1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
|
SUBROUTINE SLAR1VA(N, B1, BN, LAMBDA, D, L, LD, LLD,
$ PIVMIN, GAPTOL, Z, WANTNC, NEGCNT, ZTZ, MINGMA,
$ R, ISUPPZ, NRMINV, RESID, RQCORR, WORK )
*
IMPLICIT NONE
*
* -- ScaLAPACK computational routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver
* July 4, 2010
*
* .. Scalar Arguments ..
LOGICAL WANTNC
INTEGER B1, BN, N, NEGCNT, R
REAL GAPTOL, LAMBDA, MINGMA, NRMINV, PIVMIN, RESID,
$ RQCORR, ZTZ
* ..
* .. Array Arguments ..
INTEGER ISUPPZ( * )
REAL D( * ), L( * ), LD( * ), LLD( * ),
$ WORK( * )
REAL Z( * )
*
* Purpose
* =======
*
* SLAR1VA computes the (scaled) r-th column of the inverse of
* the sumbmatrix in rows B1 through BN of the tridiagonal matrix
* L D L^T - sigma I. When sigma is close to an eigenvalue, the
* computed vector is an accurate eigenvector. Usually, r corresponds
* to the index where the eigenvector is largest in magnitude.
* The following steps accomplish this computation :
* (a) Stationary qd transform, L D L^T - sigma I = L(+) D(+) L(+)^T,
* (b) Progressive qd transform, L D L^T - sigma I = U(-) D(-) U(-)^T,
* (c) Computation of the diagonal elements of the inverse of
* L D L^T - sigma I by combining the above transforms, and choosing
* r as the index where the diagonal of the inverse is (one of the)
* largest in magnitude.
* (d) Computation of the (scaled) r-th column of the inverse using the
* twisted factorization obtained by combining the top part of the
* the stationary and the bottom part of the progressive transform.
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix L D L^T.
*
* B1 (input) INTEGER
* First index of the submatrix of L D L^T.
*
* BN (input) INTEGER
* Last index of the submatrix of L D L^T.
*
* LAMBDA (input) REAL
* The shift. In order to compute an accurate eigenvector,
* LAMBDA should be a good approximation to an eigenvalue
* of L D L^T.
*
* L (input) REAL array, dimension (N-1)
* The (n-1) subdiagonal elements of the unit bidiagonal matrix
* L, in elements 1 to N-1.
*
* D (input) REAL array, dimension (N)
* The n diagonal elements of the diagonal matrix D.
*
* LD (input) REAL array, dimension (N-1)
* The n-1 elements L(i)*D(i).
*
* LLD (input) REAL array, dimension (N-1)
* The n-1 elements L(i)*L(i)*D(i).
*
* PIVMIN (input) REAL
* The minimum pivot in the Sturm sequence.
*
* GAPTOL (input) REAL
* Tolerance that indicates when eigenvector entries are negligible
* w.r.t. their contribution to the residual.
*
* Z (input/output) REAL array, dimension (N)
* On input, all entries of Z must be set to 0.
* On output, Z contains the (scaled) r-th column of the
* inverse. The scaling is such that Z(R) equals 1.
*
* WANTNC (input) LOGICAL
* Specifies whether NEGCNT has to be computed.
*
* NEGCNT (output) INTEGER
* If WANTNC is .TRUE. then NEGCNT = the number of pivots < pivmin
* in the matrix factorization L D L^T, and NEGCNT = -1 otherwise.
*
* ZTZ (output) REAL
* The square of the 2-norm of Z.
*
* MINGMA (output) REAL
* The reciprocal of the largest (in magnitude) diagonal
* element of the inverse of L D L^T - sigma I.
*
* R (input/output) INTEGER
* The twist index for the twisted factorization used to
* compute Z.
* On input, 0 <= R <= N. If R is input as 0, R is set to
* the index where (L D L^T - sigma I)^{-1} is largest
* in magnitude. If 1 <= R <= N, R is unchanged.
* On output, R contains the twist index used to compute Z.
