1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
|
SUBROUTINE SLARRV2( N, VL, VU, D, L, PIVMIN,
$ ISPLIT, M, DOL, DOU, NEEDIL, NEEDIU,
$ MINRGP, RTOL1, RTOL2, W, WERR, WGAP,
$ IBLOCK, INDEXW, GERS, SDIAM,
$ Z, LDZ, ISUPPZ,
$ WORK, IWORK, VSTART, FINISH,
$ MAXCLS, NDEPTH, PARITY, ZOFFSET, INFO )
* -- ScaLAPACK auxiliary routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver
* July 4, 2010
*
IMPLICIT NONE
*
* .. Scalar Arguments ..
INTEGER DOL, DOU, INFO, LDZ, M, N, MAXCLS,
$ NDEPTH, NEEDIL, NEEDIU, PARITY, ZOFFSET
REAL MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU
LOGICAL VSTART, FINISH
* ..
* .. Array Arguments ..
INTEGER IBLOCK( * ), INDEXW( * ), ISPLIT( * ),
$ ISUPPZ( * ), IWORK( * )
REAL D( * ), GERS( * ), L( * ), SDIAM( * ),
$ W( * ), WERR( * ),
$ WGAP( * ), WORK( * )
REAL Z( LDZ, * )
*
* Purpose
* =======
*
* SLARRV2 computes the eigenvectors of the tridiagonal matrix
* T = L D L^T given L, D and APPROXIMATIONS to the eigenvalues of L D L^T.
* The input eigenvalues should have been computed by SLARRE2A
* or by precious calls to SLARRV2.
*
* The major difference between the parallel and the sequential construction
* of the representation tree is that in the parallel case, not all eigenvalues
* of a given cluster might be computed locally. Other processors might "own"
* and refine part of an eigenvalue cluster. This is crucial for scalability.
* Thus there might be communication necessary before the current level of the
* representation tree can be parsed.
*
* Please note:
* 1. The calling sequence has two additional INTEGER parameters,
* DOL and DOU, that should satisfy M>=DOU>=DOL>=1.
* These parameters are only relevant for the case JOBZ = 'V'.
* SLARRV2 ONLY computes the eigenVECTORS
* corresponding to eigenvalues DOL through DOU in W. (That is,
* instead of computing the eigenvectors belonging to W(1)
* through W(M), only the eigenvectors belonging to eigenvalues
* W(DOL) through W(DOU) are computed. In this case, only the
* eigenvalues DOL:DOU are guaranteed to be accurately refined
* to all figures by Rayleigh-Quotient iteration.
*
* 2. The additional arguments VSTART, FINISH, NDEPTH, PARITY, ZOFFSET
* are included as a thread-safe implementation equivalent to SAVE variables.
* These variables store details about the local representation tree which is
* computed layerwise. For scalability reasons, eigenvalues belonging to the
* locally relevant representation tree might be computed on other processors.
* These need to be communicated before the inspection of the RRRs can proceed
* on any given layer.
* Note that only when the variable FINISH is true, the computation has ended
* All eigenpairs between DOL and DOU have been computed. M is set = DOU - DOL + 1.
*
* 3. SLARRV2 needs more workspace in Z than the sequential SLARRV.
* It is used to store the conformal embedding of the local representation tree.
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix. N >= 0.
*
* VL (input) REAL
* VU (input) REAL
* Lower and upper bounds of the interval that contains the desired
* eigenvalues. VL < VU. Needed to compute gaps on the left or right
* end of the extremal eigenvalues in the desired RANGE.
* VU is currently not used but kept as parameter in case needed.
*
* D (input/output) REAL array, dimension (N)
* On entry, the N diagonal elements of the diagonal matrix D.
* On exit, D is overwritten.
*
* L (input/output) REAL array, dimension (N)
* On entry, the (N-1) subdiagonal elements of the unit
* bidiagonal matrix L are in elements 1 to N-1 of L
* (if the matrix is not splitted.) At the end of each block
* is stored the corresponding shift as given by SLARRE.
* On exit, L is overwritten.
*
* PIVMIN (in) DOUBLE PRECISION
* The minimum pivot allowed in the sturm sequence.
*
* ISPLIT (input) INTEGER array, dimension (N)
* The splitting points, at which T breaks up into blocks.
* The first block consists of rows/columns 1 to
* ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
* through ISPLIT( 2 ), etc.
*
* M (input) INTEGER
* The total number of input eigenvalues. 0 <= M <= N.
*
* DOL (input) INTEGER
* DOU (input) INTEGER
* If the user wants to compute only selected eigenvectors from all
* the eigenvalues supplied, he can specify an index range DOL:DOU.
* Or else the setting DOL=1, DOU=M should be applied.
* Note that DOL and DOU refer to the order in which the eigenvalues
* are stored in W.
* If the user wants to compute only selected eigenpairs, then
* the columns DOL-1 to DOU+1 of the eigenvector space Z contain the
* computed eigenvectors. All other columns of Z are set to zero.
* If DOL > 1, then Z(:,DOL-1-ZOFFSET) is used.
* If DOU < M, then Z(:,DOU+1-ZOFFSET) is used.
*
*
* NEEDIL (input/output) INTEGER
* NEEDIU (input/output) INTEGER
* Describe which are the left and right outermost eigenvalues
* that still need to be included in the computation. These indices
* indicate whether eigenvalues from other processors are needed to
* correctly compute the conformally embedded representation tree.
* When DOL<=NEEDIL<=NEEDIU<=DOU, all required eigenvalues are local
* to the processor and no communication is required to compute its
* part of the representation tree.
*
* MINRGP (input) REAL
* The minimum relativ gap threshold to decide whether an eigenvalue
* or a cluster boundary is reached.
*
* RTOL1 (input) REAL
* RTOL2 (input) REAL
* Parameters for bisection.
