| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 
 |       PROGRAM PZPTDRIVER
*
*
*  -- ScaLAPACK routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     November 15, 1997
*
*  Purpose
*  =======
*
*  PZPTDRIVER is a test program for the
*  ScaLAPACK Band Cholesky routines corresponding to the options
*  indicated by ZPT.  This test driver performs an
*  A = L*L**H factorization
*  and solves a linear system with the factors for 1 or more RHS.
*
*  The program must be driven by a short data file.
*  Here's an example file:
*'ScaLAPACK, Version 1.2, banded linear systems input file'
*'PVM.'
*''                              output file name (if any)
*6                               device out
*'L'                             define Lower or Upper
*9                               number of problem sizes
*1 5 17 28 37 121 200 1023 2048 3073     values of N
*6                               number of bandwidths
*1 2 4 10 31 64                values of BW
*1                               number of NB's
*-1 3 4 5                        values of NB (-1 for automatic choice)
*1                               number of NRHS's (must be 1)
*8                               values of NRHS
*1                               number of NBRHS's (ignored)
*1                               values of NBRHS (ignored)
*6                               number of process grids
*1 2 3 4 5 7 8 15 26 47 64       values of "Number of Process Columns"
*3.0                             threshold
*
*  Internal Parameters
*  ===================
*
*  TOTMEM   INTEGER, default = 6200000.
*           TOTMEM is a machine-specific parameter indicating the
*           maximum amount of available memory in bytes.
*           The user should customize TOTMEM to his platform.  Remember
*           to leave room in memory for the operating system, the BLACS
*           buffer, etc.  For example, on a system with 8 MB of memory
*           per process (e.g., one processor on an Intel iPSC/860), the
*           parameters we use are TOTMEM=6200000 (leaving 1.8 MB for OS,
*           code, BLACS buffer, etc).  However, for PVM, we usually set
*           TOTMEM = 2000000.  Some experimenting with the maximum value
*           of TOTMEM may be required.
*
*  INTGSZ   INTEGER, default = 4 bytes.
*  ZPLXSZ   INTEGER, default = 16 bytes.
*           INTGSZ and ZPLXSZ indicate the length in bytes on the
*           given platform for an integer and a double precision
*           complex.
*  MEM      COMPLEX*16 array, dimension ( TOTMEM/ZPLXSZ )
*           All arrays used by ScaLAPACK routines are allocated from
*           this array and referenced by pointers.  The integer IPB,
*           for example, is a pointer to the starting element of MEM for
*           the solution vector(s) B.
*
*  =====================================================================
*
*  Code Developer: Andrew J. Cleary, University of Tennessee.
*    Current address: Lawrence Livermore National Labs.
*  This version released: August, 2001.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            TOTMEM
      PARAMETER          ( TOTMEM = 3000000 )
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
*
      DOUBLE PRECISION   ZERO
      INTEGER            MEMSIZ, NTESTS, ZPLXSZ
      COMPLEX*16         PADVAL
      PARAMETER          ( ZPLXSZ = 16,
     $                     MEMSIZ = TOTMEM / ZPLXSZ, NTESTS = 20,
     $                     PADVAL = ( -9923.0D+0, -9923.0D+0 ),
     $                     ZERO = 0.0D+0 )
      INTEGER            INT_ONE
      PARAMETER          ( INT_ONE = 1 )
*     ..
*     .. Local Scalars ..
      LOGICAL            CHECK
      CHARACTER          UPLO
      CHARACTER*6        PASSED
      CHARACTER*80       OUTFILE
      INTEGER            BW, BW_NUM, FILLIN_SIZE, FREE_PTR, H, HH, I,
     $                   IAM, IASEED, IBSEED, ICTXT, ICTXTB, IERR_TEMP,
     $                   IMIDPAD, INFO, INT_TEMP, IPA, IPB, IPOSTPAD,
     $                   IPREPAD, IPW, IPW_SIZE, IPW_SOLVE,
     $                   IPW_SOLVE_SIZE, IP_DRIVER_W, IP_FILLIN, J, K,
     $                   KFAIL, KPASS, KSKIP, KTESTS, MYCOL, MYRHS_SIZE,
     $                   MYROW, N, NB, NBW, NGRIDS, NMAT, NNB, NNBR,
     $                   NNR, NOUT, NP, NPCOL, NPROCS, NPROCS_REAL,
     $                   NPROW, NQ, NRHS, N_FIRST, N_LAST, WORKSIZ
      REAL               THRESH
            DOUBLE PRECISION    ANORM, NOPS, NOPS2, SRESID, TMFLOPS,
     $                          TMFLOPS2
*     ..
