| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 
 |       SUBROUTINE PCGBDCMV( LDBW, BWL, BWU, TRANS, N, A, JA, DESCA, NRHS,
     $                     B, IB, DESCB, X, WORK, LWORK, INFO )
*
*
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     November 15, 1997
*
*     .. Scalar Arguments ..
      CHARACTER          TRANS
      INTEGER            BWL, BWU, IB, INFO, JA, LDBW, LWORK, N, NRHS
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * ), DESCB( * )
      COMPLEX            A( * ), B( * ), WORK( * ), X( * )
*     ..
*
*
*  Purpose
*  =======
*
*
*  =====================================================================
*
*  Arguments
*  =========
*
*
*  TRANS   (global input) CHARACTER
*          = 'N':  Solve with A(1:N, JA:JA+N-1);
*          = 'C':  Solve with conjugate_transpose( A(1:N, JA:JA+N-1) );
*
*  N       (global input) INTEGER
*          The number of rows and columns to be operated on, i.e. the
*          order of the distributed submatrix A(1:N, JA:JA+N-1). N >= 0.
*
*  BWL     (global input) INTEGER
*          Number of subdiagonals. 0 <= BWL <= N-1
*
*  BWU     (global input) INTEGER
*          Number of superdiagonals. 0 <= BWU <= N-1
*
*  A       (local input/local output) COMPLEX pointer into
*          local memory to an array with first dimension
*          LLD_A >=(bwl+bwu+1) (stored in DESCA).
*          On entry, this array contains the local pieces of the
*          This local portion is stored in the packed banded format
*            used in LAPACK. Please see the Notes below and the
*            ScaLAPACK manual for more detail on the format of
*            distributed matrices.
*
*  JA      (global input) INTEGER
*          The index in the global array A that points to the start of
*          the matrix to be operated on (which may be either all of A
*          or a submatrix of A).
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN.
*          if 1D type (DTYPE_A=501), DLEN >= 7;
*          if 2D type (DTYPE_A=1), DLEN >= 9 .
*          The array descriptor for the distributed matrix A.
*          Contains information of mapping of A to memory. Please
*          see NOTES below for full description and options.
*
*  AF      (local output) COMPLEX array, dimension LAF.
*          Auxiliary Fillin Space.
*          Fillin is created during the factorization routine
*          PCDBTRF and this is stored in AF. If a linear system
*          is to be solved using PCDBTRS after the factorization
*          routine, AF *must not be altered* after the factorization.
*
*  LAF     (local input) INTEGER
*          Size of user-input Auxiliary Fillin space AF. Must be >=
*          NB*(bwl+bwu)+6*max(bwl,bwu)*max(bwl,bwu)
*          If LAF is not large enough, an error code will be returned
*          and the minimum acceptable size will be returned in AF( 1 )
*
*  WORK    (local workspace/local output)
*          COMPLEX temporary workspace. This space may
*          be overwritten in between calls to routines. WORK must be
*          the size given in LWORK.
*          On exit, WORK( 1 ) contains the minimal LWORK.
*
*  LWORK   (local input or global input) INTEGER
*          Size of user-input workspace WORK.
*          If LWORK is too small, the minimal acceptable size will be
*          returned in WORK(1) and an error code is returned. LWORK>=
*
*  INFO    (global output) INTEGER
*          = 0:  successful exit
*          < 0:  If the i-th argument is an array and the j-entry had
*                an illegal value, then INFO = -(i*100+j), if the i-th
*                argument is a scalar and had an illegal value, then
*                INFO = -i.
*
*  =====================================================================
*
*
*  Restrictions
*  ============
*
*  The following are restrictions on the input parameters. Some of these
*    are temporary and will be removed in future releases, while others
*    may reflect fundamental technical limitations.
*
*    Non-cyclic restriction: VERY IMPORTANT!
*      P*NB>= mod(JA-1,NB)+N.
*      The mapping for matrices must be blocked, reflecting the nature
*      of the divide and conquer algorithm as a task-parallel algorithm.
*      This formula in words is: no processor may have more than one
*      chunk of the matrix.
