2 )
                           PITRAF = IBUFF( 3 )
                           KS = IBUFF( 4 )
                           PDTRAF = IBUFF( 5 )
                           NDTRAF = IBUFF( 6 )
                           ILEN = IBUFF( 7 )
                           DLEN = IBUFF( 8 )
                           BUFFLEN = ILEN + DLEN
                           IPW3 = IPW2 + NWIN*NWIN
                           DIM1 = NB - MOD(I-1,NB)
                           DIM4 = NWIN - DIM1
                           LIHIC = NWIN + I - 1
                           SKIP1CR = WINDOW.EQ.1 .AND.
     $                          ICEIL(LIHIC,NB).LE.ICEIL(ILO,NB)
                        END IF
                     END IF
                  END IF
*
*                 Skip rest of broadcasts and updates if appropriate.
*
                  IF( SKIP1CR ) GO TO 326
*
*                 Broadcast the orthogonal transformations.
*
                  IF( MYROW.EQ.RSRC1 .AND. MYCOL.EQ.CSRC1 ) THEN
                     BUFFER = PDTRAF
                     BUFFLEN = DLEN + ILEN
                     IF( (NPROW.GT.1 .AND. DIR.EQ.2) .OR.
     $                   (NPCOL.GT.1 .AND. DIR.EQ.1) ) THEN
                        DO 370 INDX = 1, ILEN
                           WORK( BUFFER+INDX-1 ) =
     $                          FLOAT( IWORK(IPIW+INDX-1) )
 370                    CONTINUE
                        CALL SLAMOV( 'All', DLEN, 1, WORK( IPW3 ),
     $                       DLEN, WORK(BUFFER+ILEN), DLEN )
                     END IF
                     IF( NPCOL.GT.1 .AND. DIR.EQ.1 ) THEN
                        CALL SGEBS2D( ICTXT, 'Row', TOP, BUFFLEN, 1,
     $                       WORK(BUFFER), BUFFLEN )
                     END IF
                     IF( NPROW.GT.1 .AND. DIR.EQ.2 ) THEN
                        CALL SGEBS2D( ICTXT, 'Col', TOP, BUFFLEN, 1,
     $                       WORK(BUFFER), BUFFLEN )
                     END IF
                  ELSEIF( MYROW.EQ.RSRC1 .OR. MYCOL.EQ.CSRC1 ) THEN
                     IF( NPCOL.GT.1 .AND. DIR.EQ.1 .AND.
     $                    MYROW.EQ.RSRC1 ) THEN
                        BUFFER = PDTRAF
                        BUFFLEN = DLEN + ILEN
                        CALL SGEBR2D( ICTXT, 'Row', TOP, BUFFLEN, 1,
     $                       WORK(BUFFER), BUFFLEN, RSRC1, CSRC1 )
                     END IF
                     IF( NPROW.GT.1 .AND. DIR.EQ.2 .AND.
     $                    MYCOL.EQ.CSRC1 ) THEN
                        BUFFER = PDTRAF
                        BUFFLEN = DLEN + ILEN
                        CALL SGEBR2D( ICTXT, 'Col', TOP, BUFFLEN, 1,
     $                       WORK(BUFFER), BUFFLEN, RSRC1, CSRC1 )
                     END IF
                     IF( (NPCOL.GT.1.AND.DIR.EQ.1.AND.MYROW.EQ.RSRC1)
     $                    .OR. (NPROW.GT.1.AND.DIR.EQ.2.AND.
     $                    MYCOL.EQ.CSRC1) ) THEN
                        DO 380 INDX = 1, ILEN
                           IWORK(IPIW+INDX-1) =
     $                          INT( WORK( BUFFER+INDX-1 ) )
 380                    CONTINUE
                        CALL SLAMOV( 'All', DLEN, 1,
     $                       WORK( BUFFER+ILEN ), DLEN,
     $                       WORK( IPW3 ), DLEN )
                     END IF
                  END IF
                  IF( RSRC1.NE.RSRC4 ) THEN
                     IF( MYROW.EQ.RSRC4 .AND. MYCOL.EQ.CSRC4 ) THEN
                        BUFFER = PDTRAF
                        BUFFLEN = DLEN + ILEN
                        IF( NPCOL.GT.1 .AND. DIR.EQ.1 ) THEN
                           DO 390 INDX = 1, ILEN
                              WORK( BUFFER+INDX-1 ) =
     $                             FLOAT( IWORK(IPIW+INDX-1) )
 390                       CONTINUE
                           CALL SLAMOV( 'All', DLEN, 1, WORK( IPW3 ),
     $                          DLEN, WORK(BUFFER+ILEN), DLEN )
                           CALL SGEBS2D( ICTXT, 'Row', TOP, BUFFLEN,
     $                          1, WORK(BUFFER), BUFFLEN )
                        END IF
                     ELSEIF( MYROW.EQ.RSRC4 .AND. DIR.EQ.1 .AND.
     $                    NPCOL.GT.1 ) THEN
                        BUFFER = PDTRAF
                        BUFFLEN = DLEN + ILEN
                        CALL SGEBR2D( ICTXT, 'Row', TOP, BUFFLEN,
     $                       1, WORK(BUFFER), BUFFLEN, RSRC4, CSRC4 )
                        DO 400 INDX = 1, ILEN
                           IWORK(IPIW+INDX-1) =
     $                          INT( WORK( BUFFER+INDX-1 ) )
 400                    CONTINUE
                        CALL SLAMOV( 'All', DLEN, 1,
     $                       WORK( BUFFER+ILEN ), DLEN,
     $                       WORK( IPW3 ), DLEN )
                     END IF
                  END IF
                  IF( CSRC1.NE.CSRC4 ) THEN
                     IF( MYROW.EQ.RSRC4 .AND. MYCOL.EQ.CSRC4 ) THEN
                        BUFFER = PDTRAF
                        BUFFLEN = DLEN + ILEN
                        IF( NPROW.GT.1 .AND. DIR.EQ.2 ) THEN
                           DO 395 INDX = 1, ILEN
                              WORK( BUFFER+INDX-1 ) =
     $                             FLOAT( IWORK(IPIW+INDX-1) )
 395                       CONTINUE
                           CALL SLAMOV( 'All', DLEN, 1, WORK( IPW3 ),
     $                          DLEN, WORK(BUFFER+ILEN), DLEN )
                           CALL SGEBS2D( ICTXT, 'Col', TOP, BUFFLEN,
     $                          1, WORK(BUFFER), BUFFLEN )
                        END IF
                     ELSEIF( MYCOL.EQ.CSRC4 .AND. DIR.EQ.2 .AND.
     $                    NPROW.GT.1 ) THEN
                        BUFFER = PDTRAF
                        BUFFLEN = DLEN + ILEN
                        CALL SGEBR2D( ICTXT, 'Col', TOP, BUFFLEN, 1,
     $                       WORK(BUFFER), BUFFLEN, RSRC4, CSRC4 )
                        DO 402 INDX = 1, ILEN
                           IWORK(IPIW+INDX-1) =
     $                          INT( WORK( BUFFER+INDX-1 ) )
 402                    CONTINUE
                        CALL SLAMOV( 'All', DLEN, 1,
     $                       WORK( BUFFER+ILEN ), DLEN,
     $                       WORK( IPW3 ), DLEN )
                     END IF
                  END IF
*
 326              CONTINUE
*
 321           CONTINUE
*
*              Compute crossborder updates.