*     .. Local Arrays ..
      INTEGER            BWVAL( NTESTS ), DESCA( 7 ), DESCA2D( DLEN_ ),
     $                   DESCB( 7 ), DESCB2D( DLEN_ ), IERR( 1 ),
     $                   NBRVAL( NTESTS ), NBVAL( NTESTS ),
     $                   NRVAL( NTESTS ), NVAL( NTESTS ),
     $                   PVAL( NTESTS ), QVAL( NTESTS )
      DOUBLE PRECISION   CTIME( 2 ), WTIME( 2 )
      COMPLEX*16         MEM( MEMSIZ )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_BARRIER, BLACS_EXIT, BLACS_GET,
     $                   BLACS_GRIDEXIT, BLACS_GRIDINFO, BLACS_GRIDINIT,
     $                   BLACS_PINFO, DESCINIT, IGSUM2D, PZBMATGEN,
     $                   PZCHEKPAD, PZFILLPAD, PZMATGEN, PZPTINFO,
     $                   PZPTLASCHK, PZPTTRF, PZPTTRS, SLBOOT,
     $                   SLCOMBINE, SLTIMER
*     ..
*     .. External Functions ..
      INTEGER            NUMROC
      LOGICAL            LSAME
      DOUBLE PRECISION   PZLANGE
      EXTERNAL           LSAME, NUMROC, PZLANGE
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, MAX, MIN, MOD
*     ..
*     .. Data Statements ..
      DATA               KFAIL, KPASS, KSKIP, KTESTS / 4*0 /
*     ..
*
*
*
*     .. Executable Statements ..
*
*     Get starting information
*
      CALL BLACS_PINFO( IAM, NPROCS )
      IASEED = 100
      IBSEED = 200
*
      CALL PZPTINFO( OUTFILE, NOUT, UPLO, NMAT, NVAL, NTESTS, NBW,
     $               BWVAL, NTESTS, NNB, NBVAL, NTESTS, NNR, NRVAL,
     $               NTESTS, NNBR, NBRVAL, NTESTS, NGRIDS, PVAL, NTESTS,
     $               QVAL, NTESTS, THRESH, MEM, IAM, NPROCS )
*
      CHECK = ( THRESH.GE.0.0D+0 )
*
*     Print headings
*
      IF( IAM.EQ.0 ) THEN
         WRITE( NOUT, FMT = * )
         WRITE( NOUT, FMT = 9995 )
         WRITE( NOUT, FMT = 9994 )
         WRITE( NOUT, FMT = * )
      END IF
*
*     Loop over different process grids
*
      DO 60 I = 1, NGRIDS
*
         NPROW = PVAL( I )
         NPCOL = QVAL( I )
*
*        Make sure grid information is correct
*
         IERR( 1 ) = 0
         IF( NPROW.LT.1 ) THEN
            IF( IAM.EQ.0 )
     $         WRITE( NOUT, FMT = 9999 ) 'GRID', 'nprow', NPROW
            IERR( 1 ) = 1
         ELSE IF( NPCOL.LT.1 ) THEN
            IF( IAM.EQ.0 )
     $         WRITE( NOUT, FMT = 9999 ) 'GRID', 'npcol', NPCOL
            IERR( 1 ) = 1
         ELSE IF( NPROW*NPCOL.GT.NPROCS ) THEN
            IF( IAM.EQ.0 )
     $         WRITE( NOUT, FMT = 9998 ) NPROW*NPCOL, NPROCS
            IERR( 1 ) = 1
         END IF
*
         IF( IERR( 1 ).GT.0 ) THEN
            IF( IAM.EQ.0 )
     $         WRITE( NOUT, FMT = 9997 ) 'grid'
            KSKIP = KSKIP + 1
            GO TO 50
         END IF
*
*        Define process grid
*
         CALL BLACS_GET( -1, 0, ICTXT )
         CALL BLACS_GRIDINIT( ICTXT, 'Row-major', NPROW, NPCOL )
*
*
*        Define transpose process grid
*
         CALL BLACS_GET( -1, 0, ICTXTB )
         CALL BLACS_GRIDINIT( ICTXTB, 'Column-major', NPCOL, NPROW )
*
*        Go to bottom of process grid loop if this case doesn't use my
*        process
*
         CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
         IF( MYROW.LT.0 .OR. MYCOL.LT.0 ) THEN
            GO TO 50
         ENDIF
*
         DO 40 J = 1, NMAT
*
           IERR( 1 ) = 0
*
           N = NVAL( J )
*
*          Make sure matrix information is correct
*
           IF( N.LT.1 ) THEN
               IF( IAM.EQ.0 )
     $            WRITE( NOUT, FMT = 9999 ) 'MATRIX', 'N', N
               IERR( 1 ) = 1
           END IF
*
*          Check all processes for an error
*
           CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1, IERR, 1,
     $                    -1, 0 )
*
           IF( IERR( 1 ).GT.0 ) THEN
               IF( IAM.EQ.0 )
     $            WRITE( NOUT, FMT = 9997 ) 'size'
               KSKIP = KSKIP + 1
               GO TO 40
           END IF
*
*
           DO 45 BW_NUM = 1, NBW
*