*
*    Blocksize cannot be too small:
*      If the matrix spans more than one processor, the following
*      restriction on NB, the size of each block on each processor,
*      must hold:
*      NB >= 2*MAX(BWL,BWU)
*      The bulk of parallel computation is done on the matrix of size
*      O(NB) on each processor. If this is too small, divide and conquer
*      is a poor choice of algorithm.
*
*    Submatrix reference:
*      JA = IB
*      Alignment restriction that prevents unnecessary communication.
*
*
*  =====================================================================
*
*
*  Notes
*  =====
*
*  If the factorization routine and the solve routine are to be called
*    separately (to solve various sets of righthand sides using the same
*    coefficient matrix), the auxiliary space AF *must not be altered*
*    between calls to the factorization routine and the solve routine.
*
*  The best algorithm for solving banded and tridiagonal linear systems
*    depends on a variety of parameters, especially the bandwidth.
*    Currently, only algorithms designed for the case N/P >> bw are
*    implemented. These go by many names, including Divide and Conquer,
*    Partitioning, domain decomposition-type, etc.
*
*  Algorithm description: Divide and Conquer
*
*    The Divide and Conqer algorithm assumes the matrix is narrowly
*      banded compared with the number of equations. In this situation,
*      it is best to distribute the input matrix A one-dimensionally,
*      with columns atomic and rows divided amongst the processes.
*      The basic algorithm divides the banded matrix up into
*      P pieces with one stored on each processor,
*      and then proceeds in 2 phases for the factorization or 3 for the
*      solution of a linear system.
*      1) Local Phase:
*         The individual pieces are factored independently and in
*         parallel. These factors are applied to the matrix creating
*         fillin, which is stored in a non-inspectable way in auxiliary
*         space AF. Mathematically, this is equivalent to reordering
*         the matrix A as P A P^T and then factoring the principal
*         leading submatrix of size equal to the sum of the sizes of
*         the matrices factored on each processor. The factors of
*         these submatrices overwrite the corresponding parts of A
*         in memory.
*      2) Reduced System Phase:
*         A small (max(bwl,bwu)* (P-1)) system is formed representing
*         interaction of the larger blocks, and is stored (as are its
*         factors) in the space AF. A parallel Block Cyclic Reduction
*         algorithm is used. For a linear system, a parallel front solve
*         followed by an analagous backsolve, both using the structure
*         of the factored matrix, are performed.
*      3) Backsubsitution Phase:
*         For a linear system, a local backsubstitution is performed on
*         each processor in parallel.
*
*
*  Descriptors
*  ===========
*
*  Descriptors now have *types* and differ from ScaLAPACK 1.0.
*
*  Note: banded codes can use either the old two dimensional
*    or new one-dimensional descriptors, though the processor grid in
*    both cases *must be one-dimensional*. We describe both types below.
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*
*  One-dimensional descriptors:
*
*  One-dimensional descriptors are a new addition to ScaLAPACK since
*    version 1.0. They simplify and shorten the descriptor for 1D
*    arrays.
*
*  Since ScaLAPACK supports two-dimensional arrays as the fundamental
*    object, we allow 1D arrays to be distributed either over the
*    first dimension of the array (as if the grid were P-by-1) or the
*    2nd dimension (as if the grid were 1-by-P). This choice is
*    indicated by the descriptor type (501 or 502)
*    as described below.
*
*    IMPORTANT NOTE: the actual BLACS grid represented by the
*    CTXT entry in the descriptor may be *either*  P-by-1 or 1-by-P
*    irrespective of which one-dimensional descriptor type
*    (501 or 502) is input.
*    This routine will interpret the grid properly either way.
*    ScaLAPACK routines *do not support intercontext operations* so that
*    the grid passed to a single ScaLAPACK routine *must be the same*
*    for all array descriptors passed to that routine.
*
*    NOTE: In all cases where 1D descriptors are used, 2D descriptors
*    may also be used, since a one-dimensional array is a special case
*    of a two-dimensional array with one dimension of size unity.
*    The two-dimensional array used in this case *must* be of the
*    proper orientation:
*      If the appropriate one-dimensional descriptor is DTYPEA=501
*      (1 by P type), then the two dimensional descriptor must
*      have a CTXT value that refers to a 1 by P BLACS grid;
*      If the appropriate one-dimensional descriptor is DTYPEA=502
*      (P by 1 type), then the two dimensional descriptor must
*      have a CTXT value that refers to a P by 1 BLACS grid.
