| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 
 |       SUBROUTINE PCGBTRS( TRANS, N, BWL, BWU, NRHS, A, JA, DESCA, IPIV,
     $                    B, IB, DESCB, AF, LAF, WORK, LWORK, INFO )
*
*  -- ScaLAPACK routine (version 2.0.2) --
*     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver
*     May 1 2012
*
*     .. Scalar Arguments ..
      CHARACTER          TRANS
      INTEGER            BWU, BWL, IB, INFO, JA, LAF, LWORK, N, NRHS
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * ), DESCB( * ), IPIV(*)
      COMPLEX            A( * ), AF( * ), B( * ), WORK( * )
*     ..
*
*
*  Purpose
*  =======
*
*  PCGBTRS solves a system of linear equations
*
*            A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
*                                    or
*            A(1:N, JA:JA+N-1)' * X = B(IB:IB+N-1, 1:NRHS)
*
*  where A(1:N, JA:JA+N-1) is the matrix used to produce the factors
*  stored in A(1:N,JA:JA+N-1) and AF by PCGBTRF.
*  A(1:N, JA:JA+N-1) is an N-by-N complex
*  banded distributed
*  matrix with bandwidth BWL, BWU.
*
*  Routine PCGBTRF MUST be called first.
*
*  =====================================================================
*
*  Arguments
*  =========
*
*
*  TRANS   (global input) CHARACTER
*          = 'N':  Solve with A(1:N, JA:JA+N-1);
*          = 'C':  Solve with conjugate_transpose( A(1:N, JA:JA+N-1) );
*
*  N       (global input) INTEGER
*          The number of rows and columns to be operated on, i.e. the
*          order of the distributed submatrix A(1:N, JA:JA+N-1). N >= 0.
*
*  BWL     (global input) INTEGER
*          Number of subdiagonals. 0 <= BWL <= N-1
*
*  BWU     (global input) INTEGER
*          Number of superdiagonals. 0 <= BWU <= N-1
*
*  NRHS    (global input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the distributed submatrix B(IB:IB+N-1, 1:NRHS).
*          NRHS >= 0.
*
*  A       (local input/local output) COMPLEX pointer into
*          local memory to an array with first dimension
*          LLD_A >=(2*bwl+2*bwu+1) (stored in DESCA).
*          On entry, this array contains the local pieces of the
*          N-by-N unsymmetric banded distributed Cholesky factor L or
*          L^T A(1:N, JA:JA+N-1).
*          This local portion is stored in the packed banded format
*            used in LAPACK. Please see the Notes below and the
*            ScaLAPACK manual for more detail on the format of
*            distributed matrices.
*
*  JA      (global input) INTEGER
*          The index in the global array A that points to the start of
*          the matrix to be operated on (which may be either all of A
*          or a submatrix of A).
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN.
*          if 1D type (DTYPE_A=501), DLEN >= 7;
*          if 2D type (DTYPE_A=1), DLEN >= 9 .
*          The array descriptor for the distributed matrix A.
*          Contains information of mapping of A to memory. Please
*          see NOTES below for full description and options.
*
*  IPIV    (local output) INTEGER array, dimension >= DESCA( NB ).
*          Pivot indices for local factorizations.
*          Users *should not* alter the contents between
*          factorization and solve.
*
*  B       (local input/local output) COMPLEX pointer into
*          local memory to an array of local lead dimension lld_b>=NB.
*          On entry, this array contains the
*          the local pieces of the right hand sides
*          B(IB:IB+N-1, 1:NRHS).
*          On exit, this contains the local piece of the solutions
*          distributed matrix X.
*
*  IB      (global input) INTEGER
*          The row index in the global array B that points to the first
*          row of the matrix to be operated on (which may be either
*          all of B or a submatrix of B).
*
*  DESCB   (global and local input) INTEGER array of dimension DLEN.
*          if 1D type (DTYPE_B=502), DLEN >=7;
*          if 2D type (DTYPE_B=1), DLEN >= 9.