             IERR( 1 ) = 0
*
             BW = 1
             IF( BW.LT.0 ) THEN
               IF( IAM.EQ.0 )
     $            WRITE( NOUT, FMT = 9999 ) 'Band', 'bw', BW
               IERR( 1 ) = 1
             END IF
*
             IF( BW.GT.N-1 ) THEN
               IERR( 1 ) = 1
             END IF
*
*            Check all processes for an error
*
             CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1, IERR, 1,
     $                    -1, 0 )
*
             IF( IERR( 1 ).GT.0 ) THEN
               KSKIP = KSKIP + 1
               GO TO 45
             END IF
*
             DO 30 K = 1, NNB
*
               IERR( 1 ) = 0
*
               NB = NBVAL( K )
               IF( NB.LT.0 ) THEN
                  NB =( (N-(NPCOL-1)*INT_ONE-1)/NPCOL + 1 )
     $               + INT_ONE
                  NB = MAX( NB, 2*INT_ONE )
                  NB = MIN( N, NB )
               END IF
*
*              Make sure NB is legal
*
               IERR( 1 ) = 0
               IF( NB.LT.MIN( 2*INT_ONE, N ) ) THEN
                  IERR( 1 ) = 1
               ENDIF
*
*              Check all processes for an error
*
               CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1, IERR, 1,
     $                       -1, 0 )
*
               IF( IERR( 1 ).GT.0 ) THEN
                  KSKIP = KSKIP + 1
                  GO TO 30
               END IF
*
*              Padding constants
*
               NP = NUMROC( (2), (2),
     $                      MYROW, 0, NPROW )
               NQ = NUMROC( N, NB, MYCOL, 0, NPCOL )
*
               IF( CHECK ) THEN
                  IPREPAD  = ((2)+10)
                  IMIDPAD  = 10
                  IPOSTPAD = ((2)+10)
               ELSE
                  IPREPAD  = 0
                  IMIDPAD  = 0
                  IPOSTPAD = 0
               END IF
*
*              Initialize the array descriptor for the matrix A
*
               CALL DESCINIT( DESCA2D, N, (2),
     $                       NB, 1, 0, 0,
     $                       ICTXTB, NB+10, IERR( 1 ) )
*
*              Convert this to 1D descriptor
*
               DESCA( 1 ) = 501
               DESCA( 3 ) = N
               DESCA( 4 ) = NB
               DESCA( 5 ) = 0
               DESCA( 2 ) = ICTXT
               DESCA( 6 ) = ((2)+10)
               DESCA( 7 ) = 0
*
               IERR_TEMP = IERR( 1 )
               IERR( 1 ) = 0
               IERR( 1 ) = MIN( IERR( 1 ), IERR_TEMP )
*
*              Check all processes for an error
*
               CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1, IERR, 1, -1, 0 )
*
               IF( IERR( 1 ).LT.0 ) THEN
                  IF( IAM.EQ.0 )
     $               WRITE( NOUT, FMT = 9997 ) 'descriptor'
                  KSKIP = KSKIP + 1
                  GO TO 30
               END IF
*
*              Assign pointers into MEM for SCALAPACK arrays, A is
*              allocated starting at position MEM( IPREPAD+1 )
*
               FREE_PTR = 1
               IPB = 0
*
*              Save room for prepadding
               FREE_PTR = FREE_PTR + IPREPAD
*
               IPA = FREE_PTR
               FREE_PTR = FREE_PTR + (NB+10)*(2)
     $                     + IPOSTPAD
*
*              Add memory for fillin
*              Fillin space needs to store:
*                Fillin spike:
*                Contribution to previous proc's diagonal block of
*                  reduced system:
*                Off-diagonal block of reduced system:
*                Diagonal block of reduced system:
*
               FILLIN_SIZE =
     $            (12*NPCOL + 3*NB)
*
*              Claim memory for fillin
*
               FREE_PTR = FREE_PTR + IPREPAD
               IP_FILLIN = FREE_PTR
               FREE_PTR = FREE_PTR + FILLIN_SIZE
*
*              Workspace needed by computational routines:
*
               IPW_SIZE = 0
*
*              factorization:
*
               IPW_SIZE = 8*NPCOL
*
*              Claim memory for IPW