*
*
*  Summary of allowed descriptors, types, and BLACS grids:
*  DTYPE           501         502         1         1
*  BLACS grid      1xP or Px1  1xP or Px1  1xP       Px1
*  -----------------------------------------------------
*  A               OK          NO          OK        NO
*  B               NO          OK          NO        OK
*
*  Let A be a generic term for any 1D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN  EXPLANATION
*  --------------- ---------- ------------------------------------------
*  DTYPE_A(global) DESCA( 1 ) The descriptor type. For 1D grids,
*                                TYPE_A = 501: 1-by-P grid.
*                                TYPE_A = 502: P-by-1 grid.
*  CTXT_A (global) DESCA( 2 ) The BLACS context handle, indicating
*                                the BLACS process grid A is distribu-
*                                ted over. The context itself is glo-
*                                bal, but the handle (the integer
*                                value) may vary.
*  N_A    (global) DESCA( 3 ) The size of the array dimension being
*                                distributed.
*  NB_A   (global) DESCA( 4 ) The blocking factor used to distribute
*                                the distributed dimension of the array.
*  SRC_A  (global) DESCA( 5 ) The process row or column over which the
*                                first row or column of the array
*                                is distributed.
*  LLD_A  (local)  DESCA( 6 ) The leading dimension of the local array
*                                storing the local blocks of the distri-
*                                buted array A. Minimum value of LLD_A
*                                depends on TYPE_A.
*                                TYPE_A = 501: LLD_A >=
*                                   size of undistributed dimension, 1.
*                                TYPE_A = 502: LLD_A >=NB_A, 1.
*  Reserved        DESCA( 7 ) Reserved for future use.
*
*
*
*  =====================================================================
*
*  Code Developer: Andrew J. Cleary, University of Tennessee.
*    Current address: Lawrence Livermore National Labs.
*  This version released: August, 2001.
*
*  =====================================================================
*
*     ..
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0 )
      PARAMETER          ( ZERO = 0.0E+0 )
      COMPLEX            CONE, CZERO
      PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ) )
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ) )
      INTEGER            INT_ONE
      PARAMETER          ( INT_ONE = 1 )
      INTEGER            DESCMULT, BIGNUM
      PARAMETER          (DESCMULT = 100, BIGNUM = DESCMULT * DESCMULT)
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
*     ..
*     .. Local Scalars ..
      INTEGER            CSRC, DL_N_M, DL_N_N, DL_P_M, DL_P_N, DU_N_M,
     $                   DU_N_N, DU_P_M, DU_P_N, FIRST_PROC, I, ICTXT,
     $                   ICTXT_NEW, ICTXT_SAVE, IDUM2, IDUM3, J, JA_NEW,
     $                   LLDA, LLDB, MAX_BW, MYCOL, MYROW, MY_NUM_COLS,
     $                   NB, NP, NPCOL, NPROW, NP_SAVE, ODD_SIZE, OFST,
     $                   PART_OFFSET, PART_SIZE, STORE_M_B, STORE_N_A
      INTEGER NUMROC_SIZE
*     ..
*     .. Local Arrays ..
      INTEGER            PARAM_CHECK( 17, 3 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, PXERBLA, RESHAPE
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            NUMROC
      EXTERNAL           LSAME, NUMROC
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ICHAR, MIN, MOD
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters
*
      INFO = 0
*
      ICTXT = DESCA( CTXT_ )
      CSRC = DESCA( CSRC_ )
      NB = DESCA( NB_ )
      LLDA = DESCA( LLD_ )
      STORE_N_A = DESCA( N_ )
      LLDB = DESCB( LLD_ )
      STORE_M_B = DESCB( M_ )
*
*
*     Size of separator blocks is maximum of bandwidths
*
      MAX_BW = MAX(BWL,BWU)
*
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
      NP = NPROW * NPCOL
*
*
*
      IF( LSAME( TRANS, 'N' ) ) THEN
         IDUM2 = ICHAR( 'N' )
      ELSE IF ( LSAME( TRANS, 'C' ) ) THEN
         IDUM2 = ICHAR( 'C' )
      ELSE
         INFO = -1
      END IF
*
      IF( LWORK .LT. -1) THEN
         INFO = -15
      ELSE IF ( LWORK .EQ. -1 ) THEN
         IDUM3 = -1
      ELSE
         IDUM3 = 1
      ENDIF
*
      IF( N .LT. 0 ) THEN
         INFO = -2
      ENDIF
*
      IF( N+JA-1 .GT. STORE_N_A ) THEN
         INFO = -( 8*100 + 6 )
      ENDIF
*
      IF(( BWL .GT. N-1 ) .OR.