*          The array descriptor for the distributed matrix B.
*          Contains information of mapping of B to memory. Please
*          see NOTES below for full description and options.
*
*  AF      (local output) COMPLEX array, dimension LAF.
*          Auxiliary Fillin Space.
*          Fillin is created during the factorization routine
*          PCGBTRF and this is stored in AF. If a linear system
*          is to be solved using PCGBTRS after the factorization
*          routine, AF *must not be altered* after the factorization.
*
*  LAF     (local input) INTEGER
*          Size of user-input Auxiliary Fillin space AF. Must be >=
*          (NB+bwu)*(bwl+bwu)+6*(bwl+bwu)*(bwl+2*bwu)
*          If LAF is not large enough, an error code will be returned
*          and the minimum acceptable size will be returned in AF( 1 )
*
*  WORK    (local workspace/local output)
*          COMPLEX temporary workspace. This space may
*          be overwritten in between calls to routines. WORK must be
*          the size given in LWORK.
*          On exit, WORK( 1 ) contains the minimal LWORK.
*
*  LWORK   (local input or global input) INTEGER
*          Size of user-input workspace WORK.
*          If LWORK is too small, the minimal acceptable size will be
*          returned in WORK(1) and an error code is returned. LWORK>=
*          NRHS*(NB+2*bwl+4*bwu)
*
*  INFO    (global output) INTEGER
*          = 0:  successful exit
*          < 0:  If the i-th argument is an array and the j-entry had
*                an illegal value, then INFO = -(i*100+j), if the i-th
*                argument is a scalar and had an illegal value, then
*                INFO = -i.
*
*  =====================================================================
*
*
*  Restrictions
*  ============
*
*  The following are restrictions on the input parameters. Some of these
*    are temporary and will be removed in future releases, while others
*    may reflect fundamental technical limitations.
*
*    Non-cyclic restriction: VERY IMPORTANT!
*      P*NB>= mod(JA-1,NB)+N.
*      The mapping for matrices must be blocked, reflecting the nature
*      of the divide and conquer algorithm as a task-parallel algorithm.
*      This formula in words is: no processor may have more than one
*      chunk of the matrix.
*
*    Blocksize cannot be too small:
*      If the matrix spans more than one processor, the following
*      restriction on NB, the size of each block on each processor,
*      must hold:
*      NB >= (BWL+BWU)+1
*      The bulk of parallel computation is done on the matrix of size
*      O(NB) on each processor. If this is too small, divide and conquer
*      is a poor choice of algorithm.
*
*    Submatrix reference:
*      JA = IB
*      Alignment restriction that prevents unnecessary communication.
*
*
*  =====================================================================
*
*
*  Notes
*  =====
*
*  If the factorization routine and the solve routine are to be called
*    separately (to solve various sets of righthand sides using the same
*    coefficient matrix), the auxiliary space AF *must not be altered*
*    between calls to the factorization routine and the solve routine.
*
*  The best algorithm for solving banded and tridiagonal linear systems
*    depends on a variety of parameters, especially the bandwidth.
*    Currently, only algorithms designed for the case N/P >> bw are
*    implemented. These go by many names, including Divide and Conquer,
*    Partitioning, domain decomposition-type, etc.
*
*  Algorithm description: Divide and Conquer
*
*    The Divide and Conqer algorithm assumes the matrix is narrowly
*      banded compared with the number of equations. In this situation,
*      it is best to distribute the input matrix A one-dimensionally,
*      with columns atomic and rows divided amongst the processes.
*      The basic algorithm divides the banded matrix up into
*      P pieces with one stored on each processor,
*      and then proceeds in 2 phases for the factorization or 3 for the
*      solution of a linear system.
*      1) Local Phase:
*         The individual pieces are factored independently and in
*         parallel. These factors are applied to the matrix creating
*         fillin, which is stored in a non-inspectable way in auxiliary
*         space AF. Mathematically, this is equivalent to reordering
*         the matrix A as P A P^T and then factoring the principal
*         leading submatrix of size equal to the sum of the sizes of
*         the matrices factored on each processor. The factors of
*         these submatrices overwrite the corresponding parts of A
*         in memory.