* An interval [LEFT,RIGHT] has converged if
* RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
*
* W (input/output) REAL array, dimension (N)
* The first M elements of W contain the APPROXIMATE eigenvalues for
* which eigenvectors are to be computed. The eigenvalues
* should be grouped by split-off block and ordered from
* smallest to largest within the block. (The output array
* W from SSTEGR2A is expected here.) Furthermore, they are with
* respect to the shift of the corresponding root representation
* for their block. On exit,
* W holds those UNshifted eigenvalues
* for which eigenvectors have already been computed.
*
* WERR (input/output) REAL array, dimension (N)
* The first M elements contain the semiwidth of the uncertainty
* interval of the corresponding eigenvalue in W
*
* WGAP (input/output) REAL array, dimension (N)
* The separation from the right neighbor eigenvalue in W.
*
* IBLOCK (input) INTEGER array, dimension (N)
* The indices of the blocks (submatrices) associated with the
* corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
* W(i) belongs to the first block from the top, =2 if W(i)
* belongs to the second block, etc.
*
* INDEXW (input) INTEGER array, dimension (N)
* The indices of the eigenvalues within each block (submatrix);
* for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
* i-th eigenvalue W(i) is the 10-th eigenvalue in the second block.
*
* GERS (input) REAL array, dimension (2*N)
* The N Gerschgorin intervals (the i-th Gerschgorin interval
* is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should
* be computed from the original UNshifted matrix.
* Currently NOT used but kept as parameter in case it becomes
* needed in the future.
*
* SDIAM (input) REAL array, dimension (N)
* The spectral diameters for all unreduced blocks.
*
* Z (output) REAL array, dimension (LDZ, max(1,M) )
* If INFO = 0, the first M columns of Z contain the
* orthonormal eigenvectors of the matrix T
* corresponding to the input eigenvalues, with the i-th
* column of Z holding the eigenvector associated with W(i).
* In the distributed version, only a subset of columns
* is accessed, see DOL,DOU and ZOFFSET.
*
* LDZ (input) INTEGER
* The leading dimension of the array Z. LDZ >= 1, and if
* JOBZ = 'V', LDZ >= max(1,N).
*
* ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) )
* The support of the eigenvectors in Z, i.e., the indices
* indicating the nonzero elements in Z. The I-th eigenvector
* is nonzero only in elements ISUPPZ( 2*I-1 ) through
* ISUPPZ( 2*I ).
*
* WORK (workspace) REAL array, dimension (12*N)
*
* IWORK (workspace) INTEGER array, dimension (7*N)
*
* VSTART (input/output) LOGICAL
* .TRUE. on initialization, set to .FALSE. afterwards.
*
* FINISH (input/output) LOGICAL
* A flag that indicates whether all eigenpairs have been computed.
*
* MAXCLS (input/output) INTEGER
* The largest cluster worked on by this processor in the
* representation tree.
*
* NDEPTH (input/output) INTEGER
* The current depth of the representation tree. Set to
* zero on initial pass, changed when the deeper levels of
* the representation tree are generated.
*
* PARITY (input/output) INTEGER
* An internal parameter needed for the storage of the
* clusters on the current level of the representation tree.
*
* ZOFFSET (input) INTEGER
* Offset for storing the eigenpairs when Z is distributed
* in 1D-cyclic fashion.
*
* INFO (output) INTEGER
* = 0: successful exit
*
* > 0: A problem occured in SLARRV2.
* < 0: One of the called subroutines signaled an internal problem.
* Needs inspection of the corresponding parameter IINFO
* for further information.
*
* =-1: Problem in SLARRB2 when refining a child's eigenvalues.
* =-2: Problem in SLARRF2 when computing the RRR of a child.
* When a child is inside a tight cluster, it can be difficult
* to find an RRR. A partial remedy from the user's point of
* view is to make the parameter MINRGP smaller and recompile.
* However, as the orthogonality of the computed vectors is
* proportional to 1/MINRGP, the user should be aware that
* he might be trading in precision when he decreases MINRGP.
* =-3: Problem in SLARRB2 when refining a single eigenvalue
* after the Rayleigh correction was rejected.
* = 5: The Rayleigh Quotient Iteration failed to converge to
* full accuracy in MAXITR steps.
*
* =====================================================================
*
* .. Parameters ..
INTEGER MAXITR, USE30, USE31, USE32A, USE32B
PARAMETER ( MAXITR = 10, USE30=30, USE31=31,
$ USE32A=3210, USE32B = 3211 )
REAL ZERO, ONE, TWO, THREE, FOUR, HALF
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0,
$ TWO = 2.0E0, THREE = 3.0E0,
$ FOUR = 4.0E0, HALF = 0.5E0)
* ..
* .. Local Arrays ..
INTEGER SPLACE( 4 )
* ..
* .. Local Scalars ..
LOGICAL DELREF, ESKIP, NEEDBS, ONLYLC, STP2II, TRYMID,
$ TRYRQC, USEDBS, USEDRQ
INTEGER I, IBEGIN, IEND, II, IINCLS, IINDC1, IINDC2,
$ IINDWK, IINFO, IM, IN, INDEIG, INDLD, INDLLD,
$ INDWRK, ISUPMN, ISUPMX, ITER, ITMP1, ITWIST, J,
$ JBLK, K, KK, MINIWSIZE, MINWSIZE, MYWFST,
$ MYWLST, NCLUS, NEGCNT, NEWCLS, NEWFST, NEWFTT,
$ NEWLST, NEWSIZ, OFFSET, OLDCLS, OLDFST, OLDIEN,
$ OLDLST, OLDNCL, P, Q, VRTREE, WBEGIN, WEND,
$ WINDEX, WINDMN, WINDPL, ZFROM, ZINDEX, ZTO,
$ ZUSEDL, ZUSEDU, ZUSEDW
REAL AVGAP, BSTRES, BSTW, ENUFGP, EPS, FUDGE, GAP,
$ GAPTOL, LAMBDA, LEFT, LGAP, LGPVMN, LGSPDM,
$ LOG_IN, MGAP, MINGMA, MYERR, NRMINV, NXTERR,
$ ORTOL, RESID, RGAP, RIGHT, RLTL30, RQCORR,
$ RQTOL, SAVEGP, SGNDEF, SIGMA, SPDIAM, SSIGMA,
$ TAU, TMP, TOL, ZTZ
* ..
