1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
|
SUBROUTINE SLARRB2( N, D, LLD, IFIRST, ILAST, RTOL1,
$ RTOL2, OFFSET, W, WGAP, WERR, WORK, IWORK,
$ PIVMIN, LGPVMN, LGSPDM, TWIST, INFO )
*
* -- ScaLAPACK auxiliary routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver
* July 4, 2010
*
IMPLICIT NONE
*
* .. Scalar Arguments ..
INTEGER IFIRST, ILAST, INFO, N, OFFSET, TWIST
REAL LGPVMN, LGSPDM, PIVMIN,
$ RTOL1, RTOL2
* ..
* .. Array Arguments ..
INTEGER IWORK( * )
REAL D( * ), LLD( * ), W( * ),
$ WERR( * ), WGAP( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* Given the relatively robust representation(RRR) L D L^T, SLARRB2
* does "limited" bisection to refine the eigenvalues of L D L^T,
* W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initial
* guesses for these eigenvalues are input in W, the corresponding estimate
* of the error in these guesses and their gaps are input in WERR
* and WGAP, respectively. During bisection, intervals
* [left, right] are maintained by storing their mid-points and
* semi-widths in the arrays W and WERR respectively.
*
* NOTE:
* There are very few minor differences between SLARRB from LAPACK
* and this current subroutine SLARRB2.
* The most important reason for creating this nearly identical copy
* is profiling: in the ScaLAPACK MRRR algorithm, eigenvalue computation
* using SLARRB2 is used for refinement in the construction of
* the representation tree, as opposed to the initial computation of the
* eigenvalues for the root RRR which uses SLARRB. When profiling,
* this allows an easy quantification of refinement work vs. computing
* eigenvalues of the root.
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix.
*
* D (input) REAL array, dimension (N)
* The N diagonal elements of the diagonal matrix D.
*
* LLD (input) REAL array, dimension (N-1)
* The (N-1) elements L(i)*L(i)*D(i).
*
* IFIRST (input) INTEGER
* The index of the first eigenvalue to be computed.
*
* ILAST (input) INTEGER
* The index of the last eigenvalue to be computed.
*
* RTOL1 (input) REAL
* RTOL2 (input) REAL
* Tolerance for the convergence of the bisection intervals.
* An interval [LEFT,RIGHT] has converged if
* RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
* where GAP is the (estimated) distance to the nearest
* eigenvalue.
*
* OFFSET (input) INTEGER
* Offset for the arrays W, WGAP and WERR, i.e., the IFIRST-OFFSET
* through ILAST-OFFSET elements of these arrays are to be used.
*
* W (input/output) REAL array, dimension (N)
* On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are
* estimates of the eigenvalues of L D L^T indexed IFIRST through ILAST.
* On output, these estimates are refined.
*
* WGAP (input/output) REAL array, dimension (N-1)
* On input, the (estimated) gaps between consecutive
* eigenvalues of L D L^T, i.e., WGAP(I-OFFSET) is the gap between
* eigenvalues I and I+1. Note that if IFIRST.EQ.ILAST
* then WGAP(IFIRST-OFFSET) must be set to ZERO.
* On output, these gaps are refined.
*
* WERR (input/output) REAL array, dimension (N)
* On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET ) are
* the errors in the estimates of the corresponding elements in W.
* On output, these errors are refined.
*
* WORK (workspace) REAL array, dimension (4*N)
* Workspace.
*
* IWORK (workspace) INTEGER array, dimension (2*N)
* Workspace.
*
* PIVMIN (input) REAL
* The minimum pivot in the sturm sequence.
*
* LGPVMN (input) REAL
* Logarithm of PIVMIN, precomputed.
*
* LGSPDM (input) REAL
* Logarithm of the spectral diameter, precomputed.
*
* TWIST (input) INTEGER
* The twist index for the twisted factorization that is used
* for the negcount.
* TWIST = N: Compute negcount from L D L^T - LAMBDA I = L+ D+ L+^T
* TWIST = 1: Compute negcount from L D L^T - LAMBDA I = U- D- U-^T
* TWIST = R: Compute negcount from L D L^T - LAMBDA I = N(r) D(r) N(r)
*
* INFO (output) INTEGER
* Error flag.
*
* .. Parameters ..
REAL ZERO, TWO, HALF
PARAMETER ( ZERO = 0.0E0, TWO = 2.0E0,
$ HALF = 0.5E0 )
INTEGER MAXITR
* ..
* .. Local Scalars ..