*      2) Reduced System Phase:
*         A small (max(bwl,bwu)* (P-1)) system is formed representing
*         interaction of the larger blocks, and is stored (as are its
*         factors) in the space AF. A parallel Block Cyclic Reduction
*         algorithm is used. For a linear system, a parallel front solve
*         followed by an analagous backsolve, both using the structure
*         of the factored matrix, are performed.
*      3) Backsubsitution Phase:
*         For a linear system, a local backsubstitution is performed on
*         each processor in parallel.
*
*
*  Descriptors
*  ===========
*
*  Descriptors now have *types* and differ from ScaLAPACK 1.0.
*
*  Note: banded codes can use either the old two dimensional
*    or new one-dimensional descriptors, though the processor grid in
*    both cases *must be one-dimensional*. We describe both types below.
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*
*  One-dimensional descriptors:
*
*  One-dimensional descriptors are a new addition to ScaLAPACK since
*    version 1.0. They simplify and shorten the descriptor for 1D
*    arrays.
*
*  Since ScaLAPACK supports two-dimensional arrays as the fundamental
*    object, we allow 1D arrays to be distributed either over the
*    first dimension of the array (as if the grid were P-by-1) or the
*    2nd dimension (as if the grid were 1-by-P). This choice is
*    indicated by the descriptor type (501 or 502)
*    as described below.
*
*    IMPORTANT NOTE: the actual BLACS grid represented by the
*    CTXT entry in the descriptor may be *either*  P-by-1 or 1-by-P
*    irrespective of which one-dimensional descriptor type
*    (501 or 502) is input.
*    This routine will interpret the grid properly either way.
*    ScaLAPACK routines *do not support intercontext operations* so that
*    the grid passed to a single ScaLAPACK routine *must be the same*
*    for all array descriptors passed to that routine.
*
*    NOTE: In all cases where 1D descriptors are used, 2D descriptors
*    may also be used, since a one-dimensional array is a special case
*    of a two-dimensional array with one dimension of size unity.
*    The two-dimensional array used in this case *must* be of the
*    proper orientation:
*      If the appropriate one-dimensional descriptor is DTYPEA=501
*      (1 by P type), then the two dimensional descriptor must
*      have a CTXT value that refers to a 1 by P BLACS grid;
*      If the appropriate one-dimensional descriptor is DTYPEA=502
*      (P by 1 type), then the two dimensional descriptor must
*      have a CTXT value that refers to a P by 1 BLACS grid.
*
*
*  Summary of allowed descriptors, types, and BLACS grids:
*  DTYPE           501         502         1         1
*  BLACS grid      1xP or Px1  1xP or Px1  1xP       Px1
*  -----------------------------------------------------
*  A               OK          NO          OK        NO
*  B               NO          OK          NO        OK
*
*  Note that a consequence of this chart is that it is not possible
*    for *both* DTYPE_A and DTYPE_B to be 2D_type(1), as these lead
*    to opposite requirements for the orientation of the BLACS grid,
*    and as noted before, the *same* BLACS context must be used in
*    all descriptors in a single ScaLAPACK subroutine call.
*
*  Let A be a generic term for any 1D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN  EXPLANATION
*  --------------- ---------- ------------------------------------------
*  DTYPE_A(global) DESCA( 1 ) The descriptor type. For 1D grids,
*                                TYPE_A = 501: 1-by-P grid.
*                                TYPE_A = 502: P-by-1 grid.
*  CTXT_A (global) DESCA( 2 ) The BLACS context handle, indicating
*                                the BLACS process grid A is distribu-
*                                ted over. The context itself is glo-
*                                bal, but the handle (the integer
*                                value) may vary.
*  N_A    (global) DESCA( 3 ) The size of the array dimension being
*                                distributed.
*  NB_A   (global) DESCA( 4 ) The blocking factor used to distribute
*                                the distributed dimension of the array.