* .. External Functions ..
REAL SLAMCH
REAL SDOT, SNRM2
EXTERNAL SDOT, SLAMCH, SNRM2
* ..
* .. External Subroutines ..
EXTERNAL SAXPY, SCOPY, SLAR1VA, SLARRB2,
$ SLARRF2, SLASET, SSCAL
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, REAL, MAX, MIN, SQRT
* ..
* .. Executable Statements ..
* ..
INFO = 0
* The first N entries of WORK are reserved for the eigenvalues
INDLD = N+1
INDLLD= 2*N+1
INDWRK= 3*N+1
MINWSIZE = 12 * N
* IWORK(IINCLS+JBLK) holds the number of clusters on the current level
* of the reptree for block JBLK
IINCLS = 0
* IWORK(IINDC1+1:IINC2+N) are used to store the clusters of the current
* layer and the one above.
IINDC1 = N
IINDC2 = 2*N
IINDWK = 3*N + 1
MINIWSIZE = 7 * N
EPS = SLAMCH( 'Precision' )
RQTOL = TWO * EPS
TRYRQC = .TRUE.
* Decide which representation tree criterion to use
* USE30 = Lapack 3.0 criterion
* USE31 = LAPACK 3.1 criterion
* USE32A = two criteria, determines singletons with USE31, and groups with avgap.
* USE32B = two criteria, determines singletons with USE31, and groups with USE30.
VRTREE = USE32A
*
LGPVMN = LOG( PIVMIN )
IF(VSTART) THEN
*
* PREPROCESSING, DONE ONLY IN THE FIRST CALL
*
VSTART = .FALSE.
*
MAXCLS = 1
* Set delayed eigenvalue refinement
* In order to enable more parallelism, refinement
* must be done immediately and cannot be delayed until
* the next representation tree level.
DELREF = .FALSE.
DO 1 I= 1,MINWSIZE
WORK( I ) = ZERO
1 CONTINUE
DO 2 I= 1,MINIWSIZE
IWORK( I ) = 0
2 CONTINUE
ZUSEDL = 1
IF(DOL.GT.1) THEN
* Set lower bound for use of Z
ZUSEDL = DOL-1
ENDIF
ZUSEDU = M
IF(DOU.LT.M) THEN
* Set lower bound for use of Z
ZUSEDU = DOU+1
ENDIF
* The width of the part of Z that is used
ZUSEDW = ZUSEDU - ZUSEDL + 1
*
CALL SLASET( 'Full', N, ZUSEDW, ZERO, ZERO,
$ Z(1,(ZUSEDL-ZOFFSET)), LDZ )
* Initialize NDEPTH, the current depth of the representation tree
NDEPTH = 0
* Initialize parity
PARITY = 1
* Go through blocks, initialize data structures
IBEGIN = 1
WBEGIN = 1
DO 10 JBLK = 1, IBLOCK( M )
IEND = ISPLIT( JBLK )
SIGMA = L( IEND )
WEND = WBEGIN - 1
3 CONTINUE
IF( WEND.LT.M ) THEN
IF( IBLOCK( WEND+1 ).EQ.JBLK ) THEN
WEND = WEND + 1
GO TO 3
END IF
END IF
IF( WEND.LT.WBEGIN ) THEN
IWORK( IINCLS + JBLK ) = 0
IBEGIN = IEND + 1
GO TO 10
ELSEIF( (WEND.LT.DOL).OR.(WBEGIN.GT.DOU) ) THEN
IWORK( IINCLS + JBLK ) = 0
IBEGIN = IEND + 1
WBEGIN = WEND + 1
GO TO 10
END IF
* The number of eigenvalues in the current block
IM = WEND - WBEGIN + 1
* This is for a 1x1 block
IF( IBEGIN.EQ.IEND ) THEN
IWORK( IINCLS + JBLK ) = 0
Z( IBEGIN, (WBEGIN-ZOFFSET) ) = ONE
ISUPPZ( 2*WBEGIN-1 ) = IBEGIN
ISUPPZ( 2*WBEGIN ) = IBEGIN
W( WBEGIN ) = W( WBEGIN ) + SIGMA
WORK( WBEGIN ) = W( WBEGIN )
IBEGIN = IEND + 1
WBEGIN = WBEGIN + 1
GO TO 10
END IF
CALL SCOPY( IM, W( WBEGIN ), 1,
& WORK( WBEGIN ), 1 )
* We store in W the eigenvalue approximations w.r.t. the original
* matrix T.
DO 5 I=1,IM
W(WBEGIN+I-1) = W(WBEGIN+I-1)+SIGMA
5 CONTINUE
* Initialize cluster counter for this block
IWORK( IINCLS + JBLK ) = 1
IWORK( IINDC1+IBEGIN ) = 1
IWORK( IINDC1+IBEGIN+1 ) = IM
*
IBEGIN = IEND + 1
WBEGIN = WEND + 1
10 CONTINUE
*
ENDIF
* Init NEEDIL and NEEDIU
NEEDIL = DOU
NEEDIU = DOL
* Here starts the main loop
* Only one pass through the loop is done until no collaboration
* with other processors is needed.
40 CONTINUE
PARITY = 1 - PARITY
* For each block, build next level of representation tree
* if there are still remaining clusters
IBEGIN = 1
WBEGIN = 1
DO 170 JBLK = 1, IBLOCK( M )
IEND = ISPLIT( JBLK )
SIGMA = L( IEND )
* Find the eigenvectors of the submatrix indexed IBEGIN
* through IEND.