*
               DO 322 WINDOW = WINDOW0, WINE, 2
                  IF( WINDOW.EQ.1 .AND. SKIP1CR ) GO TO 327
                  RSRC4 = IWORK(IRSRC+WINDOW-1)
                  CSRC4 = IWORK(ICSRC+WINDOW-1)
                  RSRC1 = MOD( RSRC4 - 1 + NPROW, NPROW )
                  CSRC1 = MOD( CSRC4 - 1 + NPCOL, NPCOL )
*
*                 Prepare workspaces for updates:
*                   IPW3 holds now the orthogonal transformations
*                   IPW4 holds the explicit orthogonal matrix, if formed
*                   IPW5 holds the crossborder block column of T
*                   IPW6 holds the crossborder block row of T
*                   IPW7 holds the crossborder block column of Q
*                        (if WANTQ=.TRUE.)
*                   IPW8 points to the leftover workspace used as lhs in
*                        matrix multiplications
*
                  IF( ((MYCOL.EQ.CSRC1.OR.MYCOL.EQ.CSRC4).AND.DIR.EQ.2)
     $                 .OR. ((MYROW.EQ.RSRC1.OR.MYROW.EQ.RSRC4).AND.
     $                 DIR.EQ.1)) THEN
                     IPW4 = BUFFER
                     IF( DIR.EQ.2 ) THEN
                        IF( WANTQ ) THEN
                           QROWS = NUMROC( N, NB, MYROW, DESCQ( RSRC_ ),
     $                          NPROW )
                        ELSE
                           QROWS = 0
                        END IF
                        TROWS = NUMROC( I-1, NB, MYROW, DESCT( RSRC_ ),
     $                       NPROW )
                     ELSE
                        QROWS = 0
                        TROWS = 0
                     END IF
                     IF( DIR.EQ.1 ) THEN
                        TCOLS = NUMROC( N - (I+DIM1-1), NB, MYCOL,
     $                       CSRC4, NPCOL )
                        IF( MYCOL.EQ.CSRC4 ) TCOLS = TCOLS - DIM4
                     ELSE
                        TCOLS = 0
                     END IF
                     IPW5 = IPW4 + NWIN*NWIN
                     IPW6 = IPW5 + TROWS * NWIN
                     IF( WANTQ ) THEN
                        IPW7 = IPW6 + NWIN * TCOLS
                        IPW8 = IPW7 + QROWS * NWIN
                     ELSE
                        IPW8 = IPW6 + NWIN * TCOLS
                     END IF
                  END IF
*
*                 Let each process row and column involved in the updates
*                 exchange data in T and Q with their neighbours.
*
                  IF( DIR.EQ.2 ) THEN
                     IF( MYCOL.EQ.CSRC1 .OR. MYCOL.EQ.CSRC4 ) THEN
                        DO 410 INDX = 1, NPROW
                           IF( MYCOL.EQ.CSRC1 ) THEN
                              CALL INFOG2L( 1+(INDX-1)*NB, I, DESCT,
     $                             NPROW, NPCOL, MYROW, MYCOL, ILOC,
     $                             JLOC1, RSRC, CSRC1 )
                              IF( MYROW.EQ.RSRC ) THEN
                                 CALL SLAMOV( 'All', TROWS, DIM1,
     $                                T((JLOC1-1)*LLDT+ILOC), LLDT,
     $                                WORK(IPW5), TROWS )
                                 IF( NPCOL.GT.1 ) THEN
                                    EAST = MOD( MYCOL + 1, NPCOL )
                                    CALL SGESD2D( ICTXT, TROWS, DIM1,
     $                                   WORK(IPW5), TROWS, RSRC,
     $                                   EAST )
                                    CALL SGERV2D( ICTXT, TROWS, DIM4,
     $                                   WORK(IPW5+TROWS*DIM1), TROWS,
     $                                   RSRC, EAST )
                                 END IF
                              END IF
                           END IF
                           IF( MYCOL.EQ.CSRC4 ) THEN
                              CALL INFOG2L( 1+(INDX-1)*NB, I+DIM1,
     $                             DESCT, NPROW, NPCOL, MYROW, MYCOL,
     $                             ILOC, JLOC4, RSRC, CSRC4 )
                              IF( MYROW.EQ.RSRC ) THEN
                                 CALL SLAMOV( 'All', TROWS, DIM4,
     $                                T((JLOC4-1)*LLDT+ILOC), LLDT,
     $                                WORK(IPW5+TROWS*DIM1), TROWS )
                                 IF( NPCOL.GT.1 ) THEN
                                    WEST = MOD( MYCOL-1+NPCOL, NPCOL )
                                    CALL SGESD2D( ICTXT, TROWS, DIM4,
     $                                   WORK(IPW5+TROWS*DIM1), TROWS,
     $                                   RSRC, WEST )
                                    CALL SGERV2D( ICTXT, TROWS, DIM1,
     $                                   WORK(IPW5), TROWS, RSRC,
     $                                   WEST )
                                 END IF
                              END IF
                           END IF
 410                    CONTINUE
                     END IF
                  END IF
*
                  IF( DIR.EQ.1 ) THEN
                     IF( MYROW.EQ.RSRC1 .OR. MYROW.EQ.RSRC4 ) THEN
                        DO 420 INDX = 1, NPCOL
                           IF( MYROW.EQ.RSRC1 ) THEN
                              IF( INDX.EQ.1 ) THEN
                                 CALL INFOG2L( I, LIHIC+1, DESCT, NPROW,
     $                                NPCOL, MYROW, MYCOL, ILOC1, JLOC,
     $                                RSRC1, CSRC )
                              ELSE
                                 CALL INFOG2L( I,
     $                                (ICEIL(LIHIC,NB)+(INDX-2))*NB+1,
     $                                DESCT, NPROW, NPCOL, MYROW, MYCOL,
     $                                ILOC1, JLOC, RSRC1, CSRC )
                              END IF
                              IF( MYCOL.EQ.CSRC ) THEN
                                 CALL SLAMOV( 'All', DIM1, TCOLS,
     $                                T((JLOC-1)*LLDT+ILOC1), LLDT,
     $                                WORK(IPW6), NWIN )
                                 IF( NPROW.GT.1 ) THEN
                                    SOUTH = MOD( MYROW + 1, NPROW )
                                    CALL SGESD2D( ICTXT, DIM1, TCOLS,
     $                                   WORK(IPW6), NWIN, SOUTH,
     $                                   CSRC )
                                    CALL SGERV2D( ICTXT, DIM4, TCOLS,
     $                                   WORK(IPW6+DIM1), NWIN, SOUTH,
     $                                   CSRC )
                                 END IF
                              END IF
                           END IF
                           IF( MYROW.EQ.RSRC4 ) THEN
                              IF( INDX.EQ.1 ) THEN
                                 CALL INFOG2L( I+DIM1, LIHIC+1, DESCT,
     $                                NPROW, NPCOL, MYROW, MYCOL, ILOC4,
     $                                JLOC, RSRC4, CSRC )
                              ELSE
                                 CALL INFOG2L( I+DIM1,
     $                                (ICEIL(LIHIC,NB)+(INDX-2))*NB+1,
     $                                DESCT, NPROW, NPCOL, MYROW, MYCOL,
     $                                ILOC4, JLOC, RSRC4, CSRC )
                              END IF
                              IF( MYCOL.EQ.CSRC ) THEN
                                 CALL SLAMOV( 'All', DIM4, TCOLS,
     $                                T((JLOC-1)*LLDT+ILOC4), LLDT,
     $                                WORK(IPW6+DIM1), NWIN )
                                 IF( NPROW.GT.1 ) THEN
                                    NORTH = MOD( MYROW-1+NPROW, NPROW )
                                    CALL SGESD2D( ICTXT, DIM4, TCOLS,
     $                                   WORK(IPW6+DIM1), NWIN, NORTH,
     $                                   CSRC )
                                    CALL SGERV2D( ICTXT, DIM1, TCOLS,
     $                                   WORK(IPW6), NWIN, NORTH,
     $                                   CSRC )
                                 END IF
                              END IF
                           END IF
 420                    CONTINUE
                     END IF
                  END IF
*
                  IF( DIR.EQ.2 ) THEN
                     IF( WANTQ ) THEN
                        IF( MYCOL.EQ.CSRC1 .OR. MYCOL.EQ.CSRC4 ) THEN
                           DO 430 INDX = 1, NPROW
                              IF( MYCOL.EQ.CSRC1 ) THEN
                                 CALL INFOG2L( 1+(INDX-1)*NB, I, DESCQ,
     $                                NPROW, NPCOL, MYROW, MYCOL, ILOC,
     $                                JLOC1, RSRC, CSRC1 )
                                 IF( MYROW.EQ.RSRC ) THEN
                                    CALL SLAMOV( 'All', QROWS, DIM1,
     $                                   Q((JLOC1-1)*LLDQ+ILOC), LLDQ,
     $                                   WORK(IPW7), QROWS )
                                    IF( NPCOL.GT.1 ) THEN
                                       EAST = MOD( MYCOL + 1, NPCOL )
                                       CALL SGESD2D( ICTXT, QROWS, DIM1,