*  SRC_A  (global) DESCA( 5 ) The process row or column over which the
*                                first row or column of the array
*                                is distributed.
*  LLD_A  (local)  DESCA( 6 ) The leading dimension of the local array
*                                storing the local blocks of the distri-
*                                buted array A. Minimum value of LLD_A
*                                depends on TYPE_A.
*                                TYPE_A = 501: LLD_A >=
*                                   size of undistributed dimension, 1.
*                                TYPE_A = 502: LLD_A >=NB_A, 1.
*  Reserved        DESCA( 7 ) Reserved for future use.
*
*
*
*  =====================================================================
*
*  Implemented for ScaLAPACK by:
*     Andrew J. Cleary, Livermore National Lab and University of Tenn.,
*     and Marbwus Hegland, Australian Natonal University. Feb., 1997.
*  Based on code written by    : Peter Arbenz, ETH Zurich, 1996.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0 )
      PARAMETER          ( ZERO = 0.0E+0 )
      COMPLEX            CONE, CZERO
      PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ) )
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ) )
      INTEGER            INT_ONE
      PARAMETER          ( INT_ONE = 1 )
      INTEGER            DESCMULT, BIGNUM
      PARAMETER          ( DESCMULT = 100, BIGNUM = DESCMULT*DESCMULT )
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
*     ..
*     .. Local Scalars ..
      INTEGER            APTR, BBPTR, BM, BMN, BN, BNN, BW, CSRC,
     $                   FIRST_PROC, ICTXT, ICTXT_NEW, ICTXT_SAVE,
     $                   IDUM2, IDUM3, J, JA_NEW, L, LBWL, LBWU, LDBB,
     $                   LDW, LLDA, LLDB, LM, LMJ, LN, LPTR, MYCOL,
     $                   MYROW, NB, NEICOL, NP, NPACT, NPCOL, NPROW,
     $                   NPSTR, NP_SAVE, ODD_SIZE, PART_OFFSET,
     $                   RECOVERY_VAL, RETURN_CODE, STORE_M_B,
     $                   STORE_N_A, WORK_SIZE_MIN, WPTR
*     ..
*     .. Local Arrays ..
      INTEGER            DESCA_1XP( 7 ), DESCB_PX1( 7 ),
     $                   PARAM_CHECK( 17, 3 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, DESC_CONVERT, GLOBCHK, PXERBLA,
     $                   RESHAPE
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            NUMROC
      EXTERNAL           LSAME
      EXTERNAL           NUMROC
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ICHAR, MOD
*     ..
*     .. Executable Statements ..
*
*
*     Test the input parameters
*
      INFO = 0
*
*     Convert descriptor into standard form for easy access to
*        parameters, check that grid is of right shape.
*
      DESCA_1XP( 1 ) = 501
      DESCB_PX1( 1 ) = 502
*
      CALL DESC_CONVERT( DESCA, DESCA_1XP, RETURN_CODE )
*
      IF( RETURN_CODE .NE. 0) THEN
         INFO = -( 8*100 + 2 )
      ENDIF
*
      CALL DESC_CONVERT( DESCB, DESCB_PX1, RETURN_CODE )
*
      IF( RETURN_CODE .NE. 0) THEN
         INFO = -( 11*100 + 2 )
      ENDIF
*
*     Consistency checks for DESCA and DESCB.
*
*     Context must be the same
      IF( DESCA_1XP( 2 ) .NE. DESCB_PX1( 2 ) ) THEN
         INFO = -( 11*100 + 2 )
      ENDIF
*
*        These are alignment restrictions that may or may not be removed
*        in future releases. -Andy Cleary, April 14, 1996.
*
*     Block sizes must be the same
      IF( DESCA_1XP( 4 ) .NE. DESCB_PX1( 4 ) ) THEN
         INFO = -( 11*100 + 4 )
      ENDIF
*
*     Source processor must be the same
*
      IF( DESCA_1XP( 5 ) .NE. DESCB_PX1( 5 ) ) THEN
         INFO = -( 11*100 + 5 )
      ENDIF
*
*     Get values out of descriptor for use in code.