*
               IPW = FREE_PTR
               FREE_PTR = FREE_PTR + IPW_SIZE
*
*              Check for adequate memory for problem size
*
               IERR( 1 ) = 0
               IF( FREE_PTR.GT.MEMSIZ ) THEN
                  IF( IAM.EQ.0 )
     $               WRITE( NOUT, FMT = 9996 )
     $               'divide and conquer factorization',
     $               (FREE_PTR )*ZPLXSZ
                  IERR( 1 ) = 1
               END IF
*
*              Check all processes for an error
*
               CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1, IERR,
     $                       1, -1, 0 )
*
               IF( IERR( 1 ).GT.0 ) THEN
                  IF( IAM.EQ.0 )
     $               WRITE( NOUT, FMT = 9997 ) 'MEMORY'
                  KSKIP = KSKIP + 1
                  GO TO 30
               END IF
*
*              Worksize needed for LAPRNT
               WORKSIZ = MAX( ((2)+10), NB )
*
               IF( CHECK ) THEN
*
*                 Calculate the amount of workspace required by
*                 the checking routines.
*
*                 PZLANGE
                  WORKSIZ = MAX( WORKSIZ, DESCA2D( NB_ ) )
*
*                 PZPTLASCHK
                  WORKSIZ = MAX( WORKSIZ,
     $                   MAX(5,NB)+2*NB )
               END IF
*
               FREE_PTR = FREE_PTR + IPREPAD
               IP_DRIVER_W = FREE_PTR
               FREE_PTR = FREE_PTR + WORKSIZ + IPOSTPAD
*
*
*              Check for adequate memory for problem size
*
               IERR( 1 ) = 0
               IF( FREE_PTR.GT.MEMSIZ ) THEN
                  IF( IAM.EQ.0 )
     $               WRITE( NOUT, FMT = 9996 ) 'factorization',
     $               ( FREE_PTR )*ZPLXSZ
                  IERR( 1 ) = 1
               END IF
*
*              Check all processes for an error
*
               CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1, IERR,
     $                       1, -1, 0 )
*
               IF( IERR( 1 ).GT.0 ) THEN
                  IF( IAM.EQ.0 )
     $               WRITE( NOUT, FMT = 9997 ) 'MEMORY'
                  KSKIP = KSKIP + 1
                  GO TO 30
               END IF
*
               CALL PZBMATGEN( ICTXT, UPLO, 'T', BW, BW, N, (2), NB,
     $                         MEM( IPA ), NB+10, 0, 0, IASEED, MYROW,
     $                         MYCOL, NPROW, NPCOL )
               CALL PZFILLPAD( ICTXT, NQ, NP, MEM( IPA-IPREPAD ),
     $                          NB+10, IPREPAD, IPOSTPAD,
     $                          PADVAL )
*
               CALL PZFILLPAD( ICTXT, WORKSIZ, 1,
     $                          MEM( IP_DRIVER_W-IPREPAD ), WORKSIZ,
     $                          IPREPAD, IPOSTPAD, PADVAL )
*
*              Calculate norm of A for residual error-checking
*
               IF( CHECK ) THEN
*
                  ANORM = PZLANGE( 'I', N,
     $                            (2), MEM( IPA ), 1, 1,
     $                            DESCA2D, MEM( IP_DRIVER_W ) )
                  CALL PZCHEKPAD( ICTXT, 'PZLANGE', NQ, NP,
     $                         MEM( IPA-IPREPAD ), NB+10,
     $                         IPREPAD, IPOSTPAD, PADVAL )
                  CALL PZCHEKPAD( ICTXT, 'PZLANGE',
     $                            WORKSIZ, 1,
     $                            MEM( IP_DRIVER_W-IPREPAD ), WORKSIZ,
     $                            IPREPAD, IPOSTPAD, PADVAL )
               END IF
*
               IF( LSAME( UPLO, 'L' ) ) THEN
                  INT_TEMP = 0
               ELSE
                  INT_TEMP = DESCA2D( LLD_ )
               ENDIF
*
*              For SPD Tridiagonal complex matrices, diagonal is stored
*                as a real. Thus, compact D into half the space
*
        DO 10  H=1, NUMROC(N,NB,MYCOL,0,NPCOL)/2
                  MEM( IPA+INT_TEMP+H-1 ) = MEM( IPA+INT_TEMP+2*H-2 )
     $               +MEM( IPA+INT_TEMP+2*H-1 )*( 0.0D+0, 1.0D+0 )
   10   CONTINUE
               IF( 2*(NUMROC(N,NB,MYCOL,0,NPCOL)/2).NE.