     $                                      WORK(IPW7), QROWS, RSRC,
     $                                      EAST )
                                       CALL SGERV2D( ICTXT, QROWS, DIM4,
     $                                      WORK(IPW7+QROWS*DIM1),
     $                                      QROWS, RSRC, EAST )
                                    END IF
                                 END IF
                              END IF
                              IF( MYCOL.EQ.CSRC4 ) THEN
                                 CALL INFOG2L( 1+(INDX-1)*NB, I+DIM1,
     $                                DESCQ, NPROW, NPCOL, MYROW, MYCOL,
     $                                ILOC, JLOC4, RSRC, CSRC4 )
                                 IF( MYROW.EQ.RSRC ) THEN
                                    CALL SLAMOV( 'All', QROWS, DIM4,
     $                                   Q((JLOC4-1)*LLDQ+ILOC), LLDQ,
     $                                   WORK(IPW7+QROWS*DIM1), QROWS )
                                    IF( NPCOL.GT.1 ) THEN
                                       WEST = MOD( MYCOL-1+NPCOL,
     $                                      NPCOL )
                                       CALL SGESD2D( ICTXT, QROWS, DIM4,
     $                                      WORK(IPW7+QROWS*DIM1),
     $                                      QROWS, RSRC, WEST )
                                       CALL SGERV2D( ICTXT, QROWS, DIM1,
     $                                      WORK(IPW7), QROWS, RSRC,
     $                                      WEST )
                                    END IF
                                 END IF
                              END IF
 430                       CONTINUE
                        END IF
                     END IF
                  END IF
*
 327              CONTINUE
*
 322           CONTINUE
*
               DO 323 WINDOW = WINDOW0, WINE, 2
                  RSRC4 = IWORK(IRSRC+WINDOW-1)
                  CSRC4 = IWORK(ICSRC+WINDOW-1)
                  RSRC1 = MOD( RSRC4 - 1 + NPROW, NPROW )
                  CSRC1 = MOD( CSRC4 - 1 + NPCOL, NPCOL )
                  FLOPS = 0
                  IF( ((MYCOL.EQ.CSRC1.OR.MYCOL.EQ.CSRC4).AND.DIR.EQ.2)
     $                 .OR. ((MYROW.EQ.RSRC1.OR.MYROW.EQ.RSRC4).AND.
     $                 DIR.EQ.1) ) THEN
*
*                    Skip this part of the updates if appropriate.
*
                     IF( WINDOW.EQ.1 .AND. SKIP1CR ) GO TO 328
*
*                    Count number of operations to decide whether to use
*                    matrix-matrix multiplications for updating
*                    off-diagonal parts or not.
*
                     NITRAF = PITRAF - IPIW
                     ISHH = .FALSE.
                     DO 405 K = 1, NITRAF
                        IF( IWORK( IPIW + K - 1 ).LE.NWIN ) THEN
                           FLOPS = FLOPS + 6
                        ELSE
                           FLOPS = FLOPS + 11
                           ISHH = .TRUE.
                        END IF
 405                 CONTINUE
*
*                    Perform updates in parallel.
*
                     IF( FLOPS.NE.0 .AND.
     $                    ( 2*FLOPS*100 )/( 2*NWIN*NWIN ) .GE. MMULT )
     $                    THEN
*
                        CALL SLASET( 'All', NWIN, NWIN, ZERO, ONE,
     $                       WORK( IPW4 ), NWIN )
                        WORK(IPW8) = FLOAT(MYROW)
                        WORK(IPW8+1) = FLOAT(MYCOL)
                        CALL BSLAAPP( 1, NWIN, NWIN, NCB, WORK( IPW4 ),
     $                       NWIN, NITRAF, IWORK(IPIW), WORK( IPW3 ),
     $                       WORK(IPW8) )
*
*                       Test if sparsity structure of orthogonal matrix
*                       can be exploited (see below).
*
                        IF( ISHH .OR. DIM1.NE.KS .OR. DIM4.NE.KS ) THEN
*
*                          Update the columns of T and Q affected by the
*                          reordering.
*
                           IF( DIR.EQ.2 ) THEN
                              DO 440 INDX = 1, MIN(I-1,1+(NPROW-1)*NB),
     $                             NB
                                 IF( MYCOL.EQ.CSRC1 ) THEN
                                    CALL INFOG2L( INDX, I, DESCT, NPROW,
     $                                   NPCOL, MYROW, MYCOL, ILOC,
     $                                   JLOC, RSRC, CSRC1 )
                                    IF( MYROW.EQ.RSRC ) THEN
                                       CALL SGEMM( 'No transpose',
     $                                      'No transpose', TROWS, DIM1,
     $                                      NWIN, ONE, WORK( IPW5 ),
     $                                      TROWS, WORK( IPW4 ), NWIN,
     $                                      ZERO, WORK(IPW8), TROWS )
                                       CALL SLAMOV( 'All', TROWS, DIM1,
     $                                      WORK(IPW8), TROWS,
     $                                      T((JLOC-1)*LLDT+ILOC),
     $                                      LLDT )
                                    END IF
                                 END IF
                                 IF( MYCOL.EQ.CSRC4 ) THEN
                                    CALL INFOG2L( INDX, I+DIM1, DESCT,
     $                                   NPROW, NPCOL, MYROW, MYCOL,
     $                                   ILOC, JLOC, RSRC, CSRC4 )
                                    IF( MYROW.EQ.RSRC ) THEN
                                       CALL SGEMM( 'No transpose',
     $                                      'No transpose', TROWS, DIM4,
     $                                      NWIN, ONE, WORK( IPW5 ),
     $                                      TROWS,
     $                                      WORK( IPW4+NWIN*DIM1 ),
     $                                      NWIN, ZERO, WORK(IPW8),
     $                                      TROWS )
                                       CALL SLAMOV( 'All', TROWS, DIM4,
     $                                      WORK(IPW8), TROWS,
     $                                      T((JLOC-1)*LLDT+ILOC),
     $                                      LLDT )
                                    END IF
                                 END IF
 440                          CONTINUE
*
                              IF( WANTQ ) THEN
                                 DO 450 INDX = 1, MIN(N,1+(NPROW-1)*NB),
     $                                NB
                                    IF( MYCOL.EQ.CSRC1 ) THEN
                                       CALL INFOG2L( INDX, I, DESCQ,
     $                                      NPROW, NPCOL, MYROW, MYCOL,
     $                                      ILOC, JLOC, RSRC, CSRC1 )
                                       IF( MYROW.EQ.RSRC ) THEN
                                          CALL SGEMM( 'No transpose',
     $                                         'No transpose', QROWS,
     $                                         DIM1, NWIN, ONE,
     $                                         WORK( IPW7 ), QROWS,
     $                                         WORK( IPW4 ), NWIN,
     $                                         ZERO, WORK(IPW8),
     $                                         QROWS )
                                          CALL SLAMOV( 'All', QROWS,
     $                                         DIM1, WORK(IPW8), QROWS,
     $                                         Q((JLOC-1)*LLDQ+ILOC),
     $                                         LLDQ )
                                       END IF
                                    END IF
                                    IF( MYCOL.EQ.CSRC4 ) THEN
                                       CALL INFOG2L( INDX, I+DIM1,
     $                                      DESCQ, NPROW, NPCOL, MYROW,
     $                                      MYCOL, ILOC, JLOC, RSRC,
     $                                      CSRC4 )
                                       IF( MYROW.EQ.RSRC ) THEN
                                          CALL SGEMM( 'No transpose',
     $                                         'No transpose', QROWS,
     $                                         DIM4, NWIN, ONE,
     $                                         WORK( IPW7 ), QROWS,
     $                                         WORK( IPW4+NWIN*DIM1 ),
     $                                         NWIN, ZERO, WORK(IPW8),
     $                                         QROWS )
                                          CALL SLAMOV( 'All', QROWS,
     $                                         DIM4, WORK(IPW8), QROWS,
     $                                         Q((JLOC-1)*LLDQ+ILOC),
     $                                         LLDQ )
                                       END IF
                                    END IF
 450                             CONTINUE
                              END IF
                           END IF
*
*                          Update the rows of T affected by the
*                          reordering.