*
      ICTXT = DESCA_1XP( 2 )
      CSRC = DESCA_1XP( 5 )
      NB = DESCA_1XP( 4 )
      LLDA = DESCA_1XP( 6 )
      STORE_N_A = DESCA_1XP( 3 )
      LLDB = DESCB_PX1( 6 )
      STORE_M_B = DESCB_PX1( 3 )
*
*     Get grid parameters
*
*
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
      NP = NPROW * NPCOL
*
*
*
      IF( LSAME( TRANS, 'N' ) ) THEN
         IDUM2 = ICHAR( 'N' )
      ELSE IF ( LSAME( TRANS, 'C' ) ) THEN
         IDUM2 = ICHAR( 'C' )
      ELSE
         INFO = -1
      END IF
*
      IF( LWORK .LT. -1) THEN
         INFO = -16
      ELSE IF ( LWORK .EQ. -1 ) THEN
         IDUM3 = -1
      ELSE
         IDUM3 = 1
      ENDIF
*
      IF( N .LT. 0 ) THEN
         INFO = -2
      ENDIF
*
      IF( N+JA-1 .GT. STORE_N_A ) THEN
         INFO = -( 8*100 + 6 )
      ENDIF
*
      IF(( BWL .GT. N-1 ) .OR.
     $   ( BWL .LT. 0 ) ) THEN
         INFO = -3
      ENDIF
*
      IF(( BWU .GT. N-1 ) .OR.
     $   ( BWU .LT. 0 ) ) THEN
         INFO = -4
      ENDIF
*
      IF( LLDA .LT. (2*BWL+2*BWU+1) ) THEN
         INFO = -( 8*100 + 6 )
      ENDIF
*
      IF( NB .LE. 0 ) THEN
         INFO = -( 8*100 + 4 )
      ENDIF
*
      BW = BWU+BWL
*
      IF( N+IB-1 .GT. STORE_M_B ) THEN
         INFO = -( 11*100 + 3 )
      ENDIF
*
      IF( LLDB .LT. NB ) THEN
         INFO = -( 11*100 + 6 )
      ENDIF
*
      IF( NRHS .LT. 0 ) THEN
         INFO = -5
      ENDIF
*
*     Current alignment restriction
*
      IF( JA .NE. IB) THEN
         INFO = -7
      ENDIF
*
*     Argument checking that is specific to Divide & Conquer routine
*
      IF( NPROW .NE. 1 ) THEN
         INFO = -( 8*100+2 )
      ENDIF
*
      IF( N .GT. NP*NB-MOD( JA-1, NB )) THEN
         INFO = -( 2 )
         CALL PXERBLA( ICTXT,
     $      'PCGBTRS, D&C alg.: only 1 block per proc',
     $      -INFO )
         RETURN
      ENDIF
*
      IF((JA+N-1.GT.NB) .AND. ( NB.LT.(BWL+BWU+1) )) THEN
         INFO = -( 8*100+4 )
         CALL PXERBLA( ICTXT,
     $      'PCGBTRS, D&C alg.: NB too small',
     $      -INFO )
         RETURN
      ENDIF
*
*
*     Check worksize
*
      WORK_SIZE_MIN = NRHS*(NB+2*BWL+4*BWU)
*
      WORK( 1 ) = WORK_SIZE_MIN
*
      IF( LWORK .LT. WORK_SIZE_MIN ) THEN
         IF( LWORK .NE. -1 ) THEN
         INFO = -16
         CALL PXERBLA( ICTXT,
     $      'PCGBTRS: worksize error ',
     $      -INFO )
         ENDIF
         RETURN
      ENDIF
*
*     Pack params and positions into arrays for global consistency check
*
      PARAM_CHECK( 17, 1 ) = DESCB(5)
      PARAM_CHECK( 16, 1 ) = DESCB(4)
      PARAM_CHECK( 15, 1 ) = DESCB(3)
      PARAM_CHECK( 14, 1 ) = DESCB(2)
      PARAM_CHECK( 13, 1 ) = DESCB(1)