INTEGER I, I1, II, INDLLD, IP, ITER, J, K, NEGCNT,
$ NEXT, NINT, OLNINT, PREV, R
REAL BACK, CVRGD, GAP, LEFT, LGAP, MID, MNWDTH,
$ RGAP, RIGHT, SAVGAP, TMP, WIDTH
LOGICAL PARANOID
* ..
* .. External Functions ..
LOGICAL SISNAN
REAL SLAMCH
INTEGER SLANEG2A
EXTERNAL SISNAN, SLAMCH,
$ SLANEG2A
*
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* ..
* .. Executable Statements ..
*
INFO = 0
*
* Turn on paranoid check for rounding errors
* invalidating uncertainty intervals of eigenvalues
*
PARANOID = .TRUE.
*
MAXITR = INT( ( LGSPDM - LGPVMN ) / LOG( TWO ) ) + 2
MNWDTH = TWO * PIVMIN
*
R = TWIST
*
INDLLD = 2*N
DO 5 J = 1, N-1
I=2*J
WORK(INDLLD+I-1) = D(J)
WORK(INDLLD+I) = LLD(J)
5 CONTINUE
WORK(INDLLD+2*N-1) = D(N)
*
IF((R.LT.1).OR.(R.GT.N)) R = N
*
* Initialize unconverged intervals in [ WORK(2*I-1), WORK(2*I) ].
* The Sturm Count, Count( WORK(2*I-1) ) is arranged to be I-1, while
* Count( WORK(2*I) ) is stored in IWORK( 2*I ). The integer IWORK( 2*I-1 )
* for an unconverged interval is set to the index of the next unconverged
* interval, and is -1 or 0 for a converged interval. Thus a linked
* list of unconverged intervals is set up.
*
I1 = IFIRST
* The number of unconverged intervals
NINT = 0
* The last unconverged interval found
PREV = 0
RGAP = WGAP( I1-OFFSET )
DO 75 I = I1, ILAST
K = 2*I
II = I - OFFSET
LEFT = W( II ) - WERR( II )
RIGHT = W( II ) + WERR( II )
LGAP = RGAP
RGAP = WGAP( II )
GAP = MIN( LGAP, RGAP )
IF((ABS(LEFT).LE.16*PIVMIN).OR.(ABS(RIGHT).LE.16*PIVMIN))
$ THEN
INFO = -1
RETURN
ENDIF
IF( PARANOID ) THEN
* Make sure that [LEFT,RIGHT] contains the desired eigenvalue
* Compute negcount from dstqds facto L+D+L+^T = L D L^T - LEFT
*
* Do while( NEGCNT(LEFT).GT.I-1 )
*
BACK = WERR( II )
20 CONTINUE
NEGCNT = SLANEG2A( N, WORK(INDLLD+1), LEFT, PIVMIN, R )
IF( NEGCNT.GT.I-1 ) THEN
LEFT = LEFT - BACK
BACK = TWO*BACK
GO TO 20
END IF
*
* Do while( NEGCNT(RIGHT).LT.I )
* Compute negcount from dstqds facto L+D+L+^T = L D L^T - RIGHT
*
BACK = WERR( II )
50 CONTINUE
NEGCNT = SLANEG2A( N, WORK(INDLLD+1),RIGHT, PIVMIN, R )
IF( NEGCNT.LT.I ) THEN
RIGHT = RIGHT + BACK
BACK = TWO*BACK
GO TO 50
END IF
ENDIF
WIDTH = HALF*ABS( LEFT - RIGHT )
TMP = MAX( ABS( LEFT ), ABS( RIGHT ) )
CVRGD = MAX(RTOL1*GAP,RTOL2*TMP)
IF( WIDTH.LE.CVRGD .OR. WIDTH.LE.MNWDTH ) THEN
* This interval has already converged and does not need refinement.
* (Note that the gaps might change through refining the
* eigenvalues, however, they can only get bigger.)
* Remove it from the list.
IWORK( K-1 ) = -1
* Make sure that I1 always points to the first unconverged interval
IF((I.EQ.I1).AND.(I.LT.ILAST)) I1 = I + 1
IF((PREV.GE.I1).AND.(I.LE.ILAST)) IWORK( 2*PREV-1 ) = I + 1
ELSE
* unconverged interval found
PREV = I
NINT = NINT + 1
IWORK( K-1 ) = I + 1
IWORK( K ) = NEGCNT
END IF
WORK( K-1 ) = LEFT
WORK( K ) = RIGHT
75 CONTINUE
*
* Do while( NINT.GT.0 ), i.e. there are still unconverged intervals
* and while (ITER.LT.MAXITR)
*
ITER = 0
80 CONTINUE
PREV = I1 - 1
I = I1
OLNINT = NINT
DO 100 IP = 1, OLNINT
K = 2*I
II = I - OFFSET
RGAP = WGAP( II )
LGAP = RGAP
IF(II.GT.1) LGAP = WGAP( II-1 )
GAP = MIN( LGAP, RGAP )
NEXT = IWORK( K-1 )
LEFT = WORK( K-1 )
RIGHT = WORK( K )
MID = HALF*( LEFT + RIGHT )
* semiwidth of interval
WIDTH = RIGHT - MID
TMP = MAX( ABS( LEFT ), ABS( RIGHT ) )
CVRGD = MAX(RTOL1*GAP,RTOL2*TMP)
IF( ( WIDTH.LE.CVRGD ) .OR. ( WIDTH.LE.MNWDTH ).OR.