*
                           IF( DIR.EQ.1 ) THEN
                              IF ( LIHIC.LT.N ) THEN
                                 IF( MYROW.EQ.RSRC1.AND.MYCOL.EQ.CSRC4
     $                               .AND.MOD(LIHIC,NB).NE.0 ) THEN
                                    INDX = LIHIC + 1
                                    CALL INFOG2L( I, INDX, DESCT, NPROW,
     $                                   NPCOL, MYROW, MYCOL, ILOC,
     $                                   JLOC, RSRC1, CSRC4 )
                                    CALL SGEMM( 'Transpose',
     $                                   'No Transpose', DIM1, TCOLS,
     $                                   NWIN, ONE, WORK(IPW4), NWIN,
     $                                   WORK( IPW6 ), NWIN, ZERO,
     $                                   WORK(IPW8), DIM1 )
                                    CALL SLAMOV( 'All', DIM1, TCOLS,
     $                                   WORK(IPW8), DIM1,
     $                                   T((JLOC-1)*LLDT+ILOC), LLDT )
                                 END IF
                                 IF( MYROW.EQ.RSRC4.AND.MYCOL.EQ.CSRC4
     $                               .AND.MOD(LIHIC,NB).NE.0 ) THEN
                                    INDX = LIHIC + 1
                                    CALL INFOG2L( I+DIM1, INDX, DESCT,
     $                                   NPROW, NPCOL, MYROW, MYCOL,
     $                                   ILOC, JLOC, RSRC4, CSRC4 )
                                    CALL SGEMM( 'Transpose',
     $                                  'No Transpose', DIM4, TCOLS,
     $                                   NWIN, ONE,
     $                                   WORK( IPW4+DIM1*NWIN ), NWIN,
     $                                   WORK( IPW6), NWIN, ZERO,
     $                                   WORK(IPW8), DIM4 )
                                    CALL SLAMOV( 'All', DIM4, TCOLS,
     $                                   WORK(IPW8), DIM4,
     $                                   T((JLOC-1)*LLDT+ILOC), LLDT )
                                 END IF
                                 INDXS = ICEIL(LIHIC,NB)*NB + 1
                                 INDXE = MIN(N,INDXS+(NPCOL-2)*NB)
                                 DO 460 INDX = INDXS, INDXE, NB
                                    IF( MYROW.EQ.RSRC1 ) THEN
                                       CALL INFOG2L( I, INDX, DESCT,
     $                                      NPROW, NPCOL, MYROW, MYCOL,
     $                                      ILOC, JLOC, RSRC1, CSRC )
                                       IF( MYCOL.EQ.CSRC ) THEN
                                          CALL SGEMM( 'Transpose',
     $                                         'No Transpose', DIM1,
     $                                         TCOLS, NWIN, ONE,
     $                                         WORK( IPW4 ), NWIN,
     $                                         WORK( IPW6 ), NWIN,
     $                                         ZERO, WORK(IPW8), DIM1 )
                                          CALL SLAMOV( 'All', DIM1,
     $                                         TCOLS, WORK(IPW8), DIM1,
     $                                         T((JLOC-1)*LLDT+ILOC),
     $                                         LLDT )
                                       END IF
                                    END IF
                                    IF( MYROW.EQ.RSRC4 ) THEN
                                       CALL INFOG2L( I+DIM1, INDX,
     $                                      DESCT, NPROW, NPCOL, MYROW,
     $                                      MYCOL, ILOC, JLOC, RSRC4,
     $                                      CSRC )
                                       IF( MYCOL.EQ.CSRC ) THEN
                                          CALL SGEMM( 'Transpose',
     $                                         'No Transpose', DIM4,
     $                                         TCOLS, NWIN, ONE,
     $                                         WORK( IPW4+NWIN*DIM1 ),
     $                                         NWIN, WORK( IPW6 ),
     $                                         NWIN, ZERO, WORK(IPW8),
     $                                         DIM4 )
                                          CALL SLAMOV( 'All', DIM4,
     $                                         TCOLS, WORK(IPW8), DIM4,
     $                                         T((JLOC-1)*LLDT+ILOC),
     $                                         LLDT )
                                       END IF
                                    END IF
 460                             CONTINUE
                              END IF
                           END IF
                        ELSE
*
*                          The NWIN-by-NWIN matrix U containing the
*                          accumulated orthogonal transformations has
*                          the following structure:
*
*                                        [ U11  U12 ]
*                                    U = [          ],
*                                        [ U21  U22 ]
*
*                          where U21 is KS-by-KS upper triangular and
*                          U12 is (NWIN-KS)-by-(NWIN-KS) lower
*                          triangular. For reordering over the border
*                          the structure is only exploited when the
*                          border cuts the columns of U conformally with
*                          the structure itself. This happens exactly
*                          when all eigenvalues in the subcluster was
*                          moved to the other side of the border and
*                          fits perfectly in their new positions, i.e.,
*                          the reordering stops when the last eigenvalue
*                          to cross the border is reordered to the
*                          position closest to the border. Tested by
*                          checking is KS = DIM1 = DIM4 (see above).
*                          This should hold quite often. But this branch
*                          is entered only if all involved eigenvalues
*                          are real.
*
*                          Update the columns of T and Q affected by the
*                          reordering.
*
*                          Compute T2*U21 + T1*U11 on the left side of
*                          the border.
*
                           IF( DIR.EQ.2 ) THEN
                              INDXE = MIN(I-1,1+(NPROW-1)*NB)
                              DO 470 INDX = 1, INDXE, NB
                                 IF( MYCOL.EQ.CSRC1 ) THEN
                                    CALL INFOG2L( INDX, I, DESCT, NPROW,
     $                                   NPCOL, MYROW, MYCOL, ILOC,
     $                                   JLOC, RSRC, CSRC1 )
                                    IF( MYROW.EQ.RSRC ) THEN
                                       CALL SLAMOV( 'All', TROWS, KS,
     $                                      WORK( IPW5+TROWS*DIM4),
     $                                      TROWS, WORK(IPW8), TROWS )
                                       CALL STRMM( 'Right', 'Upper',
     $                                      'No transpose',
     $                                      'Non-unit', TROWS, KS,
     $                                      ONE, WORK( IPW4+DIM4 ),
     $                                      NWIN, WORK(IPW8), TROWS )
                                       CALL SGEMM( 'No transpose',
     $                                      'No transpose', TROWS, KS,
     $                                      DIM4, ONE, WORK( IPW5 ),
     $                                      TROWS, WORK( IPW4 ), NWIN,
     $                                      ONE, WORK(IPW8), TROWS )
                                       CALL SLAMOV( 'All', TROWS, KS,
     $                                      WORK(IPW8), TROWS,
     $                                      T((JLOC-1)*LLDT+ILOC),
     $                                      LLDT )
                                    END IF
                                 END IF
*
*                                Compute T1*U12 + T2*U22 on the right
*                                side of the border.