      PARAM_CHECK( 12, 1 ) = IB
      PARAM_CHECK( 11, 1 ) = DESCA(5)
      PARAM_CHECK( 10, 1 ) = DESCA(4)
      PARAM_CHECK(  9, 1 ) = DESCA(3)
      PARAM_CHECK(  8, 1 ) = DESCA(1)
      PARAM_CHECK(  7, 1 ) = JA
      PARAM_CHECK(  6, 1 ) = NRHS
      PARAM_CHECK(  5, 1 ) = BWU
      PARAM_CHECK(  4, 1 ) = BWL
      PARAM_CHECK(  3, 1 ) = N
      PARAM_CHECK(  2, 1 ) = IDUM3
      PARAM_CHECK(  1, 1 ) = IDUM2
*
      PARAM_CHECK( 17, 2 ) = 1105
      PARAM_CHECK( 16, 2 ) = 1104
      PARAM_CHECK( 15, 2 ) = 1103
      PARAM_CHECK( 14, 2 ) = 1102
      PARAM_CHECK( 13, 2 ) = 1101
      PARAM_CHECK( 12, 2 ) = 10
      PARAM_CHECK( 11, 2 ) = 805
      PARAM_CHECK( 10, 2 ) = 804
      PARAM_CHECK(  9, 2 ) = 803
      PARAM_CHECK(  8, 2 ) = 801
      PARAM_CHECK(  7, 2 ) = 7
      PARAM_CHECK(  6, 2 ) = 5
      PARAM_CHECK(  5, 2 ) = 4
      PARAM_CHECK(  4, 2 ) = 3
      PARAM_CHECK(  3, 2 ) = 2
      PARAM_CHECK(  2, 2 ) = 16
      PARAM_CHECK(  1, 2 ) = 1
*
*     Want to find errors with MIN( ), so if no error, set it to a big
*     number. If there already is an error, multiply by the the
*     descriptor multiplier.
*
      IF( INFO.GE.0 ) THEN
         INFO = BIGNUM
      ELSE IF( INFO.LT.-DESCMULT ) THEN
         INFO = -INFO
      ELSE
         INFO = -INFO * DESCMULT
      END IF
*
*     Check consistency across processors
*
      CALL GLOBCHK( ICTXT, 17, PARAM_CHECK, 17,
     $              PARAM_CHECK( 1, 3 ), INFO )
*
*     Prepare output: set info = 0 if no error, and divide by DESCMULT
*     if error is not in a descriptor entry.
*
      IF( INFO.EQ.BIGNUM ) THEN
         INFO = 0
      ELSE IF( MOD( INFO, DESCMULT ) .EQ. 0 ) THEN
         INFO = -INFO / DESCMULT
      ELSE
         INFO = -INFO
      END IF
*
      IF( INFO.LT.0 ) THEN
         CALL PXERBLA( ICTXT, 'PCGBTRS', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      IF( NRHS.EQ.0 )
     $   RETURN
*
*
*     Adjust addressing into matrix space to properly get into
*        the beginning part of the relevant data
*
      PART_OFFSET = NB*( (JA-1)/(NPCOL*NB) )
*
      IF ( (MYCOL-CSRC) .LT. (JA-PART_OFFSET-1)/NB ) THEN
         PART_OFFSET = PART_OFFSET + NB
      ENDIF
*
      IF ( MYCOL .LT. CSRC ) THEN
         PART_OFFSET = PART_OFFSET - NB
      ENDIF
*
*     Form a new BLACS grid (the "standard form" grid) with only procs
*        holding part of the matrix, of size 1xNP where NP is adjusted,
*        starting at csrc=0, with JA modified to reflect dropped procs.
*
*     First processor to hold part of the matrix:
*
      FIRST_PROC = MOD( ( JA-1 )/NB+CSRC, NPCOL )
*
*     Calculate new JA one while dropping off unused processors.