$ ( ITER.EQ.MAXITR ) )THEN
* reduce number of unconverged intervals
NINT = NINT - 1
* Mark interval as converged.
IWORK( K-1 ) = 0
IF( I1.EQ.I ) THEN
I1 = NEXT
ELSE
* Prev holds the last unconverged interval previously examined
IF(PREV.GE.I1) IWORK( 2*PREV-1 ) = NEXT
END IF
I = NEXT
GO TO 100
END IF
PREV = I
*
* Perform one bisection step
*
NEGCNT = SLANEG2A( N, WORK(INDLLD+1), MID, PIVMIN, R )
IF( NEGCNT.LE.I-1 ) THEN
WORK( K-1 ) = MID
ELSE
WORK( K ) = MID
END IF
I = NEXT
100 CONTINUE
ITER = ITER + 1
* do another loop if there are still unconverged intervals
* However, in the last iteration, all intervals are accepted
* since this is the best we can do.
IF( ( NINT.GT.0 ).AND.(ITER.LE.MAXITR) ) GO TO 80
*
*
* At this point, all the intervals have converged
*
* save this gap to restore it after the loop
SAVGAP = WGAP( ILAST-OFFSET )
*
LEFT = WORK( 2*IFIRST-1 )
DO 110 I = IFIRST, ILAST
K = 2*I
II = I - OFFSET
* RIGHT is the right boundary of this current interval
RIGHT = WORK( K )
* All intervals marked by '0' have been refined.
IF( IWORK( K-1 ).EQ.0 ) THEN
W( II ) = HALF*( LEFT+RIGHT )
WERR( II ) = RIGHT - W( II )
END IF
* Left is the boundary of the next interval
LEFT = WORK( K +1 )
WGAP( II ) = MAX( ZERO, LEFT - RIGHT )
110 CONTINUE
* restore the last gap which was overwritten by garbage
WGAP( ILAST-OFFSET ) = SAVGAP
RETURN
*
* End of SLARRB2
*
END
*
*
*
FUNCTION SLANEG2( N, D, LLD, SIGMA, PIVMIN, R )
*
IMPLICIT NONE
*
INTEGER SLANEG2
*
* .. Scalar Arguments ..
INTEGER N, R
REAL PIVMIN, SIGMA
* ..
* .. Array Arguments ..
REAL D( * ), LLD( * )
*
REAL ZERO
PARAMETER ( ZERO = 0.0E0 )
INTEGER BLKLEN
PARAMETER ( BLKLEN = 2048 )
* ..
* .. Local Scalars ..
INTEGER BJ, J, NEG1, NEG2, NEGCNT, TO
REAL DMINUS, DPLUS, GAMMA, P, S, T, TMP, XSAV
LOGICAL SAWNAN
* ..
* .. External Functions ..