*
                                 IF( MYCOL.EQ.CSRC4 ) THEN
                                    CALL INFOG2L( INDX, I+DIM1, DESCT,
     $                                   NPROW, NPCOL, MYROW, MYCOL,
     $                                   ILOC, JLOC, RSRC, CSRC4 )
                                    IF( MYROW.EQ.RSRC ) THEN
                                       CALL SLAMOV( 'All', TROWS, DIM4,
     $                                      WORK(IPW5), TROWS,
     $                                      WORK( IPW8 ), TROWS )
                                       CALL STRMM( 'Right', 'Lower',
     $                                      'No transpose',
     $                                      'Non-unit', TROWS, DIM4,
     $                                      ONE, WORK( IPW4+NWIN*KS ),
     $                                      NWIN, WORK( IPW8 ), TROWS )
                                       CALL SGEMM( 'No transpose',
     $                                      'No transpose', TROWS, DIM4,
     $                                      KS, ONE,
     $                                      WORK( IPW5+TROWS*DIM4),
     $                                      TROWS,
     $                                      WORK( IPW4+NWIN*KS+DIM4 ),
     $                                      NWIN, ONE, WORK( IPW8 ),
     $                                      TROWS )
                                       CALL SLAMOV( 'All', TROWS, DIM4,
     $                                      WORK(IPW8), TROWS,
     $                                      T((JLOC-1)*LLDT+ILOC),
     $                                      LLDT )
                                    END IF
                                 END IF
 470                          CONTINUE
                              IF( WANTQ ) THEN
*
*                                Compute Q2*U21 + Q1*U11 on the left
*                                side of border.
*
                                 INDXE = MIN(N,1+(NPROW-1)*NB)
                                 DO 480 INDX = 1, INDXE, NB
                                    IF( MYCOL.EQ.CSRC1 ) THEN
                                       CALL INFOG2L( INDX, I, DESCQ,
     $                                      NPROW, NPCOL, MYROW, MYCOL,
     $                                      ILOC, JLOC, RSRC, CSRC1 )
                                       IF( MYROW.EQ.RSRC ) THEN
                                          CALL SLAMOV( 'All', QROWS, KS,
     $                                         WORK( IPW7+QROWS*DIM4),
     $                                         QROWS, WORK(IPW8),
     $                                         QROWS )
                                          CALL STRMM( 'Right', 'Upper',
     $                                         'No transpose',
     $                                         'Non-unit', QROWS,
     $                                         KS, ONE,
     $                                         WORK( IPW4+DIM4 ), NWIN,
     $                                         WORK(IPW8), QROWS )
                                          CALL SGEMM( 'No transpose',
     $                                         'No transpose', QROWS,
     $                                         KS, DIM4, ONE,
     $                                         WORK( IPW7 ), QROWS,
     $                                         WORK( IPW4 ), NWIN, ONE,
     $                                         WORK(IPW8), QROWS )
                                          CALL SLAMOV( 'All', QROWS, KS,
     $                                         WORK(IPW8), QROWS,
     $                                         Q((JLOC-1)*LLDQ+ILOC),
     $                                         LLDQ )
                                       END IF
                                    END IF
*
*                                   Compute Q1*U12 + Q2*U22 on the right
*                                   side of border.
*
                                    IF( MYCOL.EQ.CSRC4 ) THEN
                                       CALL INFOG2L( INDX, I+DIM1,
     $                                      DESCQ, NPROW, NPCOL, MYROW,
     $                                      MYCOL, ILOC, JLOC, RSRC,
     $                                      CSRC4 )
                                       IF( MYROW.EQ.RSRC ) THEN
                                          CALL SLAMOV( 'All', QROWS,
     $                                         DIM4, WORK(IPW7), QROWS,
     $                                         WORK( IPW8 ), QROWS )
                                          CALL STRMM( 'Right', 'Lower',
     $                                         'No transpose',
     $                                         'Non-unit', QROWS,
     $                                         DIM4, ONE,
     $                                         WORK( IPW4+NWIN*KS ),
     $                                         NWIN, WORK( IPW8 ),
     $                                         QROWS )
                                          CALL SGEMM( 'No transpose',
     $                                         'No transpose', QROWS,
     $                                         DIM4, KS, ONE,
     $                                         WORK(IPW7+QROWS*(DIM4)),
     $                                         QROWS,
     $                                         WORK(IPW4+NWIN*KS+DIM4),
     $                                         NWIN, ONE, WORK( IPW8 ),
     $                                         QROWS )
                                          CALL SLAMOV( 'All', QROWS,
     $                                         DIM4, WORK(IPW8), QROWS,
     $                                         Q((JLOC-1)*LLDQ+ILOC),
     $                                         LLDQ )
                                       END IF
                                    END IF
 480                             CONTINUE
                              END IF
                           END IF
*
                           IF( DIR.EQ.1 ) THEN
                              IF ( LIHIC.LT.N ) THEN
*
*                                Compute U21**T*T2 + U11**T*T1 on the
*                                upper side of the border.
*
                                 IF( MYROW.EQ.RSRC1.AND.MYCOL.EQ.CSRC4
     $                               .AND.MOD(LIHIC,NB).NE.0 ) THEN
                                    INDX = LIHIC + 1
                                    CALL INFOG2L( I, INDX, DESCT, NPROW,
     $                                   NPCOL, MYROW, MYCOL, ILOC,
     $                                   JLOC, RSRC1, CSRC4 )
                                    CALL SLAMOV( 'All', KS, TCOLS,
     $                                   WORK( IPW6+DIM4 ), NWIN,
     $                                   WORK(IPW8), KS )
                                    CALL STRMM( 'Left', 'Upper',
     $                                   'Transpose', 'Non-unit',
     $                                   KS, TCOLS, ONE,
     $                                   WORK( IPW4+DIM4 ), NWIN,
     $                                   WORK(IPW8), KS )
                                    CALL SGEMM( 'Transpose',
     $                                   'No transpose', KS, TCOLS,
     $                                   DIM4, ONE, WORK(IPW4), NWIN,
     $                                   WORK(IPW6), NWIN, ONE,
     $                                   WORK(IPW8), KS )
                                    CALL SLAMOV( 'All', KS, TCOLS,
     $                                   WORK(IPW8), KS,
     $                                   T((JLOC-1)*LLDT+ILOC), LLDT )
                                 END IF
*
*                                Compute U12**T*T1 + U22**T*T2 on the
*                                lower side of the border.