*
      JA_NEW = MOD( JA-1, NB ) + 1
*
*     Save and compute new value of NP
*
      NP_SAVE = NP
      NP = ( JA_NEW+N-2 )/NB + 1
*
*     Call utility routine that forms "standard-form" grid
*
      CALL RESHAPE( ICTXT, INT_ONE, ICTXT_NEW, INT_ONE,
     $              FIRST_PROC, INT_ONE, NP )
*
*     Use new context from standard grid as context.
*
      ICTXT_SAVE = ICTXT
      ICTXT = ICTXT_NEW
      DESCA_1XP( 2 ) = ICTXT_NEW
      DESCB_PX1( 2 ) = ICTXT_NEW
*
*     Get information about new grid.
*
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
*     Drop out processors that do not have part of the matrix.
*
      IF( MYROW .LT. 0 ) THEN
         GOTO 1234
      ENDIF
*
*
*
*     Begin main code
*
*     Move data into workspace - communicate/copy (overlap)
*
      IF (MYCOL .LT. NPCOL-1) THEN
         CALL CGESD2D( ICTXT, BWU, NRHS, B(NB-BWU+1), LLDB,
     $        0, MYCOL + 1)
      ENDIF
*
      IF (MYCOL .LT. NPCOL-1) THEN
         LM = NB-BWU
      ELSE
         LM = NB
      ENDIF
*
      IF (MYCOL .GT. 0) THEN
         WPTR = BWU+1
      ELSE
         WPTR = 1
      ENDIF
*
      LDW = NB+BWU + 2*BW+BWU
*
      CALL CLAMOV( 'G', LM, NRHS, B(1), LLDB, WORK( WPTR ), LDW )
*
*     Zero out rest of work
*
      DO 1501 J=1, NRHS
        DO 1502 L=WPTR+LM, LDW
          WORK( (J-1)*LDW+L ) = CZERO
 1502   CONTINUE
 1501 CONTINUE
*
      IF (MYCOL .GT. 0) THEN
         CALL CGERV2D( ICTXT, BWU, NRHS, WORK(1), LDW,
     $        0, MYCOL-1)
      ENDIF
*
********************************************************************
*       PHASE 1: Local computation phase -- Solve L*X = B
********************************************************************
*
*     Size of main (or odd) partition in each processor
*
      ODD_SIZE = NUMROC( N, NB, MYCOL, 0, NPCOL )
*
      IF (MYCOL .NE. 0) THEN
         LBWL = BW
         LBWU = 0
         APTR = 1
      ELSE
         LBWL = BWL
         LBWU = BWU
         APTR = 1+BWU
      ENDIF
*
      IF (MYCOL .NE. NPCOL-1) THEN
         LM = NB - LBWU
         LN = NB - BW
      ELSE IF (MYCOL .NE. 0) THEN
         LM = ODD_SIZE + BWU
         LN = MAX(ODD_SIZE-BW,0)
      ELSE
         LM = N
         LN = MAX( N-BW, 0 )
      ENDIF
*
      DO 21 J = 1, LN
*
         LMJ = MIN(LBWL,LM-J)
         L = IPIV( J )
*
         IF( L.NE.J ) THEN
            CALL CSWAP(NRHS, WORK(L), LDW, WORK(J), LDW)
         ENDIF
*
         LPTR = BW+1 + (J-1)*LLDA + APTR
*
         CALL CGERU(LMJ,NRHS,-CONE, A(LPTR),1, WORK(J),LDW,
     $           WORK(J+1),LDW)
*
   21 CONTINUE
*
********************************************************************
*       PHASE 2: Global computation phase -- Solve L*X = B
********************************************************************
*
*     Define the initial dimensions of the diagonal blocks
*     The offdiagonal blocks (for MYCOL > 0) are of size BM by BW
*
      IF (MYCOL .NE. NPCOL-1) THEN
         BM = BW - LBWU
         BN = BW
      ELSE
         BM = MIN(BW,ODD_SIZE) + BWU
         BN = MIN(BW,ODD_SIZE)
      ENDIF
*
*     Pointer to first element of block bidiagonal matrix in AF
*     Leading dimension of block bidiagonal system
*
      BBPTR = (NB+BWU)*BW + 1
      LDBB   = 2*BW + BWU
*
      IF (NPCOL.EQ.1) THEN
*
*        In this case the loop over the levels will not be
*        performed.