LOGICAL SISNAN
EXTERNAL SISNAN
NEGCNT = 0
*
* I) upper part: L D L^T - SIGMA I = L+ D+ L+^T
* run dstqds block-wise to avoid excessive work when NaNs occur
*
S = ZERO
DO 210 BJ = 1, R-1, BLKLEN
NEG1 = 0
XSAV = S
TO = BJ+BLKLEN-1
IF ( TO.LE.R-1 ) THEN
DO 21 J = BJ, TO
T = S - SIGMA
DPLUS = D( J ) + T
IF( DPLUS.LT.ZERO ) NEG1=NEG1 + 1
S = T*LLD( J ) / DPLUS
21 CONTINUE
ELSE
DO 22 J = BJ, R-1
T = S - SIGMA
DPLUS = D( J ) + T
IF( DPLUS.LT.ZERO ) NEG1=NEG1 + 1
S = T*LLD( J ) / DPLUS
22 CONTINUE
ENDIF
SAWNAN = SISNAN( S )
*
IF( SAWNAN ) THEN
NEG1 = 0
S = XSAV
TO = BJ+BLKLEN-1
IF ( TO.LE.R-1 ) THEN
DO 23 J = BJ, TO
T = S - SIGMA
DPLUS = D( J ) + T
IF(ABS(DPLUS).LT.PIVMIN)
$ DPLUS = -PIVMIN
TMP = LLD( J ) / DPLUS
IF( DPLUS.LT.ZERO )
$ NEG1 = NEG1 + 1
S = T*TMP
IF( TMP.EQ.ZERO ) S = LLD( J )
23 CONTINUE
ELSE
DO 24 J = BJ, R-1
T = S - SIGMA
DPLUS = D( J ) + T
IF(ABS(DPLUS).LT.PIVMIN)
$ DPLUS = -PIVMIN
TMP = LLD( J ) / DPLUS
IF( DPLUS.LT.ZERO ) NEG1=NEG1+1
S = T*TMP
IF( TMP.EQ.ZERO ) S = LLD( J )
24 CONTINUE
ENDIF
END IF
NEGCNT = NEGCNT + NEG1
210 CONTINUE
*
* II) lower part: L D L^T - SIGMA I = U- D- U-^T
*
P = D( N ) - SIGMA
DO 230 BJ = N-1, R, -BLKLEN
NEG2 = 0
XSAV = P
TO = BJ-BLKLEN+1
IF ( TO.GE.R ) THEN
DO 25 J = BJ, TO, -1
DMINUS = LLD( J ) + P
IF( DMINUS.LT.ZERO ) NEG2=NEG2+1
TMP = P / DMINUS
P = TMP * D( J ) - SIGMA
25 CONTINUE
ELSE
DO 26 J = BJ, R, -1
DMINUS = LLD( J ) + P
IF( DMINUS.LT.ZERO ) NEG2=NEG2+1
TMP = P / DMINUS
P = TMP * D( J ) - SIGMA
26 CONTINUE
ENDIF
SAWNAN = SISNAN( P )
*
IF( SAWNAN ) THEN
NEG2 = 0
P = XSAV
TO = BJ-BLKLEN+1
IF ( TO.GE.R ) THEN
DO 27 J = BJ, TO, -1
DMINUS = LLD( J ) + P
IF(ABS(DMINUS).LT.PIVMIN)
$ DMINUS = -PIVMIN
TMP = D( J ) / DMINUS
IF( DMINUS.LT.ZERO )
$ NEG2 = NEG2 + 1
P = P*TMP - SIGMA
IF( TMP.EQ.ZERO )
$ P = D( J ) - SIGMA
27 CONTINUE
ELSE
DO 28 J = BJ, R, -1
DMINUS = LLD( J ) + P
IF(ABS(DMINUS).LT.PIVMIN)
$ DMINUS = -PIVMIN
TMP = D( J ) / DMINUS
IF( DMINUS.LT.ZERO )
$ NEG2 = NEG2 + 1
P = P*TMP - SIGMA
IF( TMP.EQ.ZERO )
$ P = D( J ) - SIGMA
28 CONTINUE
ENDIF
END IF
NEGCNT = NEGCNT + NEG2
230 CONTINUE
*
* III) Twist index
*
GAMMA = S + P
IF( GAMMA.LT.ZERO ) NEGCNT = NEGCNT+1
SLANEG2 = NEGCNT
END
*
*
*
FUNCTION SLANEG2A( N, DLLD, SIGMA, PIVMIN, R )
*
IMPLICIT NONE
*
INTEGER SLANEG2A
*
* .. Scalar Arguments ..
INTEGER N, R
REAL PIVMIN, SIGMA
* ..
* .. Array Arguments ..
REAL DLLD( * )
*
REAL ZERO
PARAMETER ( ZERO = 0.0E0 )
INTEGER BLKLEN
PARAMETER ( BLKLEN = 512 )
*
* ..
* .. Intrinsic Functions ..
INTRINSIC INT
* ..
* .. Local Scalars ..
INTEGER BJ, I, J, NB, NEG1, NEG2, NEGCNT, NX
REAL DMINUS, DPLUS, GAMMA, P, S, T, TMP, XSAV
LOGICAL SAWNAN
* ..
* .. External Functions ..