IF(M.EQ.N) THEN
* all eigenpairs are computed
WEND = IEND
ELSE
* count how many wanted eigenpairs are in this block
WEND = WBEGIN - 1
15 CONTINUE
IF( WEND.LT.M ) THEN
IF( IBLOCK( WEND+1 ).EQ.JBLK ) THEN
WEND = WEND + 1
GO TO 15
END IF
END IF
ENDIF
OLDNCL = IWORK( IINCLS + JBLK )
IF( OLDNCL.EQ.0 ) THEN
IBEGIN = IEND + 1
WBEGIN = WEND + 1
GO TO 170
END IF
* OLDIEN is the last index of the previous block
OLDIEN = IBEGIN - 1
* Calculate the size of the current block
IN = IEND - IBEGIN + 1
* The number of eigenvalues in the current block
IM = WEND - WBEGIN + 1
* Find local spectral diameter of the block
SPDIAM = SDIAM(JBLK)
LGSPDM = LOG( SPDIAM + PIVMIN )
* Compute ORTOL parameter, similar to SSTEIN
ORTOL = SPDIAM*1.0E-3
* Compute average gap
AVGAP = SPDIAM/REAL(IN-1)
* Compute the minimum of average gap and ORTOL parameter
* This can used as a lower bound for acceptable separation
* between eigenvalues
ENUFGP = MIN(ORTOL,AVGAP)
* Any 1x1 block has been treated before
* loop while( OLDNCLS.GT.0 )
* generate the next representation tree level for the current block
IF( OLDNCL.GT.0 ) THEN
* This is a crude protection against infinitely deep trees
IF( NDEPTH.GT.M ) THEN
INFO = -2
RETURN
ENDIF
* breadth first processing of the current level of the representation
* tree: OLDNCL = number of clusters on current level
* NCLUS is the number of clusters for the next level of the reptree
* reset NCLUS to count the number of child clusters
NCLUS = 0
*
LOG_IN = LOG(REAL(IN))
*
RLTL30 = MIN( 1.0E-2, ONE / REAL( IN ) )
*
IF( PARITY.EQ.0 ) THEN
OLDCLS = IINDC1+IBEGIN-1
NEWCLS = IINDC2+IBEGIN-1
ELSE
OLDCLS = IINDC2+IBEGIN-1
NEWCLS = IINDC1+IBEGIN-1
END IF
* Process the clusters on the current level
DO 150 I = 1, OLDNCL
J = OLDCLS + 2*I
* OLDFST, OLDLST = first, last index of current cluster.
* cluster indices start with 1 and are relative
* to WBEGIN when accessing W, WGAP, WERR, Z
OLDFST = IWORK( J-1 )
OLDLST = IWORK( J )
IF( NDEPTH.GT.0 ) THEN
* Retrieve relatively robust representation (RRR) of cluster
* that has been computed at the previous level
* The RRR is stored in Z and overwritten once the eigenvectors
* have been computed or when the cluster is refined
IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
* Get representation from location of the leftmost evalue
* of the cluster
J = WBEGIN + OLDFST - 1
ELSE
IF(WBEGIN+OLDFST-1.LT.DOL) THEN
* Get representation from the left end of Z array
J = DOL - 1
ELSEIF(WBEGIN+OLDFST-1.GT.DOU) THEN
* Get representation from the right end of Z array
J = DOU
ELSE
J = WBEGIN + OLDFST - 1
ENDIF
ENDIF
CALL SCOPY( IN, Z( IBEGIN, (J-ZOFFSET) ),
$ 1, D( IBEGIN ), 1 )
CALL SCOPY( IN-1, Z( IBEGIN, (J+1-ZOFFSET) ),
$ 1, L( IBEGIN ),1 )
SIGMA = Z( IEND, (J+1-ZOFFSET) )
* Set the corresponding entries in Z to zero
CALL SLASET( 'Full', IN, 2, ZERO, ZERO,
$ Z( IBEGIN, (J-ZOFFSET) ), LDZ )
END IF
* Compute DL and DLL of current RRR
DO 50 J = IBEGIN, IEND-1
TMP = D( J )*L( J )
WORK( INDLD-1+J ) = TMP
WORK( INDLLD-1+J ) = TMP*L( J )
50 CONTINUE
IF( NDEPTH.GT.0 .AND. DELREF ) THEN
* P and Q are index of the first and last eigenvalue to compute
* within the current block
P = INDEXW( WBEGIN-1+OLDFST )
Q = INDEXW( WBEGIN-1+OLDLST )
* Offset for the arrays WORK, WGAP and WERR, i.e., th P-OFFSET
* thru' Q-OFFSET elements of these arrays are to be used.
C OFFSET = P-OLDFST
OFFSET = INDEXW( WBEGIN ) - 1
* perform limited bisection (if necessary) to get approximate
* eigenvalues to the precision needed.
CALL SLARRB2( IN, D( IBEGIN ),
$ WORK(INDLLD+IBEGIN-1),
$ P, Q, RTOL1, RTOL2, OFFSET,
$ WORK(WBEGIN),WGAP(WBEGIN),WERR(WBEGIN),
$ WORK( INDWRK ), IWORK( IINDWK ),
$ PIVMIN, LGPVMN, LGSPDM, IN, IINFO )
IF( IINFO.NE.0 ) THEN
INFO = -1
RETURN
ENDIF
* We also recompute the extremal gaps. W holds all eigenvalues
* of the unshifted matrix and must be used for computation
* of WGAP, the entries of WORK might stem from RRRs with
* different shifts. The gaps from WBEGIN-1+OLDFST to
* WBEGIN-1+OLDLST are correctly computed in SLARRB2.