     $               NUMROC(N,NB,MYCOL,0,NPCOL) ) THEN
                  H=NUMROC(N,NB,MYCOL,0,NPCOL)/2+1
                  MEM( IPA+INT_TEMP+H-1 ) = MEM( IPA+INT_TEMP+2*H-2 )
               ENDIF
*
*
               CALL SLBOOT()
               CALL BLACS_BARRIER( ICTXT, 'All' )
*
*              Perform factorization
*
               CALL SLTIMER( 1 )
*
               CALL PZPTTRF( N, MEM( IPA+INT_TEMP ),
     $                       MEM( IPA+1*( NB+10-INT_TEMP ) ), 1, DESCA,
     $                       MEM( IP_FILLIN ), FILLIN_SIZE, MEM( IPW ),
     $                       IPW_SIZE, INFO )
*
               CALL SLTIMER( 1 )
*
               IF( INFO.NE.0 ) THEN
                  IF( IAM.EQ.0 ) THEN
                    WRITE( NOUT, FMT = * ) 'PZPTTRF INFO=', INFO
                  ENDIF
                  KFAIL = KFAIL + 1
                  GO TO 30
               END IF
*
               IF( CHECK ) THEN
*
*                 Check for memory overwrite in factorization
*
                  CALL PZCHEKPAD( ICTXT, 'PZPTTRF', NQ,
     $                         NP, MEM( IPA-IPREPAD ), NB+10,
     $                         IPREPAD, IPOSTPAD, PADVAL )
               END IF
*
*
*              Loop over the different values for NRHS
*
               DO 20 HH = 1, NNR
*
                  IERR( 1 ) = 0
*
                  NRHS = NRVAL( HH )
*
*                    Initialize Array Descriptor for rhs
*
                     CALL DESCINIT( DESCB2D, N, NRHS, NB, 1, 0, 0,
     $                             ICTXTB, NB+10, IERR( 1 ) )
*
*                    Convert this to 1D descriptor
*
                     DESCB( 1 ) = 502
                     DESCB( 3 ) = N
                     DESCB( 4 ) = NB
                     DESCB( 5 ) = 0
                     DESCB( 2 ) = ICTXT
                     DESCB( 6 ) = DESCB2D( LLD_ )
                     DESCB( 7 ) = 0
*
*                    reset free_ptr to reuse space for right hand sides
*
                     IF( IPB .GT. 0 ) THEN
                       FREE_PTR = IPB
                     ENDIF
*
                     FREE_PTR = FREE_PTR + IPREPAD
                     IPB = FREE_PTR
                     FREE_PTR = FREE_PTR + NRHS*DESCB2D( LLD_ )
     $                          + IPOSTPAD
*
*                    Allocate workspace for workspace in TRS routine:
*
                     IPW_SOLVE_SIZE = (10+2*MIN(100,NRHS))*NPCOL+4*NRHS
*
                     IPW_SOLVE = FREE_PTR
                     FREE_PTR = FREE_PTR + IPW_SOLVE_SIZE
*
                     IERR( 1 ) = 0
                     IF( FREE_PTR.GT.MEMSIZ ) THEN
                        IF( IAM.EQ.0 )
     $                     WRITE( NOUT, FMT = 9996 )'solve',
     $                            ( FREE_PTR )*ZPLXSZ
                        IERR( 1 ) = 1
                     END IF
*
*                    Check all processes for an error
*
                     CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1,
     $                             IERR, 1, -1, 0 )
*
                     IF( IERR( 1 ).GT.0 ) THEN
                        IF( IAM.EQ.0 )
     $                     WRITE( NOUT, FMT = 9997 ) 'MEMORY'
                        KSKIP = KSKIP + 1
                        GO TO 15
                     END IF
*
                     MYRHS_SIZE = NUMROC( N, NB, MYCOL, 0, NPCOL )
*
*                    Generate RHS