* Ideally, R designates the position of the maximum entry in the
* eigenvector.
*
* ISUPPZ (output) INTEGER array, dimension (2)
* The support of the vector in Z, i.e., the vector Z is
* nonzero only in elements ISUPPZ(1) through ISUPPZ( 2 ).
*
* NRMINV (output) REAL
* NRMINV = 1/SQRT( ZTZ )
*
* RESID (output) REAL
* The residual of the FP vector.
* RESID = ABS( MINGMA )/SQRT( ZTZ )
*
* RQCORR (output) REAL
* The Rayleigh Quotient correction to LAMBDA.
* RQCORR = MINGMA*TMP
*
* WORK (workspace) REAL array, dimension (4*N)
*
* Further Details
* ===============
*
* Based on contributions by
* Beresford Parlett, University of California, Berkeley, USA
* Jim Demmel, University of California, Berkeley, USA
* Inderjit Dhillon, University of Texas, Austin, USA
* Osni Marques, LBNL/NERSC, USA
* Christof Voemel, University of California, Berkeley, USA
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLKLEN
PARAMETER ( BLKLEN = 16 )
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
* ..
* .. Local Scalars ..
LOGICAL SAWNAN1, SAWNAN2
INTEGER BI, I, INDLPL, INDP, INDS, INDUMN, NB, NEG1,
$ NEG2, NX, R1, R2, TO
REAL ABSZCUR, ABSZPREV, DMINUS, DPLUS, EPS,
$ S, TMP, ZPREV
* ..
* .. External Functions ..
LOGICAL SISNAN
REAL SLAMCH
EXTERNAL SISNAN, SLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, REAL
* ..
* .. Executable Statements ..
*
EPS = SLAMCH( 'Precision' )
IF( R.EQ.0 ) THEN
R1 = B1
R2 = BN
ELSE
R1 = R
R2 = R
END IF
* Storage for LPLUS
INDLPL = 0
* Storage for UMINUS
INDUMN = N
INDS = 2*N + 1
INDP = 3*N + 1
IF( B1.EQ.1 ) THEN
WORK( INDS ) = ZERO
ELSE
WORK( INDS+B1-1 ) = LLD( B1-1 )
END IF
*
* Compute the stationary transform (using the differential form)
* until the index R2.
*
SAWNAN1 = .FALSE.
NEG1 = 0
S = WORK( INDS+B1-1 ) - LAMBDA
DO 50 I = B1, R1 - 1
DPLUS = D( I ) + S
WORK( INDLPL+I ) = LD( I ) / DPLUS
IF(DPLUS.LT.ZERO) NEG1 = NEG1 + 1
WORK( INDS+I ) = S*WORK( INDLPL+I )*L( I )
S = WORK( INDS+I ) - LAMBDA
50 CONTINUE
SAWNAN1 = SISNAN( S )
IF( SAWNAN1 ) GOTO 60
DO 51 I = R1, R2 - 1
DPLUS = D( I ) + S
WORK( INDLPL+I ) = LD( I ) / DPLUS
WORK( INDS+I ) = S*WORK( INDLPL+I )*L( I )
S = WORK( INDS+I ) - LAMBDA
51 CONTINUE
SAWNAN1 = SISNAN( S )
*
60 CONTINUE
IF( SAWNAN1 ) THEN
* Runs a slower version of the above loop if a NaN is detected
NEG1 = 0
S = WORK( INDS+B1-1 ) - LAMBDA
DO 70 I = B1, R1 - 1
DPLUS = D( I ) + S
IF(ABS(DPLUS).LT.PIVMIN) DPLUS = -PIVMIN
WORK( INDLPL+I ) = LD( I ) / DPLUS
IF(DPLUS.LT.ZERO) NEG1 = NEG1 + 1
WORK( INDS+I ) = S*WORK( INDLPL+I )*L( I )
IF( WORK( INDLPL+I ).EQ.ZERO )
$ WORK( INDS+I ) = LLD( I )
S = WORK( INDS+I ) - LAMBDA
70 CONTINUE
DO 71 I = R1, R2 - 1
DPLUS = D( I ) + S
IF(ABS(DPLUS).LT.PIVMIN) DPLUS = -PIVMIN
WORK( INDLPL+I ) = LD( I ) / DPLUS
WORK( INDS+I ) = S*WORK( INDLPL+I )*L( I )
IF( WORK( INDLPL+I ).EQ.ZERO )
$ WORK( INDS+I ) = LLD( I )
S = WORK( INDS+I ) - LAMBDA
71 CONTINUE
END IF
*
* Compute the progressive transform (using the differential form)
* until the index R1
*
SAWNAN2 = .FALSE.