* However, we only allow the gaps to become greater since
* this is what should happen when we decrease WERR
IF( OLDFST.GT.1) THEN
WGAP( WBEGIN+OLDFST-2 ) =
$ MAX(WGAP(WBEGIN+OLDFST-2),
$ W(WBEGIN+OLDFST-1)-WERR(WBEGIN+OLDFST-1)
$ - W(WBEGIN+OLDFST-2)-WERR(WBEGIN+OLDFST-2) )
ENDIF
IF( WBEGIN + OLDLST -1 .LT. WEND ) THEN
WGAP( WBEGIN+OLDLST-1 ) =
$ MAX(WGAP(WBEGIN+OLDLST-1),
$ W(WBEGIN+OLDLST)-WERR(WBEGIN+OLDLST)
$ - W(WBEGIN+OLDLST-1)-WERR(WBEGIN+OLDLST-1) )
ENDIF
* Each time the eigenvalues in WORK get refined, we store
* the newly found approximation with all shifts applied in W
DO 53 J=OLDFST,OLDLST
W(WBEGIN+J-1) = WORK(WBEGIN+J-1)+SIGMA
53 CONTINUE
ELSEIF( (NDEPTH.EQ.0) .OR. (.NOT.DELREF) ) THEN
* Some of the eigenvalues might have been computed on
* other processors
* Recompute gaps for this cluster
* (all eigenvalues have the same
* representation, i.e. the same shift, so this is easy)
DO 54 J = OLDFST, OLDLST-1
MYERR = WERR(WBEGIN + J - 1)
NXTERR = WERR(WBEGIN + J )
WGAP(WBEGIN+J-1) = MAX(WGAP(WBEGIN+J-1),
$ ( WORK(WBEGIN+J) - NXTERR )
$ - ( WORK(WBEGIN+J-1) + MYERR )
$ )
54 CONTINUE
END IF
*
* Process the current node.
*
NEWFST = OLDFST
DO 140 J = OLDFST, OLDLST
IF( J.EQ.OLDLST ) THEN
* we are at the right end of the cluster, this is also the
* boundary of the child cluster
NEWLST = J
ELSE
IF (VRTREE.EQ.USE30) THEN
IF(WGAP( WBEGIN + J -1).GE.
$ RLTL30 * ABS(WORK(WBEGIN + J -1)) ) THEN
* the right relgap is big enough by the Lapack 3.0 criterion
NEWLST = J
ELSE
* inside a child cluster, the relative gap is not
* big enough.
GOTO 140
ENDIF
ELSE IF (VRTREE.EQ.USE31) THEN
IF ( WGAP( WBEGIN + J -1).GE.
$ MINRGP* ABS( WORK(WBEGIN + J -1) ) ) THEN
* the right relgap is big enough by the Lapack 3.1 criterion
* (NEWFST,..,NEWLST) is well separated from the following
NEWLST = J
ELSE
* inside a child cluster, the relative gap is not
* big enough.
GOTO 140
ENDIF
ELSE IF (VRTREE.EQ.USE32A) THEN
IF( (J.EQ.OLDFST).AND.( WGAP(WBEGIN+J-1).GE.
$ MINRGP* ABS(WORK(WBEGIN+J-1)) ) ) THEN
* the right relgap is big enough by the Lapack 3.1 criterion
* Found a singleton
NEWLST = J
ELSE IF( (J.GT.OLDFST).AND.(J.EQ.NEWFST).AND.
$ ( WGAP(WBEGIN+J-2).GE.
$ MINRGP* ABS(WORK(WBEGIN+J-1)) ).AND.
$ ( WGAP(WBEGIN+J-1).GE.
$ MINRGP* ABS(WORK(WBEGIN+J-1)) )
$ ) THEN
* Found a singleton
NEWLST = J
ELSE IF( (J.GT.NEWFST).AND.WGAP(WBEGIN+J-1).GE.
$ (MINRGP*ABS(WORK(WBEGIN+J-1)) ) )
$ THEN
* the right relgap is big enough by the Lapack 3.1 criterion
NEWLST = J
ELSE IF((J.GT.NEWFST).AND.(J+1.LT.OLDLST).AND.
$ (WGAP(WBEGIN+J-1).GE.ENUFGP))
$ THEN
* the right gap is bigger than ENUFGP
* Care needs to be taken with this criterion to make
* sure it does not create a remaining `false' singleton
NEWLST = J
ELSE
* inside a child cluster, the relative gap is not
* big enough.
GOTO 140
ENDIF
ELSE IF (VRTREE.EQ.USE32B) THEN
IF( (J.EQ.OLDFST).AND.( WGAP(WBEGIN+J-1).GE.
$ MINRGP* ABS(WORK(WBEGIN+J-1)) ) ) THEN
* the right relgap is big enough by the Lapack 3.1 criterion
* Found a singleton
NEWLST = J
ELSE IF( (J.GT.OLDFST).AND.(J.EQ.NEWFST).AND.
$ ( WGAP(WBEGIN+J-2).GE.
$ MINRGP* ABS(WORK(WBEGIN+J-1)) ).AND.
$ ( WGAP(WBEGIN+J-1).GE.
$ MINRGP* ABS(WORK(WBEGIN+J-1)) )
$ ) THEN
* Found a singleton
NEWLST = J
ELSE IF( (J.GT.NEWFST).AND.WGAP(WBEGIN+J-1).GE.
$ (MINRGP*ABS(WORK(WBEGIN+J-1)) ) )
$ THEN
* the right relgap is big enough by the Lapack 3.1 criterion
NEWLST = J
ELSE IF((J.GT.NEWFST).AND.(J+1.LT.OLDLST).AND.
$ (WGAP( WBEGIN + J -1).GE.
$ RLTL30 * ABS(WORK(WBEGIN + J -1)) ))
$ THEN
* the right relgap is big enough by the Lapack 3.0 criterion
* Care needs to be taken with this criterion to make
* sure it does not create a remaining `false' singleton
NEWLST = J
ELSE
* inside a child cluster, the relative gap is not
* big enough.