*
                     CALL PZMATGEN(ICTXTB, 'No', 'No',
     $                        DESCB2D( M_ ), DESCB2D( N_ ),
     $                        DESCB2D( MB_ ), DESCB2D( NB_ ),
     $                        MEM( IPB ),
     $                        DESCB2D( LLD_ ), DESCB2D( RSRC_ ),
     $                        DESCB2D( CSRC_ ),
     $                        IBSEED, 0, MYRHS_SIZE, 0, NRHS, MYCOL,
     $                        MYROW, NPCOL, NPROW )
*
                     IF( CHECK ) THEN
                        CALL PZFILLPAD( ICTXTB, NB, NRHS,
     $                                  MEM( IPB-IPREPAD ),
     $                                  DESCB2D( LLD_ ),
     $                                  IPREPAD, IPOSTPAD,
     $                                  PADVAL )
                        CALL PZFILLPAD( ICTXT, WORKSIZ, 1,
     $                                  MEM( IP_DRIVER_W-IPREPAD ),
     $                                  WORKSIZ, IPREPAD,
     $                                  IPOSTPAD, PADVAL )
                     END IF
*
*
                     CALL BLACS_BARRIER( ICTXT, 'All')
                     CALL SLTIMER( 2 )
*
*                    Solve linear system via factorization
*
                     CALL PZPTTRS( UPLO, N, NRHS, MEM( IPA+INT_TEMP ),
     $                             MEM( IPA+1*( NB+10-INT_TEMP ) ), 1,
     $                             DESCA, MEM( IPB ), 1, DESCB,
     $                             MEM( IP_FILLIN ), FILLIN_SIZE,
     $                             MEM( IPW_SOLVE ), IPW_SOLVE_SIZE,
     $                             INFO )
*
                     CALL SLTIMER( 2 )
*
                     IF( INFO.NE.0 ) THEN
                       IF( IAM.EQ.0 )
     $  WRITE( NOUT, FMT = * ) 'PZPTTRS INFO=', INFO
                       KFAIL = KFAIL + 1
                       PASSED = 'FAILED'
                       GO TO 20
                     END IF
*
                     IF( CHECK ) THEN
*
*                       check for memory overwrite
*
                        CALL PZCHEKPAD( ICTXT, 'PZPTTRS-work',
     $                                  WORKSIZ, 1,
     $                                  MEM( IP_DRIVER_W-IPREPAD ),
     $                                  WORKSIZ, IPREPAD,
     $                                  IPOSTPAD, PADVAL )
*
*                       check the solution to rhs
*
                        SRESID = ZERO
*
*                       Reset descriptor describing A to 1-by-P grid for
*                          use in banded utility routines
*
                        CALL DESCINIT( DESCA2D, (2), N,
     $                       (2), NB, 0, 0,
     $                       ICTXT, (2), IERR( 1 ) )
                        CALL PZPTLASCHK( 'H', UPLO, N, BW, BW, NRHS,
     $                              MEM( IPB ), 1, 1, DESCB2D,
     $                              IASEED, MEM( IPA ), 1, 1, DESCA2D,
     $                              IBSEED, ANORM, SRESID,
     $                              MEM( IP_DRIVER_W ), WORKSIZ )
*
                        IF( IAM.EQ.0 ) THEN
                           IF( SRESID.GT.THRESH )
     $                        WRITE( NOUT, FMT = 9985 ) SRESID
                        END IF
*
*                       The second test is a NaN trap
*
                        IF( ( SRESID.LE.THRESH          ).AND.