NEG2 = 0
WORK( INDP+BN-1 ) = D( BN ) - LAMBDA
DO 80 I = BN - 1, R1, -1
DMINUS = LLD( I ) + WORK( INDP+I )
TMP = D( I ) / DMINUS
IF(DMINUS.LT.ZERO) NEG2 = NEG2 + 1
WORK( INDUMN+I ) = L( I )*TMP
WORK( INDP+I-1 ) = WORK( INDP+I )*TMP - LAMBDA
80 CONTINUE
TMP = WORK( INDP+R1-1 )
SAWNAN2 = SISNAN( TMP )
IF( SAWNAN2 ) THEN
* Runs a slower version of the above loop if a NaN is detected
NEG2 = 0
DO 100 I = BN-1, R1, -1
DMINUS = LLD( I ) + WORK( INDP+I )
IF(ABS(DMINUS).LT.PIVMIN) DMINUS = -PIVMIN
TMP = D( I ) / DMINUS
IF(DMINUS.LT.ZERO) NEG2 = NEG2 + 1
WORK( INDUMN+I ) = L( I )*TMP
WORK( INDP+I-1 ) = WORK( INDP+I )*TMP - LAMBDA
IF( TMP.EQ.ZERO )
$ WORK( INDP+I-1 ) = D( I ) - LAMBDA
100 CONTINUE
END IF
*
* Find the index (from R1 to R2) of the largest (in magnitude)
* diagonal element of the inverse
*
MINGMA = WORK( INDS+R1-1 ) + WORK( INDP+R1-1 )
IF( MINGMA.LT.ZERO ) NEG1 = NEG1 + 1
IF( WANTNC ) THEN
NEGCNT = NEG1 + NEG2
ELSE
NEGCNT = -1
ENDIF
IF( ABS(MINGMA).EQ.ZERO )
$ MINGMA = EPS*WORK( INDS+R1-1 )
R = R1
DO 110 I = R1, R2 - 1
TMP = WORK( INDS+I ) + WORK( INDP+I )
IF( TMP.EQ.ZERO )
$ TMP = EPS*WORK( INDS+I )
IF( ABS( TMP ).LE.ABS( MINGMA ) ) THEN
MINGMA = TMP
R = I + 1
END IF
110 CONTINUE
*
* Compute the FP vector: solve N^T v = e_r
*
ISUPPZ( 1 ) = B1
ISUPPZ( 2 ) = BN
Z( R ) = ONE
ZTZ = ONE
*
* Compute the FP vector upwards from R
*
NB = INT((R-B1)/BLKLEN)
NX = R-NB*BLKLEN
IF( .NOT.SAWNAN1 ) THEN
DO 210 BI = R-1, NX, -BLKLEN
TO = BI-BLKLEN+1
DO 205 I = BI, TO, -1
Z( I ) = -( WORK(INDLPL+I)*Z(I+1) )
ZTZ = ZTZ + Z( I )*Z( I )
205 CONTINUE
IF( ABS(Z(TO)).LT.EPS .AND.
$ ABS(Z(TO+1)).LT.EPS ) THEN
ISUPPZ(1) = TO
GOTO 220
ENDIF
210 CONTINUE
DO 215 I = NX-1, B1, -1
Z( I ) = -( WORK(INDLPL+I)*Z(I+1) )
ZTZ = ZTZ + Z( I )*Z( I )
215 CONTINUE
220 CONTINUE
ELSE
* Run slower loop if NaN occurred.