GOTO 140
ENDIF
END IF
END IF
* Compute size of child cluster found
NEWSIZ = NEWLST - NEWFST + 1
MAXCLS = MAX( NEWSIZ, MAXCLS )
* NEWFTT is the place in Z where the new RRR or the computed
* eigenvector is to be stored
IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
* Store representation at location of the leftmost evalue
* of the cluster
NEWFTT = WBEGIN + NEWFST - 1
ELSE
IF(WBEGIN+NEWFST-1.LT.DOL) THEN
* Store representation at the left end of Z array
NEWFTT = DOL - 1
ELSEIF(WBEGIN+NEWFST-1.GT.DOU) THEN
* Store representation at the right end of Z array
NEWFTT = DOU
ELSE
NEWFTT = WBEGIN + NEWFST - 1
ENDIF
ENDIF
* FOR 1D-DISTRIBUTED Z, COMPUTE NEWFTT SHIFTED BY ZOFFSET
NEWFTT = NEWFTT - ZOFFSET
IF( NEWSIZ.GT.1) THEN
*
* Current child is not a singleton but a cluster.
*
*
IF((WBEGIN+NEWLST-1.LT.DOL).OR.
$ (WBEGIN+NEWFST-1.GT.DOU)) THEN
* if the cluster contains no desired eigenvalues
* skip the computation of that branch of the rep. tree
GOTO 139
ENDIF
* Compute left and right cluster gap.
*
IF( NEWFST.EQ.1 ) THEN
LGAP = MAX( ZERO,
$ W(WBEGIN)-WERR(WBEGIN) - VL )
ELSE
LGAP = WGAP( WBEGIN+NEWFST-2 )
ENDIF
RGAP = WGAP( WBEGIN+NEWLST-1 )
*
* For larger clusters, record the largest gap observed
* somewhere near the middle of the cluster as a possible
* alternative position for a shift when TRYMID is TRUE
*
MGAP = ZERO
IF(NEWSIZ.GE.50) THEN
KK = NEWFST
DO 545 K =NEWFST+NEWSIZ/3,NEWLST-NEWSIZ/3
IF(MGAP.LT.WGAP( WBEGIN+K-1 )) THEN
KK = K
MGAP = WGAP( WBEGIN+K-1 )
ENDIF
545 CONTINUE
ENDIF
*
* Record the left- and right-most eigenvalues needed
* for the next level of the representation tree
NEEDIL = MIN(NEEDIL,WBEGIN+NEWFST-1)
NEEDIU = MAX(NEEDIU,WBEGIN+NEWLST-1)
*
* Check if middle gap is large enough to shift there
*
GAP = MIN(LGAP,RGAP)
TRYMID = (MGAP.GT.GAP)
SPLACE(1) = NEWFST
SPLACE(2) = NEWLST
IF(TRYMID) THEN
SPLACE(3) = KK
SPLACE(4) = KK+1
ELSE
SPLACE(3) = NEWFST
SPLACE(4) = NEWLST
ENDIF
*
* Compute left- and rightmost eigenvalue of child
* to high precision in order to shift as close
* as possible and obtain as large relative gaps
* as possible
*
DO 55 K =1,4
P = INDEXW( WBEGIN-1+SPLACE(K) )
OFFSET = INDEXW( WBEGIN ) - 1
CALL SLARRB2( IN, D(IBEGIN),
$ WORK( INDLLD+IBEGIN-1 ),P,P,
$ RQTOL, RQTOL, OFFSET,
$ WORK(WBEGIN),WGAP(WBEGIN),
$ WERR(WBEGIN),WORK( INDWRK ),
$ IWORK( IINDWK ),
$ PIVMIN, LGPVMN, LGSPDM, IN, IINFO )
55 CONTINUE
*
* Compute RRR of child cluster.
* Note that the new RRR is stored in Z
*
C SLARRF2 needs LWORK = 2*N
CALL SLARRF2( IN, D( IBEGIN ), L( IBEGIN ),
$ WORK(INDLD+IBEGIN-1),
$ SPLACE(1), SPLACE(2),
$ SPLACE(3), SPLACE(4), WORK(WBEGIN),
$ WGAP(WBEGIN), WERR(WBEGIN), TRYMID,
$ SPDIAM, LGAP, RGAP, PIVMIN, TAU,
$ Z( IBEGIN, NEWFTT ),
$ Z( IBEGIN, NEWFTT+1 ),
$ WORK( INDWRK ), IINFO )
IF( IINFO.EQ.0 ) THEN
* a new RRR for the cluster was found by SLARRF2
* update shift and store it
SSIGMA = SIGMA + TAU
Z( IEND, NEWFTT+1 ) = SSIGMA
* WORK() are the midpoints and WERR() the semi-width
* Note that the entries in W are unchanged.
DO 116 K = NEWFST, NEWLST
FUDGE =
$ THREE*EPS*ABS(WORK(WBEGIN+K-1))
WORK( WBEGIN + K - 1 ) =
$ WORK( WBEGIN + K - 1) - TAU
FUDGE = FUDGE +
$ FOUR*EPS*ABS(WORK(WBEGIN+K-1))
* Fudge errors
WERR( WBEGIN + K - 1 ) =
$ WERR( WBEGIN + K - 1 ) + FUDGE
116 CONTINUE
NCLUS = NCLUS + 1
K = NEWCLS + 2*NCLUS
IWORK( K-1 ) = NEWFST
IWORK( K ) = NEWLST
*
IF(.NOT.DELREF) THEN
ONLYLC = .TRUE.