     $   ( BWL .LT. 0 ) ) THEN
         INFO = -3
      ENDIF
*
      IF(( BWU .GT. N-1 ) .OR.
     $   ( BWU .LT. 0 ) ) THEN
         INFO = -4
      ENDIF
*
      IF( LLDA .LT. (BWL+BWU+1) ) THEN
         INFO = -( 8*100 + 6 )
      ENDIF
*
      IF( NB .LE. 0 ) THEN
         INFO = -( 8*100 + 4 )
      ENDIF
*
*     Argument checking that is specific to Divide & Conquer routine
*
      IF( NPROW .NE. 1 ) THEN
         INFO = -( 8*100+2 )
      ENDIF
*
      IF( N .GT. NP*NB-MOD( JA-1, NB )) THEN
         INFO = -( 2 )
         CALL PXERBLA( ICTXT,
     $      'PCDBDCMV, D&C alg.: only 1 block per proc',
     $      -INFO )
         RETURN
      ENDIF
*
      IF((JA+N-1.GT.NB) .AND. ( NB.LT.2*MAX(BWL,BWU) )) THEN
         INFO = -( 8*100+4 )
         CALL PXERBLA( ICTXT,
     $      'PCDBDCMV, D&C alg.: NB too small',
     $      -INFO )
         RETURN
      ENDIF
*
*
*     Pack params and positions into arrays for global consistency check
*
      PARAM_CHECK( 17, 1 ) = DESCB(5)
      PARAM_CHECK( 16, 1 ) = DESCB(4)
      PARAM_CHECK( 15, 1 ) = DESCB(3)
      PARAM_CHECK( 14, 1 ) = DESCB(2)
      PARAM_CHECK( 13, 1 ) = DESCB(1)
      PARAM_CHECK( 12, 1 ) = IB
      PARAM_CHECK( 11, 1 ) = DESCA(5)
      PARAM_CHECK( 10, 1 ) = DESCA(4)
      PARAM_CHECK(  9, 1 ) = DESCA(3)
      PARAM_CHECK(  8, 1 ) = DESCA(1)
      PARAM_CHECK(  7, 1 ) = JA
      PARAM_CHECK(  6, 1 ) = NRHS
      PARAM_CHECK(  5, 1 ) = BWU
      PARAM_CHECK(  4, 1 ) = BWL
      PARAM_CHECK(  3, 1 ) = N
      PARAM_CHECK(  2, 1 ) = IDUM3
      PARAM_CHECK(  1, 1 ) = IDUM2
*
      PARAM_CHECK( 17, 2 ) = 1105
      PARAM_CHECK( 16, 2 ) = 1104
      PARAM_CHECK( 15, 2 ) = 1103
      PARAM_CHECK( 14, 2 ) = 1102
      PARAM_CHECK( 13, 2 ) = 1101
      PARAM_CHECK( 12, 2 ) = 10
      PARAM_CHECK( 11, 2 ) = 805
      PARAM_CHECK( 10, 2 ) = 804
      PARAM_CHECK(  9, 2 ) = 803
      PARAM_CHECK(  8, 2 ) = 801
      PARAM_CHECK(  7, 2 ) = 7
      PARAM_CHECK(  6, 2 ) = 5
      PARAM_CHECK(  5, 2 ) = 4
      PARAM_CHECK(  4, 2 ) = 3
      PARAM_CHECK(  3, 2 ) = 2
      PARAM_CHECK(  2, 2 ) = 15
      PARAM_CHECK(  1, 2 ) = 1
*
*     Want to find errors with MIN( ), so if no error, set it to a big
*     number. If there already is an error, multiply by the the
*     descriptor multiplier.