LOGICAL SISNAN
EXTERNAL SISNAN
NEGCNT = 0
*
* I) upper part: L D L^T - SIGMA I = L+ D+ L+^T
* run dstqds block-wise to avoid excessive work when NaNs occur,
* first in chunks of size BLKLEN and then the remainder
*
NB = INT((R-1)/BLKLEN)
NX = NB*BLKLEN
S = ZERO
DO 210 BJ = 1, NX, BLKLEN
NEG1 = 0
XSAV = S
DO 21 J = BJ, BJ+BLKLEN-1
I = 2*J
T = S - SIGMA
DPLUS = DLLD( I-1 ) + T
IF( DPLUS.LT.ZERO ) NEG1=NEG1 + 1
S = T*DLLD( I ) / DPLUS
21 CONTINUE
SAWNAN = SISNAN( S )
*
IF( SAWNAN ) THEN
NEG1 = 0
S = XSAV
DO 23 J = BJ, BJ+BLKLEN-1
I = 2*J
T = S - SIGMA
DPLUS = DLLD( I-1 ) + T
IF(ABS(DPLUS).LT.PIVMIN)
$ DPLUS = -PIVMIN
TMP = DLLD( I ) / DPLUS
IF( DPLUS.LT.ZERO )
$ NEG1 = NEG1 + 1
S = T*TMP
IF( TMP.EQ.ZERO ) S = DLLD( I )
23 CONTINUE
END IF
NEGCNT = NEGCNT + NEG1
210 CONTINUE
*
NEG1 = 0
XSAV = S
DO 22 J = NX+1, R-1
I = 2*J
T = S - SIGMA
DPLUS = DLLD( I-1 ) + T
IF( DPLUS.LT.ZERO ) NEG1=NEG1 + 1
S = T*DLLD( I ) / DPLUS
22 CONTINUE
SAWNAN = SISNAN( S )
*
IF( SAWNAN ) THEN
NEG1 = 0
S = XSAV
DO 24 J = NX+1, R-1
I = 2*J
T = S - SIGMA
DPLUS = DLLD( I-1 ) + T
IF(ABS(DPLUS).LT.PIVMIN)
$ DPLUS = -PIVMIN
TMP = DLLD( I ) / DPLUS
IF( DPLUS.LT.ZERO ) NEG1=NEG1+1
S = T*TMP
IF( TMP.EQ.ZERO ) S = DLLD( I )
24 CONTINUE
ENDIF
NEGCNT = NEGCNT + NEG1
*
* II) lower part: L D L^T - SIGMA I = U- D- U-^T
*
NB = INT((N-R)/BLKLEN)
NX = N-NB*BLKLEN
P = DLLD( 2*N-1 ) - SIGMA
DO 230 BJ = N-1, NX, -BLKLEN
NEG2 = 0
XSAV = P
DO 25 J = BJ, BJ-BLKLEN+1, -1
I = 2*J
DMINUS = DLLD( I ) + P
IF( DMINUS.LT.ZERO ) NEG2=NEG2+1
TMP = P / DMINUS
P = TMP * DLLD( I-1 ) - SIGMA
25 CONTINUE
SAWNAN = SISNAN( P )
*
IF( SAWNAN ) THEN
NEG2 = 0
P = XSAV
DO 27 J = BJ, BJ-BLKLEN+1, -1
I = 2*J
DMINUS = DLLD( I ) + P
IF(ABS(DMINUS).LT.PIVMIN)
$ DMINUS = -PIVMIN
TMP = DLLD( I-1 ) / DMINUS
IF( DMINUS.LT.ZERO )
$ NEG2 = NEG2 + 1
P = P*TMP - SIGMA
IF( TMP.EQ.ZERO )
$ P = DLLD( I-1 ) - SIGMA
27 CONTINUE
END IF
NEGCNT = NEGCNT + NEG2
230 CONTINUE
NEG2 = 0
XSAV = P
DO 26 J = NX-1, R, -1
I = 2*J
DMINUS = DLLD( I ) + P
IF( DMINUS.LT.ZERO ) NEG2=NEG2+1
TMP = P / DMINUS
P = TMP * DLLD( I-1 ) - SIGMA
26 CONTINUE
SAWNAN = SISNAN( P )
*
IF( SAWNAN ) THEN
NEG2 = 0
P = XSAV
DO 28 J = NX-1, R, -1
I = 2*J
DMINUS = DLLD( I ) + P
IF(ABS(DMINUS).LT.PIVMIN)
$ DMINUS = -PIVMIN
TMP = DLLD( I-1 ) / DMINUS
IF( DMINUS.LT.ZERO )
$ NEG2 = NEG2 + 1
P = P*TMP - SIGMA
IF( TMP.EQ.ZERO )
$ P = DLLD( I-1 ) - SIGMA
28 CONTINUE
END IF
NEGCNT = NEGCNT + NEG2
*
* III) Twist index
*
GAMMA = S + P
IF( GAMMA.LT.ZERO ) NEGCNT = NEGCNT+1
SLANEG2A = NEGCNT
END
|