*
                                 IF( MYROW.EQ.RSRC4.AND.MYCOL.EQ.CSRC4
     $                               .AND.MOD(LIHIC,NB).NE.0 ) THEN
                                    INDX = LIHIC + 1
                                    CALL INFOG2L( I+DIM1, INDX, DESCT,
     $                                   NPROW, NPCOL, MYROW, MYCOL,
     $                                   ILOC, JLOC, RSRC4, CSRC4 )
                                    CALL SLAMOV( 'All', DIM4, TCOLS,
     $                                   WORK( IPW6 ), NWIN,
     $                                   WORK( IPW8 ), DIM4 )
                                    CALL STRMM( 'Left', 'Lower',
     $                                   'Transpose', 'Non-unit',
     $                                   DIM4, TCOLS, ONE,
     $                                   WORK( IPW4+NWIN*KS ), NWIN,
     $                                   WORK( IPW8 ), DIM4 )
                                    CALL SGEMM( 'Transpose',
     $                                   'No Transpose', DIM4, TCOLS,
     $                                   KS, ONE,
     $                                   WORK( IPW4+NWIN*KS+DIM4 ),
     $                                   NWIN, WORK( IPW6+DIM1 ), NWIN,
     $                                   ONE, WORK( IPW8), DIM4 )
                                    CALL SLAMOV( 'All', DIM4, TCOLS,
     $                                   WORK(IPW8), DIM4,
     $                                   T((JLOC-1)*LLDT+ILOC), LLDT )
                                 END IF
*
*                                Compute U21**T*T2 + U11**T*T1 on upper
*                                side on border.
*
                                 INDXS = ICEIL(LIHIC,NB)*NB+1
                                 INDXE = MIN(N,INDXS+(NPCOL-2)*NB)
                                 DO 490 INDX = INDXS, INDXE, NB
                                    IF( MYROW.EQ.RSRC1 ) THEN
                                       CALL INFOG2L( I, INDX, DESCT,
     $                                      NPROW, NPCOL, MYROW, MYCOL,
     $                                      ILOC, JLOC, RSRC1, CSRC )
                                       IF( MYCOL.EQ.CSRC ) THEN
                                          CALL SLAMOV( 'All', KS, TCOLS,
     $                                         WORK( IPW6+DIM4 ), NWIN,
     $                                         WORK(IPW8), KS )
                                          CALL STRMM( 'Left', 'Upper',
     $                                         'Transpose',
     $                                         'Non-unit', KS,
     $                                         TCOLS, ONE,
     $                                         WORK( IPW4+DIM4 ), NWIN,
     $                                         WORK(IPW8), KS )
                                          CALL SGEMM( 'Transpose',
     $                                         'No transpose', KS,
     $                                         TCOLS, DIM4, ONE,
     $                                         WORK(IPW4), NWIN,
     $                                         WORK(IPW6), NWIN, ONE,
     $                                         WORK(IPW8), KS )
                                          CALL SLAMOV( 'All', KS, TCOLS,
     $                                         WORK(IPW8), KS,
     $                                         T((JLOC-1)*LLDT+ILOC),
     $                                         LLDT )
                                       END IF
                                    END IF
*
*                                   Compute U12**T*T1 + U22**T*T2 on
*                                   lower side of border.
*
                                    IF( MYROW.EQ.RSRC4 ) THEN
                                       CALL INFOG2L( I+DIM1, INDX,
     $                                      DESCT, NPROW, NPCOL, MYROW,
     $                                      MYCOL, ILOC, JLOC, RSRC4,
     $                                      CSRC )
                                       IF( MYCOL.EQ.CSRC ) THEN
                                          CALL SLAMOV( 'All', DIM4,
     $                                         TCOLS, WORK( IPW6 ),
     $                                         NWIN, WORK( IPW8 ),
     $                                         DIM4 )
                                          CALL STRMM( 'Left', 'Lower',
     $                                         'Transpose',
     $                                         'Non-unit', DIM4,
     $                                         TCOLS, ONE,
     $                                         WORK( IPW4+NWIN*KS ),
     $                                         NWIN, WORK( IPW8 ),
     $                                         DIM4 )
                                          CALL SGEMM( 'Transpose',
     $                                         'No Transpose', DIM4,
     $                                         TCOLS, KS, ONE,
     $                                         WORK(IPW4+NWIN*KS+DIM4),
     $                                         NWIN, WORK( IPW6+DIM1 ),
     $                                         NWIN, ONE, WORK( IPW8),
     $                                         DIM4 )
                                          CALL SLAMOV( 'All', DIM4,
     $                                         TCOLS, WORK(IPW8), DIM4,
     $                                         T((JLOC-1)*LLDT+ILOC),
     $                                         LLDT )
                                       END IF
                                    END IF
 490                             CONTINUE
                              END IF
                           END IF
                        END IF
                     ELSEIF( FLOPS.NE.0 ) THEN
*
*                       Update off-diagonal blocks and Q using the
*                       pipelined elementary transformations. Now we
*                       have a delicate problem: how to do this without
*                       redundant work? For now, we let the processes
*                       involved compute the whole crossborder block
*                       rows and column saving only the part belonging
*                       to the corresponding side of the border. To make
*                       this a realistic alternative, we have modified
*                       the ratio r_flops (see Reference [2] above) to
*                       give more favor to the ordinary matrix
*                       multiplication.
*
                        IF( DIR.EQ.2 ) THEN
                           INDXE =  MIN(I-1,1+(NPROW-1)*NB)
                           DO 500 INDX = 1, INDXE, NB
                              CALL INFOG2L( INDX, I, DESCT, NPROW,
     $                             NPCOL, MYROW, MYCOL, ILOC, JLOC,
     $                             RSRC, CSRC )
                              IF( MYROW.EQ.RSRC .AND. MYCOL.EQ.CSRC )
     $                             THEN
                                 CALL BSLAAPP( 1, TROWS, NWIN, NCB,
     $                                WORK(IPW5), TROWS, NITRAF,
     $                                IWORK(IPIW), WORK( IPW3 ),
     $                                WORK(IPW8) )
                                 CALL SLAMOV( 'All', TROWS, DIM1,
     $                                WORK(IPW5), TROWS,
     $                                T((JLOC-1)*LLDT+ILOC ), LLDT )
                              END IF
                              CALL INFOG2L( INDX, I+DIM1, DESCT, NPROW,
     $                             NPCOL, MYROW, MYCOL, ILOC, JLOC,
     $                             RSRC, CSRC )
                              IF( MYROW.EQ.RSRC .AND. MYCOL.EQ.CSRC )
     $                             THEN
                                 IF( NPCOL.GT.1 )
     $                                CALL BSLAAPP( 1, TROWS, NWIN, NCB,
     $                                WORK(IPW5), TROWS, NITRAF,
     $                                IWORK(IPIW), WORK( IPW3 ),
     $                                WORK(IPW8) )
                                 CALL SLAMOV( 'All', TROWS, DIM4,
     $                                WORK(IPW5+TROWS*DIM1), TROWS,
     $                                T((JLOC-1)*LLDT+ILOC ), LLDT )
                              END IF
 500                       CONTINUE
                           IF( WANTQ ) THEN
                              INDXE = MIN(N,1+(NPROW-1)*NB)
                              DO 510 INDX = 1, INDXE, NB
                                 CALL INFOG2L( INDX, I, DESCQ, NPROW,
     $                                NPCOL, MYROW, MYCOL, ILOC, JLOC,
     $                                RSRC, CSRC )
                                 IF( MYROW.EQ.RSRC .AND. MYCOL.EQ.CSRC )
     $                                THEN
                                    CALL BSLAAPP( 1, QROWS, NWIN, NCB,
     $                                   WORK(IPW7), QROWS, NITRAF,
     $                                   IWORK(IPIW), WORK( IPW3 ),
     $                                   WORK(IPW8) )
                                    CALL SLAMOV( 'All', QROWS, DIM1,
     $                                   WORK(IPW7), QROWS,
     $                                   Q((JLOC-1)*LLDQ+ILOC ), LLDQ )
                                 END IF
                                 CALL INFOG2L( INDX, I+DIM1, DESCQ,
     $                                NPROW, NPCOL, MYROW, MYCOL, ILOC,
     $                                JLOC, RSRC, CSRC )
                                 IF( MYROW.EQ.RSRC .AND. MYCOL.EQ.CSRC )
     $                                THEN
                                    IF( NPCOL.GT.1 )
     $                                   CALL BSLAAPP( 1, QROWS, NWIN,
     $                                   NCB, WORK(IPW7), QROWS,
     $                                   NITRAF, IWORK(IPIW),
     $                                   WORK( IPW3 ), WORK(IPW8) )
                                    CALL SLAMOV( 'All', QROWS, DIM4,
     $                                   WORK(IPW7+QROWS*DIM1), QROWS,
     $                                   Q((JLOC-1)*LLDQ+ILOC ), LLDQ )
                                 END IF
 510                          CONTINUE
                           END IF
                        END IF
*
                        IF( DIR.EQ.1 ) THEN
                           IF( LIHIC.LT.N ) THEN
                              INDX = LIHIC + 1
                              CALL INFOG2L( I, INDX, DESCT, NPROW,
     $                             NPCOL, MYROW, MYCOL, ILOC, JLOC,
     $                             RSRC, CSRC )
                              IF( MYROW.EQ.RSRC .AND. MYCOL.EQ.CSRC.AND.