*
      IF( INFO.GE.0 ) THEN
         INFO = BIGNUM
      ELSE IF( INFO.LT.-DESCMULT ) THEN
         INFO = -INFO
      ELSE
         INFO = -INFO * DESCMULT
      END IF
*
*     Check consistency across processors
*
      CALL GLOBCHK( ICTXT, 17, PARAM_CHECK, 17,
     $              PARAM_CHECK( 1, 3 ), INFO )
*
*     Prepare output: set info = 0 if no error, and divide by DESCMULT
*     if error is not in a descriptor entry.
*
      IF( INFO.EQ.BIGNUM ) THEN
         INFO = 0
      ELSE IF( MOD( INFO, DESCMULT ) .EQ. 0 ) THEN
         INFO = -INFO / DESCMULT
      ELSE
         INFO = -INFO
      END IF
*
      IF( INFO.LT.0 ) THEN
         CALL PXERBLA( ICTXT, 'PCDBDCMV', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*
*     Adjust addressing into matrix space to properly get into
*        the beginning part of the relevant data
*
      PART_OFFSET = NB*( (JA-1)/(NPCOL*NB) )
*
      IF ( (MYCOL-CSRC) .LT. (JA-PART_OFFSET-1)/NB ) THEN
         PART_OFFSET = PART_OFFSET + NB
      ENDIF
*
      IF ( MYCOL .LT. CSRC ) THEN
         PART_OFFSET = PART_OFFSET - NB
      ENDIF
*
*     Form a new BLACS grid (the "standard form" grid) with only procs
*        holding part of the matrix, of size 1xNP where NP is adjusted,
*        starting at csrc=0, with JA modified to reflect dropped procs.
*
*     First processor to hold part of the matrix:
*
      FIRST_PROC = MOD( ( JA-1 )/NB+CSRC, NPCOL )
*
*     Calculate new JA one while dropping off unused processors.
*
      JA_NEW = MOD( JA-1, NB ) + 1
*
*     Save and compute new value of NP
*
      NP_SAVE = NP
      NP = ( JA_NEW+N-2 )/NB + 1
*
*     Call utility routine that forms "standard-form" grid
*
      CALL RESHAPE( ICTXT, INT_ONE, ICTXT_NEW, INT_ONE,
     $              FIRST_PROC, INT_ONE, NP )
*
*     Use new context from standard grid as context.
*
      ICTXT_SAVE = ICTXT
      ICTXT = ICTXT_NEW
*
*     Get information about new grid.
*
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
*     Drop out processors that do not have part of the matrix.
*
      IF( MYROW .LT. 0 ) THEN
         GOTO 1234
      ENDIF
*
*     ********************************
*     Values reused throughout routine
*
*     User-input value of partition size
*
      PART_SIZE = NB
*
*     Number of columns in each processor
*
      MY_NUM_COLS = NUMROC( N, PART_SIZE, MYCOL, 0, NPCOL )
*
*     Offset in columns to beginning of main partition in each proc
*
      IF ( MYCOL .EQ. 0 ) THEN
        PART_OFFSET = PART_OFFSET+MOD( JA_NEW-1, PART_SIZE )
        MY_NUM_COLS = MY_NUM_COLS - MOD(JA_NEW-1, PART_SIZE )
      ENDIF
*
*     Offset in elements
*
      OFST = PART_OFFSET*LLDA
*
*     Size of main (or odd) partition in each processor
*
      ODD_SIZE = MY_NUM_COLS
      IF ( MYCOL .LT. NP-1 ) THEN
         ODD_SIZE = ODD_SIZE - MAX_BW
      ENDIF
*
*
*
*       Zero out solution to use to accumulate answer
*
        NUMROC_SIZE =
     $    NUMROC( N, PART_SIZE, MYCOL, 0, NPCOL)
*
        DO 2279 J=1,NRHS
          DO 4502 I=1,NUMROC_SIZE
            X( (J-1)*LLDB + I ) = CZERO
 4502     CONTINUE
 2279   CONTINUE
*
        DO 5642 I=1, (MAX_BW+2)*MAX_BW