*
IF(ONLYLC) THEN
MYWFST = MAX(WBEGIN-1+NEWFST,DOL-1)
MYWLST = MIN(WBEGIN-1+NEWLST,DOU+1)
ELSE
MYWFST = WBEGIN-1+NEWFST
MYWLST = WBEGIN-1+NEWLST
ENDIF
* Compute LLD of new RRR
DO 5000 K = IBEGIN, IEND-1
WORK( INDWRK-1+K ) =
$ Z(K,NEWFTT)*
$ (Z(K,NEWFTT+1)**2)
5000 CONTINUE
* P and Q are index of the first and last
* eigenvalue to compute within the new cluster
P = INDEXW( MYWFST )
Q = INDEXW( MYWLST )
* Offset for the arrays WORK, WGAP and WERR
OFFSET = INDEXW( WBEGIN ) - 1
* perform limited bisection (if necessary) to get approximate
* eigenvalues to the precision needed.
CALL SLARRB2( IN,
$ Z(IBEGIN, NEWFTT ),
$ WORK(INDWRK+IBEGIN-1),
$ P, Q, RTOL1, RTOL2, OFFSET,
$ WORK(WBEGIN),WGAP(WBEGIN),WERR(WBEGIN),
$ WORK( INDWRK+N ), IWORK( IINDWK ),
$ PIVMIN, LGPVMN, LGSPDM, IN, IINFO )
IF( IINFO.NE.0 ) THEN
INFO = -1
RETURN
ENDIF
* Each time the eigenvalues in WORK get refined, we store
* the newly found approximation with all shifts applied in W
DO 5003 K=NEWFST,NEWLST
W(WBEGIN+K-1) = WORK(WBEGIN+K-1)+SSIGMA
5003 CONTINUE
ENDIF
*
ELSE
INFO = -2
RETURN
ENDIF
ELSE
*
* Compute eigenvector of singleton
*
ITER = 0
*
TOL = FOUR * LOG_IN * EPS
*
K = NEWFST
WINDEX = WBEGIN + K - 1
ZINDEX = WINDEX - ZOFFSET
WINDMN = MAX(WINDEX - 1,1)
WINDPL = MIN(WINDEX + 1,M)
LAMBDA = WORK( WINDEX )
* Check if eigenvector computation is to be skipped
IF((WINDEX.LT.DOL).OR.
$ (WINDEX.GT.DOU)) THEN
ESKIP = .TRUE.
GOTO 125
ELSE
ESKIP = .FALSE.
ENDIF
LEFT = WORK( WINDEX ) - WERR( WINDEX )
RIGHT = WORK( WINDEX ) + WERR( WINDEX )
INDEIG = INDEXW( WINDEX )
IF( K .EQ. 1) THEN
LGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
ELSE
LGAP = WGAP(WINDMN)
ENDIF
IF( K .EQ. IM) THEN
RGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
ELSE
RGAP = WGAP(WINDEX)
ENDIF
GAP = MIN( LGAP, RGAP )
IF(( K .EQ. 1).OR.(K .EQ. IM)) THEN
GAPTOL = ZERO
ELSE
GAPTOL = GAP * EPS
ENDIF
ISUPMN = IN
ISUPMX = 1
* Update WGAP so that it holds the minimum gap
* to the left or the right. This is crucial in the
* case where bisection is used to ensure that the
* eigenvalue is refined up to the required precision.
* The correct value is restored afterwards.
SAVEGP = WGAP(WINDEX)
WGAP(WINDEX) = GAP
* We want to use the Rayleigh Quotient Correction
* as often as possible since it converges quadratically
* when we are close enough to the desired eigenvalue.
* However, the Rayleigh Quotient can have the wrong sign
* and lead us away from the desired eigenvalue. In this
* case, the best we can do is to use bisection.
USEDBS = .FALSE.
USEDRQ = .FALSE.
* Bisection is initially turned off unless it is forced
NEEDBS = .NOT.TRYRQC
* Reset ITWIST
ITWIST = 0
120 CONTINUE
* Check if bisection should be used to refine eigenvalue
IF(NEEDBS) THEN
* Take the bisection as new iterate
USEDBS = .TRUE.
* Temporary copy of twist index needed
ITMP1 = ITWIST
OFFSET = INDEXW( WBEGIN ) - 1
CALL SLARRB2( IN, D(IBEGIN),
$ WORK(INDLLD+IBEGIN-1),INDEIG,INDEIG,
$ ZERO, TWO*EPS, OFFSET,
$ WORK(WBEGIN),WGAP(WBEGIN),
$ WERR(WBEGIN),WORK( INDWRK ),
$ IWORK( IINDWK ),
$ PIVMIN, LGPVMN, LGSPDM, ITMP1, IINFO )
IF( IINFO.NE.0 ) THEN
INFO = -3
RETURN
ENDIF
LAMBDA = WORK( WINDEX )
* Reset twist index from inaccurate LAMBDA to
* force computation of true MINGMA
ITWIST = 0
ENDIF
* Given LAMBDA, compute the eigenvector.
CALL SLAR1VA( IN, 1, IN, LAMBDA, D(IBEGIN),
$ L( IBEGIN ), WORK(INDLD+IBEGIN-1),
$ WORK(INDLLD+IBEGIN-1),
$ PIVMIN, GAPTOL, Z( IBEGIN, ZINDEX),
$ .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
$ ITWIST, ISUPPZ( 2*WINDEX-1 ),
$ NRMINV, RESID, RQCORR, WORK( INDWRK ) )
IF(ITER .EQ. 0) THEN
BSTRES = RESID
BSTW = LAMBDA
ELSEIF(RESID.LT.BSTRES) THEN
BSTRES = RESID
BSTW = LAMBDA
ENDIF
ISUPMN = MIN(ISUPMN,ISUPPZ( 2*WINDEX-1 ))
ISUPMX = MAX(ISUPMX,ISUPPZ( 2*WINDEX ))
ITER = ITER + 1
*
* Convergence test for Rayleigh-Quotient iteration
* (omitted when Bisection has been used)
*
IF( RESID.GT.TOL*GAP .AND. ABS( RQCORR ).GT.