     $                            MOD(LIHIC,NB).NE.0 ) THEN
                                 CALL BSLAAPP( 0, NWIN, TCOLS, NCB,
     $                                WORK( IPW6 ), NWIN, NITRAF,
     $                                IWORK(IPIW), WORK( IPW3 ),
     $                                WORK(IPW8) )
                                 CALL SLAMOV( 'All', DIM1, TCOLS,
     $                                WORK( IPW6 ), NWIN,
     $                                T((JLOC-1)*LLDT+ILOC), LLDT )
                              END IF
                              CALL INFOG2L( I+DIM1, INDX, DESCT, NPROW,
     $                             NPCOL, MYROW, MYCOL, ILOC, JLOC,
     $                             RSRC, CSRC )
                              IF( MYROW.EQ.RSRC .AND. MYCOL.EQ.CSRC.AND.
     $                             MOD(LIHIC,NB).NE.0 ) THEN
                                 IF( NPROW.GT.1 )
     $                                CALL BSLAAPP( 0, NWIN, TCOLS, NCB,
     $                                WORK( IPW6 ), NWIN, NITRAF,
     $                                IWORK(IPIW), WORK( IPW3 ),
     $                                WORK(IPW8) )
                                 CALL SLAMOV( 'All', DIM4, TCOLS,
     $                                WORK( IPW6+DIM1 ), NWIN,
     $                                T((JLOC-1)*LLDT+ILOC), LLDT )
                              END IF
                              INDXS = ICEIL(LIHIC,NB)*NB + 1
                              INDXE = MIN(N,INDXS+(NPCOL-2)*NB)
                              DO 520 INDX = INDXS, INDXE, NB
                                 CALL INFOG2L( I, INDX, DESCT, NPROW,
     $                                NPCOL, MYROW, MYCOL, ILOC, JLOC,
     $                                RSRC, CSRC )
                                 IF( MYROW.EQ.RSRC .AND. MYCOL.EQ.CSRC )
     $                                THEN
                                    CALL BSLAAPP( 0, NWIN, TCOLS, NCB,
     $                                   WORK(IPW6), NWIN, NITRAF,
     $                                   IWORK(IPIW), WORK( IPW3 ),
     $                                   WORK(IPW8) )
                                    CALL SLAMOV( 'All', DIM1, TCOLS,
     $                                   WORK( IPW6 ), NWIN,
     $                                   T((JLOC-1)*LLDT+ILOC), LLDT )
                                 END IF
                                 CALL INFOG2L( I+DIM1, INDX, DESCT,
     $                                NPROW, NPCOL, MYROW, MYCOL, ILOC,
     $                                JLOC, RSRC, CSRC )
                                 IF( MYROW.EQ.RSRC .AND. MYCOL.EQ.CSRC )
     $                                THEN
                                    IF( NPROW.GT.1 )
     $                                   CALL BSLAAPP( 0, NWIN, TCOLS,
     $                                   NCB, WORK(IPW6), NWIN, NITRAF,
     $                                   IWORK(IPIW), WORK( IPW3 ),
     $                                   WORK(IPW8) )
                                    CALL SLAMOV( 'All', DIM4, TCOLS,
     $                                   WORK( IPW6+DIM1 ), NWIN,
     $                                   T((JLOC-1)*LLDT+ILOC), LLDT )
                                 END IF
 520                          CONTINUE
                           END IF
                        END IF
                     END IF
                  END IF
*
 328              CONTINUE
*
 323           CONTINUE
*
*              End of loops over directions (DIR).
*
 2222       CONTINUE
*
*           End of loops over diagonal blocks for reordering over the
*           block diagonal.
*
 310     CONTINUE
         LAST = LAST + 1
         IF( LASTWAIT .AND. LAST.LT.2 ) GO TO 308
*
*        Barrier to collect the processes before proceeding.
*
         CALL BLACS_BARRIER( ICTXT, 'All' )
*
*        Compute global maximum of IERR so that we know if some process
*        experienced a failure in the reordering.
*
         MYIERR = IERR
         IF( NPROCS.GT.1 )
     $      CALL IGAMX2D( ICTXT, 'All', TOP, 1, 1, IERR, 1, -1,
     $           -1, -1, -1, -1 )
*
         IF( IERR.NE.0 ) THEN
*
*           When calling BDTREXC, the block at position I+KKS-1 failed
*           to swap.
*
            IF( MYIERR.NE.0 ) INFO = MAX(1,I+KKS-1)
            IF( NPROCS.GT.1 )
     $         CALL IGAMX2D( ICTXT, 'All', TOP, 1, 1, INFO, 1, -1,
     $              -1, -1, -1, -1 )
            GO TO 300
         END IF
*
*        Do a global update of the SELECT vector.
*
         DO 530 K = 1, N
            RSRC = INDXG2P( K, NB, MYROW, DESCT( RSRC_ ), NPROW )
            CSRC = INDXG2P( K, NB, MYCOL, DESCT( CSRC_ ), NPCOL )
            IF( MYROW.NE.RSRC .OR. MYCOL.NE.CSRC )
     $         SELECT( K ) = 0
 530     CONTINUE
         IF( NPROCS.GT.1 )
     $      CALL IGSUM2D( ICTXT, 'All', TOP, N, 1, SELECT, N, -1, -1 )
*
*        Find the global minumum of ILO and IHI.
*
         ILO = ILO - 1
 523     CONTINUE
         ILO = ILO + 1
         IF( ILO.LE.N ) THEN
            IF( SELECT(ILO).NE.0 ) GO TO 523
         END IF
         IHI = IHI + 1
 527     CONTINUE
         IHI = IHI - 1
         IF( IHI.GE.1 ) THEN
            IF( SELECT(IHI).EQ.0 ) GO TO 527
         END IF
*
*        End While ( ILO <= M )
         GO TO 50
      END IF
*
 300  CONTINUE
*
*     In case an error occured, do an additional global update of
*     SELECT.
*
      IF( INFO.NE.0 ) THEN
         DO 540 K = 1, N
            RSRC = INDXG2P( K, NB, MYROW, DESCT( RSRC_ ), NPROW )
            CSRC = INDXG2P( K, NB, MYCOL, DESCT( CSRC_ ), NPCOL )
            IF( MYROW.NE.RSRC .OR. MYCOL.NE.CSRC )
     $           SELECT( K ) = 0
 540     CONTINUE
         IF( NPROCS.GT.1 )
     $        CALL IGSUM2D( ICTXT, 'All', TOP, N, 1, SELECT, N, -1, -1 )
      END IF
*
 545  CONTINUE
*
*     Store the output eigenvalues in WR and WI: first let all the
*     processes compute the eigenvalue inside their diagonal blocks in
*     parallel, except for the eigenvalue located next to a block
*     border. After that, compute all eigenvalues located next to the
*     block borders. Finally, do a global summation over WR and WI so
*     that all processors receive the result. Notice: real eigenvalues
*     extracted from a non-canonical 2-by-2 block are not stored in
*     any particular order.