          WORK( I ) = CZERO
 5642   CONTINUE
*
*     Begin main code
*
*
**************************************
*
      IF ( LSAME( TRANS, 'N' ) ) THEN
*
*       Sizes of the extra triangles communicated bewtween processors
*
        IF( MYCOL .GT. 0 ) THEN
*
          DL_P_M= MIN( BWL,
     $          NUMROC( N, PART_SIZE, MYCOL, 0, NPCOL ) )
          DL_P_N= MIN( BWL,
     $          NUMROC( N, PART_SIZE, MYCOL-1, 0, NPCOL ) )
*
          DU_P_M= MIN( BWU,
     $          NUMROC( N, PART_SIZE, MYCOL-1, 0, NPCOL ) )
          DU_P_N= MIN( BWU,
     $          NUMROC( N, PART_SIZE, MYCOL, 0, NPCOL ) )
        ENDIF
*
        IF( MYCOL .LT. NPCOL-1 ) THEN
*
          DL_N_M= MIN( BWL,
     $          NUMROC( N, PART_SIZE, MYCOL+1, 0, NPCOL ) )
          DL_N_N= MIN( BWL,
     $          NUMROC( N, PART_SIZE, MYCOL, 0, NPCOL ) )
*
          DU_N_M= MIN( BWU,
     $          NUMROC( N, PART_SIZE, MYCOL, 0, NPCOL ) )
          DU_N_N= MIN( BWU,
     $          NUMROC( N, PART_SIZE, MYCOL+1, 0, NPCOL ) )
        ENDIF
*
*
*       Use main partition in each processor to multiply locally
*
        CALL CGBMV( TRANS, NUMROC_SIZE, NUMROC_SIZE, BWL, BWU, CONE,
     $              A( OFST+1 ), LLDA, B(PART_OFFSET+1), 1, CZERO,
     $              X( PART_OFFSET+1 ), 1 )
*
*
*
        IF ( MYCOL .LT. NPCOL-1 ) THEN
*
*         Do the multiplication of the triangle in the lower half
*
          CALL CCOPY( DL_N_N,
     $                  B( NUMROC_SIZE-DL_N_N+1 ),
     $                  1, WORK( MAX_BW*MAX_BW+1+BWL-DL_N_N ), 1 )
*
         CALL CTRMV( 'U', 'N', 'N', BWL,
     $            A( LLDA*( NUMROC_SIZE-BWL )+1+BWU+BWL ), LLDA-1,
     $            WORK( MAX_BW*MAX_BW+1 ), 1)
*
*        Zero out extraneous elements caused by TRMV if any
*
         IF( DL_N_M .GT. DL_N_N ) THEN
        DO 10  I = DL_N_M-DL_N_N, DL_N_M
                WORK( MAX_BW*MAX_BW+I ) = 0
   10   CONTINUE
         ENDIF
*
*         Send the result to the neighbor
*
          CALL CGESD2D( ICTXT, BWL, 1,
     $       WORK( MAX_BW*MAX_BW+1 ), BWL, MYROW, MYCOL+1 )
*
        ENDIF
*
        IF ( MYCOL .GT. 0 ) THEN
*
        DO 20  I=1, MAX_BW*( MAX_BW+2 )
          WORK( I ) = CZERO
   20   CONTINUE
*
*         Do the multiplication of the triangle in the upper half
*
*         Copy vector to workspace
*
          CALL CCOPY( DU_P_N, B( 1 ), 1,
     $                  WORK( MAX_BW*MAX_BW+1 ), 1)
*
          CALL CTRMV(
     $     'L',
     $     'N',
     $     'N', BWU,
     $     A( 1 ), LLDA-1,
     $     WORK( MAX_BW*MAX_BW+1 ), 1 )
*
*         Zero out extraneous results from TRMV if any
*
          IF( DU_P_N .GT. DU_P_M ) THEN
        DO 30  I=1, DU_P_N-DU_P_M
              WORK( MAX_BW*MAX_BW+I ) = 0
   30   CONTINUE
          ENDIF
*
*         Send result back
*
          CALL CGESD2D( ICTXT, BWU, 1, WORK(MAX_BW*MAX_BW+1 ),
     $                   BWU, MYROW, MYCOL-1 )
*
*         Receive vector result from neighboring processor
*
          CALL CGERV2D( ICTXT, BWL, 1, WORK( MAX_BW*MAX_BW+1 ),
     $                    BWL, MYROW, MYCOL-1 )
*
*         Do addition of received vector
*