     $                      ( (SRESID-SRESID).EQ.0.0D+0 ) ) THEN
                           KPASS = KPASS + 1
                           PASSED = 'PASSED'
                        ELSE
                           KFAIL = KFAIL + 1
                           PASSED = 'FAILED'
                        END IF
*
                     END IF
*
   15                CONTINUE
*                    Skipped tests jump to here to print out "SKIPPED"
*
*                    Gather maximum of all CPU and WALL clock timings
*
                     CALL SLCOMBINE( ICTXT, 'All', '>', 'W', 2, 1,
     $                               WTIME )
                     CALL SLCOMBINE( ICTXT, 'All', '>', 'C', 2, 1,
     $                               CTIME )
*
*                    Print results
*
                     IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
*
                        NOPS = 0
                        NOPS2 = 0
*
                        N_FIRST = NB
                        NPROCS_REAL = ( N-1 )/NB + 1
                        N_LAST = MOD( N-1, NB ) + 1
*
*
                        NOPS = NOPS + DBLE(BW)*( -2.D0 / 3.D0+DBLE(BW)*
     $                        ( -1.D0+DBLE(BW)*( -1.D0 / 3.D0 ) ) ) +
     $                        DBLE(N)*( 1.D0+DBLE(BW)*( 3.D0 /
     $                        2.D0+DBLE(BW)*( 1.D0 / 2.D0 ) ) )
                        NOPS = NOPS + DBLE(BW)*( -1.D0 / 6.D0+DBLE(BW)
     $                        *( -1.D0 /2.D0+DBLE(BW)
     $                        *( -1.D0 / 3.D0 ) ) ) +
     $                        DBLE(N)*( DBLE(BW) /
     $                        2.D0*( 1.D0+DBLE(BW) ) )
*
                        NOPS = NOPS +
     $                         DBLE(NRHS)*( ( 2*DBLE(N)-DBLE(BW) )*
     $                         ( DBLE(BW)+1.D0 ) )+ DBLE(NRHS)*
     $                         ( DBLE(BW)*( 2*DBLE(N)-
     $                         ( DBLE(BW)+1.D0 ) ) )
*
*
*                       Second calc to represent actual hardware speed
*
*                     NB bw^2  flops for LLt factorization in 1st proc
*
                      NOPS2 = ( (DBLE(N_FIRST))* DBLE(BW)**2  )
*
                      IF ( NPROCS_REAL .GT. 1) THEN
*                       4 NB bw^2  flops for LLt factorization and
*                         spike calc in last processor
*
                        NOPS2 = NOPS2 +
     $                          4*( (DBLE(N_LAST)*DBLE(BW)**2) )
                      ENDIF
*
                      IF ( NPROCS_REAL .GT. 2) THEN
*                       4 NB bw^2  flops for LLt factorization and
*                         spike calc in other processors
*
                        NOPS2 = NOPS2 + (NPROCS_REAL-2)*
     $                          4*( (DBLE(NB)*DBLE(BW)**2) )
                      ENDIF
*
*                     Reduced system
*
                      NOPS2 = NOPS2 +
     $                  ( NPROCS_REAL-1 ) * ( BW*BW*BW/3 )
                      IF( NPROCS_REAL .GT. 1 ) THEN
                        NOPS2 = NOPS2 +
     $                     ( NPROCS_REAL-2 ) * ( 2 * BW*BW*BW )
                      ENDIF
*
*
*                     nrhs * 4 n_first*bw flops for LLt solve in proc 1.
*
                      NOPS2 = NOPS2 +
     $                    ( 4.0D+0*(DBLE(N_FIRST)*DBLE(BW))*DBLE(NRHS) )
*
                      IF ( NPROCS_REAL .GT. 1 ) THEN
*
*                     2*nrhs*4 n_last*bw flops for LLt solve in last.
*
                        NOPS2 = NOPS2 +
     $                  2*( 4.0D+0*(DBLE(N_LAST)*DBLE(BW))*DBLE(NRHS) )
                      ENDIF
*
                      IF ( NPROCS_REAL .GT. 2 ) THEN
*
*                     2 * nrhs * 4 NB*bw flops for LLt solve in others.
*
                        NOPS2 = NOPS2 +
     $                    ( NPROCS_REAL-2)*2*
     $                    ( 4.0D+0*(DBLE(NB)*DBLE(BW))*DBLE(NRHS) )
                      ENDIF
*
*                     Reduced system
*
                      NOPS2 = NOPS2 +
     $                  NRHS*( NPROCS_REAL-1 ) * ( BW*BW )
                      IF( NPROCS_REAL .GT. 1 ) THEN
                        NOPS2 = NOPS2 +
     $                   NRHS*( NPROCS_REAL-2 ) * ( 3 * BW*BW )
                      ENDIF
*
*
*                     Multiply by 4 to get complex count
*
                      NOPS2 = NOPS2 * DBLE(4)
*
*                       Calculate total megaflops - factorization and/or