$ RQTOL*ABS( LAMBDA ) .AND. .NOT. USEDBS)
$ THEN
* We need to check that the RQCORR update doesn't
* move the eigenvalue away from the desired one and
* towards a neighbor. -> protection with bisection
IF(INDEIG.LE.NEGCNT) THEN
* The wanted eigenvalue lies to the left
SGNDEF = -ONE
ELSE
* The wanted eigenvalue lies to the right
SGNDEF = ONE
ENDIF
* We only use the RQCORR if it improves the
* the iterate reasonably.
IF( ( RQCORR*SGNDEF.GE.ZERO )
$ .AND.( LAMBDA + RQCORR.LE. RIGHT)
$ .AND.( LAMBDA + RQCORR.GE. LEFT)
$ ) THEN
USEDRQ = .TRUE.
* Store new midpoint of bisection interval in WORK
IF(SGNDEF.EQ.ONE) THEN
* The current LAMBDA is on the left of the true
* eigenvalue
LEFT = LAMBDA
ELSE
* The current LAMBDA is on the right of the true
* eigenvalue
RIGHT = LAMBDA
ENDIF
WORK( WINDEX ) =
$ HALF * (RIGHT + LEFT)
* Take RQCORR since it has the correct sign and
* improves the iterate reasonably
LAMBDA = LAMBDA + RQCORR
* Update width of error interval
WERR( WINDEX ) =
$ HALF * (RIGHT-LEFT)
ELSE
NEEDBS = .TRUE.
ENDIF
IF(RIGHT-LEFT.LT.RQTOL*ABS(LAMBDA)) THEN
* The eigenvalue is computed to bisection accuracy
* compute eigenvector and stop
USEDBS = .TRUE.
GOTO 120
ELSEIF( ITER.LT.MAXITR ) THEN
GOTO 120
ELSEIF( ITER.EQ.MAXITR ) THEN
NEEDBS = .TRUE.
GOTO 120
ELSE
INFO = 5
RETURN
END IF
ELSE
STP2II = .FALSE.
IF(USEDRQ .AND. USEDBS .AND.
$ BSTRES.LE.RESID) THEN
LAMBDA = BSTW
STP2II = .TRUE.
ENDIF
IF (STP2II) THEN
CALL SLAR1VA( IN, 1, IN, LAMBDA,
$ D( IBEGIN ), L( IBEGIN ),
$ WORK(INDLD+IBEGIN-1),
$ WORK(INDLLD+IBEGIN-1),
$ PIVMIN, GAPTOL,
$ Z( IBEGIN, ZINDEX ),
$ .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
$ ITWIST,
$ ISUPPZ( 2*WINDEX-1 ),
$ NRMINV, RESID, RQCORR, WORK( INDWRK ) )
ENDIF
WORK( WINDEX ) = LAMBDA
END IF
*
* Compute FP-vector support w.r.t. whole matrix
*
ISUPPZ( 2*WINDEX-1 ) = ISUPPZ( 2*WINDEX-1 )+OLDIEN
ISUPPZ( 2*WINDEX ) = ISUPPZ( 2*WINDEX )+OLDIEN
ZFROM = ISUPPZ( 2*WINDEX-1 )
ZTO = ISUPPZ( 2*WINDEX )
ISUPMN = ISUPMN + OLDIEN
ISUPMX = ISUPMX + OLDIEN
* Ensure vector is ok if support in the RQI has changed
IF(ISUPMN.LT.ZFROM) THEN
DO 122 II = ISUPMN,ZFROM-1
Z( II, ZINDEX ) = ZERO
122 CONTINUE
ENDIF
IF(ISUPMX.GT.ZTO) THEN
DO 123 II = ZTO+1,ISUPMX
Z( II, ZINDEX ) = ZERO
123 CONTINUE
ENDIF
CALL SSCAL( ZTO-ZFROM+1, NRMINV,
$ Z( ZFROM, ZINDEX ), 1 )
125 CONTINUE
* Update W
W( WINDEX ) = LAMBDA+SIGMA
* Recompute the gaps on the left and right
* But only allow them to become larger and not
* smaller (which can only happen through "bad"
* cancellation and doesn't reflect the theory
* where the initial gaps are underestimated due
* to WERR being too crude.)
IF(.NOT.ESKIP) THEN
IF( K.GT.1) THEN
WGAP( WINDMN ) = MAX( WGAP(WINDMN),
$ W(WINDEX)-WERR(WINDEX)
$ - W(WINDMN)-WERR(WINDMN) )
ENDIF
IF( WINDEX.LT.WEND ) THEN
WGAP( WINDEX ) = MAX( SAVEGP,
$ W( WINDPL )-WERR( WINDPL )
$ - W( WINDEX )-WERR( WINDEX) )
ENDIF
ENDIF
ENDIF
* here ends the code for the current child
*
139 CONTINUE
* Proceed to any remaining child nodes
NEWFST = J + 1
140 CONTINUE
150 CONTINUE
* Store number of clusters
IWORK( IINCLS + JBLK ) = NCLUS
*
END IF
IBEGIN = IEND + 1
WBEGIN = WEND + 1
170 CONTINUE
*
* Check if everything is done: no clusters left for
* this processor in any block
*
FINISH = .TRUE.
DO 180 JBLK = 1, IBLOCK( M )
FINISH = FINISH .AND. (IWORK(IINCLS + JBLK).EQ.0)
180 CONTINUE
IF(.NOT.FINISH) THEN
NDEPTH = NDEPTH + 1
IF((NEEDIL.GE.DOL).AND.(NEEDIU.LE.DOU)) THEN
* Once this processor's part of the
* representation tree consists exclusively of eigenvalues
* between DOL and DOU, it can work independently from all
* others.
GOTO 40
ENDIF
ENDIF
*
RETURN
*
* End of SLARRV2
*
END
|