          CALL CAXPY( BWL, CONE,
     $                  WORK( MAX_BW*MAX_BW+1 ), 1,
     $                  X( 1 ), 1 )
*
        ENDIF
*
*
*
         IF( MYCOL .LT. NPCOL-1 ) THEN
*
*          Receive returned result
*
           CALL CGERV2D( ICTXT, BWU, 1, WORK( MAX_BW*MAX_BW+1 ),
     $                    BWU, MYROW, MYCOL+1 )
*
*          Do addition of received vector
*
           CALL CAXPY( BWU, CONE,
     $                  WORK( MAX_BW*MAX_BW+1 ), 1,
     $                  X( NUMROC_SIZE-BWU+1 ), 1)
*
         ENDIF
*
*
      ENDIF
*
*     End of LSAME if
*
**************************************
*
      IF ( LSAME( TRANS, 'C' ) ) THEN
*
*       Sizes of the extra triangles communicated bewtween processors
*
        IF( MYCOL .GT. 0 ) THEN
*
          DL_P_M= MIN( BWU,
     $          NUMROC( N, PART_SIZE, MYCOL, 0, NPCOL ) )
          DL_P_N= MIN( BWU,
     $          NUMROC( N, PART_SIZE, MYCOL-1, 0, NPCOL ) )
*
          DU_P_M= MIN( BWL,
     $          NUMROC( N, PART_SIZE, MYCOL-1, 0, NPCOL ) )
          DU_P_N= MIN( BWL,
     $          NUMROC( N, PART_SIZE, MYCOL, 0, NPCOL ) )
        ENDIF
*
        IF( MYCOL .LT. NPCOL-1 ) THEN
*
          DL_N_M= MIN( BWU,
     $          NUMROC( N, PART_SIZE, MYCOL+1, 0, NPCOL ) )
          DL_N_N= MIN( BWU,
     $          NUMROC( N, PART_SIZE, MYCOL, 0, NPCOL ) )
*
          DU_N_M= MIN( BWL,
     $          NUMROC( N, PART_SIZE, MYCOL, 0, NPCOL ) )
          DU_N_N= MIN( BWL,
     $          NUMROC( N, PART_SIZE, MYCOL+1, 0, NPCOL ) )
        ENDIF
*
*
        IF( MYCOL .GT. 0 ) THEN
*         ...must send triangle in lower half of matrix to left
*
*         Transpose triangle in preparation for sending
*
          CALL CLATCPY( 'L', BWU, BWU, A( OFST+1 ),
     $          LLDA-1, WORK( 1 ), MAX_BW )
*
*         Send the triangle to neighboring processor to left
*
          CALL CTRSD2D(ICTXT, 'U', 'N',
     $                  BWU, BWU,
     $                  WORK( 1 ),
     $                  MAX_BW, MYROW, MYCOL-1 )
*
        ENDIF
*
        IF( MYCOL .LT. NPCOL-1 ) THEN
*         ...must send triangle in upper half of matrix to right
*
*         Transpose triangle in preparation for sending
*
          CALL CLATCPY( 'U', BWL, BWL,
     $          A( LLDA*( NUMROC_SIZE-BWL )+1+BWU+BWL ),
     $          LLDA-1, WORK( 1 ), MAX_BW )
*
*         Send the triangle to neighboring processor to right
*
          CALL CTRSD2D(ICTXT, 'L', 'N',
     $                  BWL, BWL,
     $                  WORK( 1 ),
     $                  MAX_BW, MYROW, MYCOL+1 )
*
        ENDIF
*
*       Use main partition in each processor to multiply locally
*
        CALL CGBMV( TRANS, NUMROC_SIZE, NUMROC_SIZE, BWL, BWU, CONE,
     $              A( OFST+1 ), LLDA, B(PART_OFFSET+1), 1, CZERO,
     $              X( PART_OFFSET+1 ), 1 )
*
*
*
        IF ( MYCOL .LT. NPCOL-1 ) THEN
*
*         Do the multiplication of the triangle in the lower half
*
          CALL CCOPY( DL_N_N,
     $                  B( NUMROC_SIZE-DL_N_N+1 ),
     $                  1, WORK( MAX_BW*MAX_BW+1+BWU-DL_N_N ), 1 )
*
*         Receive the triangle prior to multiplying by it.