*                       solve -- for WALL and CPU time, and print output
*
*                       Print WALL time if machine supports it
*
                        IF( WTIME( 1 ) + WTIME( 2 ) .GT. 0.0D+0 ) THEN
                           TMFLOPS = NOPS /
     $                            ( ( WTIME( 1 )+WTIME( 2 ) ) * 1.0D+6 )
                        ELSE
                           TMFLOPS = 0.0D+0
                        END IF
*
                        IF( WTIME( 1 )+WTIME( 2 ).GT.0.0D+0 ) THEN
                           TMFLOPS2 = NOPS2 /
     $                            ( ( WTIME( 1 )+WTIME( 2 ) ) * 1.0D+6 )
                        ELSE
                           TMFLOPS2 = 0.0D+0
                        END IF
*
                        IF( WTIME( 2 ).GE.0.0D+0 )
     $                     WRITE( NOUT, FMT = 9993 ) 'WALL', UPLO,
     $                            N,
     $                            BW,
     $                            NB, NRHS, NPROW, NPCOL,
     $                            WTIME( 1 ), WTIME( 2 ), TMFLOPS,
     $                            TMFLOPS2, PASSED
*
*                       Print CPU time if machine supports it
*
                        IF( CTIME( 1 )+CTIME( 2 ).GT.0.0D+0 ) THEN
                           TMFLOPS = NOPS /
     $                            ( ( CTIME( 1 )+CTIME( 2 ) ) * 1.0D+6 )
                        ELSE
                           TMFLOPS = 0.0D+0
                        END IF
*
                        IF( CTIME( 1 )+CTIME( 2 ).GT.0.0D+0 ) THEN
                           TMFLOPS2 = NOPS2 /
     $                            ( ( CTIME( 1 )+CTIME( 2 ) ) * 1.0D+6 )
                        ELSE
                           TMFLOPS2 = 0.0D+0
                        END IF
*
                        IF( CTIME( 2 ).GE.0.0D+0 )
     $                     WRITE( NOUT, FMT = 9993 ) 'CPU ', UPLO,
     $                            N,
     $                            BW,
     $                            NB, NRHS, NPROW, NPCOL,
     $                            CTIME( 1 ), CTIME( 2 ), TMFLOPS,
     $                            TMFLOPS2, PASSED
*
                     END IF
   20          CONTINUE
*
*
   30       CONTINUE
*           NNB loop
*
   45      CONTINUE
*          BW[] loop
*
   40   CONTINUE
*       NMAT loop
*
        CALL BLACS_GRIDEXIT( ICTXT )
        CALL BLACS_GRIDEXIT( ICTXTB )
*
   50   CONTINUE
*       NGRIDS DROPOUT
   60 CONTINUE
*     NGRIDS loop
*
*     Print ending messages and close output file
*
      IF( IAM.EQ.0 ) THEN
         KTESTS = KPASS + KFAIL + KSKIP
         WRITE( NOUT, FMT = * )
         WRITE( NOUT, FMT = 9992 ) KTESTS
         IF( CHECK ) THEN
            WRITE( NOUT, FMT = 9991 ) KPASS
            WRITE( NOUT, FMT = 9989 ) KFAIL
         ELSE
            WRITE( NOUT, FMT = 9990 ) KPASS
         END IF
         WRITE( NOUT, FMT = 9988 ) KSKIP
         WRITE( NOUT, FMT = * )
         WRITE( NOUT, FMT = * )
         WRITE( NOUT, FMT = 9987 )
         IF( NOUT.NE.6 .AND. NOUT.NE.0 )
     $      CLOSE ( NOUT )
      END IF
*
      CALL BLACS_EXIT( 0 )
*
 9999 FORMAT( 'ILLEGAL ', A6, ': ', A5, ' = ', I3,
     $        '; It should be at least 1' )
 9998 FORMAT( 'ILLEGAL GRID: nprow*npcol = ', I4, '. It can be at most',
     $        I4 )
 9997 FORMAT( 'Bad ', A6, ' parameters: going on to next test case.' )
 9996 FORMAT( 'Unable to perform ', A, ': need TOTMEM of at least',
     $        I11 )
 9995 FORMAT( 'TIME UL      N  BW   NB  NRHS  P    Q L*U Time ',
     $        'Slv Time   MFLOPS   MFLOP2  CHECK' )
 9994 FORMAT( '---- -- ------ --- ---- ----- -- ---- -------- ',
     $        '--------   ------   ------ ------' )
 9993 FORMAT( A4, 2X, A1, 1X, I6, 1X, I3, 1X, I4, 1X,
     $        I5, 1X, I2, 1X,
     $        I4, 1X, F8.3, F9.4, F9.2, F9.2, 1X, A6 )
 9992 FORMAT( 'Finished ', I6, ' tests, with the following results:' )
 9991 FORMAT( I5, ' tests completed and passed residual checks.' )
 9990 FORMAT( I5, ' tests completed without checking.' )
 9989 FORMAT( I5, ' tests completed and failed residual checks.' )
 9988 FORMAT( I5, ' tests skipped because of illegal input values.' )
 9987 FORMAT( 'END OF TESTS.' )
 9986 FORMAT( '||A - ', A4, '|| / (||A|| * N * eps) = ', G25.7 )
 9985 FORMAT( '||Ax-b||/(||x||*||A||*eps*N) ', F25.7 )
*
      STOP
*
*     End of PZPTTRS_DRIVER
*
      END
*
 |