DO 230 BI = R-1, NX, -BLKLEN
TO = BI-BLKLEN+1
DO 225 I = BI, TO, -1
IF( Z( I+1 ).EQ.ZERO ) THEN
Z( I ) = -( LD( I+1 ) / LD( I ) )*Z( I+2 )
ELSE
Z( I ) = -( WORK( INDLPL+I )*Z( I+1 ) )
END IF
ZTZ = ZTZ + Z( I )*Z( I )
225 CONTINUE
IF( ABS(Z(TO)).LT.EPS .AND.
$ ABS(Z(TO+1)).LT.EPS ) THEN
ISUPPZ(1) = TO
GOTO 240
ENDIF
230 CONTINUE
DO 235 I = NX-1, B1, -1
IF( Z( I+1 ).EQ.ZERO ) THEN
Z( I ) = -( LD( I+1 ) / LD( I ) )*Z( I+2 )
ELSE
Z( I ) = -( WORK( INDLPL+I )*Z( I+1 ) )
END IF
ZTZ = ZTZ + Z( I )*Z( I )
235 CONTINUE
240 CONTINUE
ENDIF
DO 245 I= B1, (ISUPPZ(1)-1)
Z(I) = ZERO
245 CONTINUE
* Compute the FP vector downwards from R in blocks of size BLKLEN
IF( .NOT.SAWNAN2 ) THEN
DO 260 BI = R+1, BN, BLKLEN
TO = BI+BLKLEN-1
IF ( TO.LE.BN ) THEN
DO 250 I = BI, TO
Z(I) = -(WORK(INDUMN+I-1)*Z(I-1))
ZTZ = ZTZ + Z( I )*Z( I )
250 CONTINUE
IF( ABS(Z(TO)).LE.EPS .AND.
$ ABS(Z(TO-1)).LE.EPS ) THEN
ISUPPZ(2) = TO
GOTO 265
ENDIF
ELSE
DO 255 I = BI, BN
Z(I) = -(WORK(INDUMN+I-1)*Z(I-1))
ZTZ = ZTZ + Z( I )*Z( I )
255 CONTINUE
ENDIF
260 CONTINUE
265 CONTINUE
ELSE
* Run slower loop if NaN occurred.
DO 280 BI = R+1, BN, BLKLEN
TO = BI+BLKLEN-1
IF ( TO.LE.BN ) THEN
DO 270 I = BI, TO
ZPREV = Z(I-1)
ABSZPREV = ABS(ZPREV)
IF( ZPREV.NE.ZERO ) THEN
Z(I)= -(WORK(INDUMN+I-1)*ZPREV)
ELSE
Z(I)= -(LD(I-2)/LD(I-1))*Z(I-2)
END IF
ABSZCUR = ABS(Z(I))
ZTZ = ZTZ + ABSZCUR**2
270 CONTINUE
IF( ABSZCUR.LT.EPS .AND.
$ ABSZPREV.LT.EPS ) THEN
ISUPPZ(2) = I
GOTO 285
ENDIF
ELSE
DO 275 I = BI, BN
ZPREV = Z(I-1)
ABSZPREV = ABS(ZPREV)
IF( ZPREV.NE.ZERO ) THEN
Z(I)= -(WORK(INDUMN+I-1)*ZPREV)
ELSE
Z(I)= -(LD(I-2)/LD(I-1))*Z(I-2)
END IF
ABSZCUR = ABS(Z(I))
ZTZ = ZTZ + ABSZCUR**2
275 CONTINUE
ENDIF
280 CONTINUE
285 CONTINUE
END IF
DO 290 I= ISUPPZ(2)+1,BN
Z(I) = ZERO
290 CONTINUE
*
* Compute quantities for convergence test
*
TMP = ONE / ZTZ
NRMINV = SQRT( TMP )
RESID = ABS( MINGMA )*NRMINV
RQCORR = MINGMA*TMP
*
RETURN
*
* End of SLAR1VA
*
END
|