*
      DO 550 K = 1, N
         WR( K ) = ZERO
         WI( K ) = ZERO
 550  CONTINUE
*
*     Loop 560: extract eigenvalues from the blocks which are not laid
*     out across a border of the processor mesh, except for those 1x1
*     blocks on the border.
*
      PAIR = .FALSE.
      DO 560 K = 1, N
         IF( .NOT. PAIR ) THEN
            BORDER = ( K.NE.N .AND. MOD( K, NB ).EQ.0 ) .OR.
     %           ( K.NE.1 .AND. MOD( K, NB ).EQ.1 )
            IF( .NOT. BORDER ) THEN
               CALL INFOG2L( K, K, DESCT, NPROW, NPCOL, MYROW, MYCOL,
     $              ILOC1, JLOC1, TRSRC1, TCSRC1 )
               IF( MYROW.EQ.TRSRC1 .AND. MYCOL.EQ.TCSRC1 ) THEN
                  ELEM1 = T((JLOC1-1)*LLDT+ILOC1)
                  IF( K.LT.N ) THEN
                     ELEM3 = T((JLOC1-1)*LLDT+ILOC1+1)
                  ELSE
                     ELEM3 = ZERO
                  END IF
                  IF( ELEM3.NE.ZERO ) THEN
                     ELEM2 = T((JLOC1)*LLDT+ILOC1)
                     ELEM4 = T((JLOC1)*LLDT+ILOC1+1)
                     CALL SLANV2( ELEM1, ELEM2, ELEM3, ELEM4,
     $                    WR( K ), WI( K ), WR( K+1 ), WI( K+1 ), SN,
     $                    CS )
                     PAIR = .TRUE.
                  ELSE
                     IF( K.GT.1 ) THEN
                        TMP = T((JLOC1-2)*LLDT+ILOC1)
                        IF( TMP.NE.ZERO ) THEN
                           ELEM1 = T((JLOC1-2)*LLDT+ILOC1-1)
                           ELEM2 = T((JLOC1-1)*LLDT+ILOC1-1)
                           ELEM3 = T((JLOC1-2)*LLDT+ILOC1)
                           ELEM4 = T((JLOC1-1)*LLDT+ILOC1)
                           CALL SLANV2( ELEM1, ELEM2, ELEM3, ELEM4,
     $                          WR( K-1 ), WI( K-1 ), WR( K ),
     $                          WI( K ), SN, CS )
                        ELSE
                           WR( K ) = ELEM1
                        END IF
                     ELSE
                        WR( K ) = ELEM1
                     END IF
                  END IF
               END IF
            END IF
         ELSE
            PAIR = .FALSE.
         END IF
 560  CONTINUE
*
*     Loop 570: extract eigenvalues from the blocks which are laid
*     out across a border of the processor mesh. The processors are
*     numbered as below:
*
*                1 | 2
*                --+--
*                3 | 4
*
      DO 570 K = NB, N-1, NB
         CALL INFOG2L( K, K, DESCT, NPROW, NPCOL, MYROW, MYCOL,
     $        ILOC1, JLOC1, TRSRC1, TCSRC1 )
         CALL INFOG2L( K, K+1, DESCT, NPROW, NPCOL, MYROW, MYCOL,
     $        ILOC2, JLOC2, TRSRC2, TCSRC2 )
         CALL INFOG2L( K+1, K, DESCT, NPROW, NPCOL, MYROW, MYCOL,
     $        ILOC3, JLOC3, TRSRC3, TCSRC3 )
         CALL INFOG2L( K+1, K+1, DESCT, NPROW, NPCOL, MYROW, MYCOL,
     $        ILOC4, JLOC4, TRSRC4, TCSRC4 )
         IF( MYROW.EQ.TRSRC2 .AND. MYCOL.EQ.TCSRC2 ) THEN
            ELEM2 = T((JLOC2-1)*LLDT+ILOC2)
            IF( TRSRC1.NE.TRSRC2 .OR. TCSRC1.NE.TCSRC2 )
     $         CALL SGESD2D( ICTXT, 1, 1, ELEM2, 1, TRSRC1, TCSRC1 )
         END IF
         IF( MYROW.EQ.TRSRC3 .AND. MYCOL.EQ.TCSRC3 ) THEN
            ELEM3 = T((JLOC3-1)*LLDT+ILOC3)
            IF( TRSRC1.NE.TRSRC3 .OR. TCSRC1.NE.TCSRC3 )
     $         CALL SGESD2D( ICTXT, 1, 1, ELEM3, 1, TRSRC1, TCSRC1 )
         END IF
         IF( MYROW.EQ.TRSRC4 .AND. MYCOL.EQ.TCSRC4 ) THEN
            WORK(1) = T((JLOC4-1)*LLDT+ILOC4)
            IF( K+1.LT.N ) THEN
               WORK(2) = T((JLOC4-1)*LLDT+ILOC4+1)
            ELSE
               WORK(2) = ZERO
            END IF
            IF( TRSRC1.NE.TRSRC4 .OR. TCSRC1.NE.TCSRC4 )
     $         CALL SGESD2D( ICTXT, 2, 1, WORK, 2, TRSRC1, TCSRC1 )
         END IF
         IF( MYROW.EQ.TRSRC1 .AND. MYCOL.EQ.TCSRC1 ) THEN
            ELEM1 = T((JLOC1-1)*LLDT+ILOC1)
            IF( TRSRC1.NE.TRSRC2 .OR. TCSRC1.NE.TCSRC2 )
     $         CALL SGERV2D( ICTXT, 1, 1, ELEM2, 1, TRSRC2, TCSRC2 )
            IF( TRSRC1.NE.TRSRC3 .OR. TCSRC1.NE.TCSRC3 )
     $         CALL SGERV2D( ICTXT, 1, 1, ELEM3, 1, TRSRC3, TCSRC3 )
            IF( TRSRC1.NE.TRSRC4 .OR. TCSRC1.NE.TCSRC4 )
     $         CALL SGERV2D( ICTXT, 2, 1, WORK, 2, TRSRC4, TCSRC4 )
            ELEM4 = WORK(1)
            ELEM5 = WORK(2)
            IF( ELEM5.EQ.ZERO ) THEN
               IF( WR( K ).EQ.ZERO .AND. WI( K ).EQ.ZERO ) THEN
                  CALL SLANV2( ELEM1, ELEM2, ELEM3, ELEM4, WR( K ),
     $                 WI( K ), WR( K+1 ), WI( K+1 ), SN, CS )
               ELSEIF( WR( K+1 ).EQ.ZERO .AND. WI( K+1 ).EQ.ZERO ) THEN
                  WR( K+1 ) = ELEM4
               END IF
            ELSEIF( WR( K ).EQ.ZERO .AND. WI( K ).EQ.ZERO ) THEN
               WR( K ) = ELEM1
            END IF
         END IF
 570  CONTINUE
*
      IF( NPROCS.GT.1 ) THEN
         CALL SGSUM2D( ICTXT, 'All', TOP, N, 1, WR, N, -1, -1 )
         CALL SGSUM2D( ICTXT, 'All', TOP, N, 1, WI, N, -1, -1 )
      END IF
*
*     Store storage requirements in workspaces.
*
      WORK( 1 ) = FLOAT(LWMIN)
      IWORK( 1 ) = LIWMIN
*
*     Return to calling program.
*
      RETURN
*
*     End of PSTRORD
*
      END
*