*
          CALL CTRRV2D(ICTXT, 'U', 'N',
     $                  BWU, BWU,
     $                  WORK( 1 ), MAX_BW, MYROW, MYCOL+1 )
*
         CALL CTRMV( 'U', 'N', 'N', BWU,
     $            WORK( 1 ), MAX_BW,
     $            WORK( MAX_BW*MAX_BW+1 ), 1)
*
*        Zero out extraneous elements caused by TRMV if any
*
         IF( DL_N_M .GT. DL_N_N ) THEN
        DO 40  I = DL_N_M-DL_N_N, DL_N_M
                WORK( MAX_BW*MAX_BW+I ) = 0
   40   CONTINUE
         ENDIF
*
*         Send the result to the neighbor
*
          CALL CGESD2D( ICTXT, BWU, 1,
     $       WORK( MAX_BW*MAX_BW+1 ), BWU, MYROW, MYCOL+1 )
*
        ENDIF
*
        IF ( MYCOL .GT. 0 ) THEN
*
        DO 50  I=1, MAX_BW*( MAX_BW+2 )
          WORK( I ) = CZERO
   50   CONTINUE
*
*         Do the multiplication of the triangle in the upper half
*
*         Copy vector to workspace
*
          CALL CCOPY( DU_P_N, B( 1 ), 1,
     $                  WORK( MAX_BW*MAX_BW+1 ), 1)
*
*         Receive the triangle prior to multiplying by it.
*
          CALL CTRRV2D(ICTXT, 'L', 'N',
     $                  BWL, BWL,
     $                  WORK( 1 ), MAX_BW, MYROW, MYCOL-1 )
*
          CALL CTRMV(
     $     'L',
     $     'N',
     $     'N', BWL,
     $     WORK( 1 ), MAX_BW,
     $     WORK( MAX_BW*MAX_BW+1 ), 1 )
*
*         Zero out extraneous results from TRMV if any
*
          IF( DU_P_N .GT. DU_P_M ) THEN
        DO 60  I=1, DU_P_N-DU_P_M
              WORK( MAX_BW*MAX_BW+I ) = 0
   60   CONTINUE
          ENDIF
*
*         Send result back
*
          CALL CGESD2D( ICTXT, BWL, 1, WORK(MAX_BW*MAX_BW+1 ),
     $                   BWL, MYROW, MYCOL-1 )
*
*         Receive vector result from neighboring processor
*
          CALL CGERV2D( ICTXT, BWU, 1, WORK( MAX_BW*MAX_BW+1 ),
     $                    BWU, MYROW, MYCOL-1 )
*
*         Do addition of received vector
*
          CALL CAXPY( BWU, CONE,
     $                  WORK( MAX_BW*MAX_BW+1 ), 1,
     $                  X( 1 ), 1 )
*
        ENDIF
*
*
*
         IF( MYCOL .LT. NPCOL-1 ) THEN
*
*          Receive returned result
*
           CALL CGERV2D( ICTXT, BWL, 1, WORK( MAX_BW*MAX_BW+1 ),
     $                    BWL, MYROW, MYCOL+1 )
*
*          Do addition of received vector
*
           CALL CAXPY( BWL, CONE,
     $                  WORK( MAX_BW*MAX_BW+1 ), 1,
     $                  X( NUMROC_SIZE-BWL+1 ), 1)
*
         ENDIF
*
*
      ENDIF
*
*     End of LSAME if
*
*
*     Free BLACS space used to hold standard-form grid.
*
      IF( ICTXT_SAVE .NE. ICTXT_NEW ) THEN
         CALL BLACS_GRIDEXIT( ICTXT_NEW )
      ENDIF
*
 1234 CONTINUE
*
*     Restore saved input parameters
*
      ICTXT = ICTXT_SAVE
      NP = NP_SAVE
*
*
      RETURN
*
*     End of PCBhBMV1
*
      END
 |