         CALL CGETRS( 'N', N-LN, NRHS, AF(BBPTR+BW*LDBB), LDBB,
     $        IPIV(LN+1), WORK( LN+1 ), LDW, INFO)
*
      ENDIF
*
* Loop over levels ...
*
*     The two integers NPACT (nu. of active processors) and NPSTR
*     (stride between active processors) is used to control the
*     loop.
*
      NPACT = NPCOL
      NPSTR = 1
*
*     Begin loop over levels
  200 IF (NPACT .LE. 1) GOTO 300
*
*     Test if processor is active
          IF (MOD(MYCOL,NPSTR) .EQ. 0) THEN
*
*   Send/Receive blocks
*
             IF (MOD(MYCOL,2*NPSTR) .EQ. 0) THEN
*
                NEICOL = MYCOL + NPSTR
*
                IF (NEICOL/NPSTR .LE. NPACT-1) THEN
*
                   IF (NEICOL/NPSTR .LT. NPACT-1) THEN
                      BMN = BW
                   ELSE
                      BMN = MIN(BW,NUMROC(N, NB, NEICOL, 0, NPCOL))+BWU
                   ENDIF
*
                   CALL CGESD2D( ICTXT, BM, NRHS,
     $                  WORK(LN+1), LDW, 0, NEICOL )
*
                   IF( NPACT .NE. 2 )THEN
*
*                     Receive answers back from partner processor
*
                      CALL CGERV2D(ICTXT, BM+BMN-BW, NRHS,
     $                   WORK( LN+1 ), LDW, 0, NEICOL )
*
                      BM = BM+BMN-BW
*
                   ENDIF
*
                ENDIF
*
             ELSE
*
                NEICOL = MYCOL - NPSTR
*
                IF (NEICOL .EQ. 0) THEN
                   BMN = BW - BWU
                ELSE
                   BMN = BW
                ENDIF
*
                CALL CLAMOV( 'G', BM, NRHS, WORK(LN+1), LDW,
     $               WORK(NB+BWU+BMN+1), LDW )
*
                CALL CGERV2D( ICTXT, BMN, NRHS, WORK( NB+BWU+1 ),
     $                  LDW, 0, NEICOL )
*
*               and do the permutations and eliminations
*
                IF (NPACT .NE. 2) THEN
*
*                  Solve locally for BW variables
*
                   CALL CLASWP( NRHS, WORK(NB+BWU+1), LDW, 1, BW,
     $                  IPIV(LN+1), 1)
*
                   CALL CTRSM('L','L','N','U', BW, NRHS, CONE,
     $                  AF(BBPTR+BW*LDBB), LDBB, WORK(NB+BWU+1), LDW)
*
*                  Use soln just calculated to update RHS
*
                   CALL CGEMM( 'N', 'N', BM+BMN-BW, NRHS, BW,
     $                -CONE, AF(BBPTR+BW*LDBB+BW), LDBB,
     $                WORK(NB+BWU+1), LDW,
     $                CONE, WORK(NB+BWU+1+BW), LDW )
*
*                  Give answers back to partner processor
*
                   CALL CGESD2D( ICTXT, BM+BMN-BW, NRHS,
     $                WORK(NB+BWU+1+BW), LDW, 0, NEICOL )
*
                ELSE
*
*                  Finish up calculations for final level
*
                   CALL CLASWP( NRHS, WORK(NB+BWU+1), LDW, 1, BM+BMN,
     $                  IPIV(LN+1), 1)
*
                   CALL CTRSM('L','L','N','U', BM+BMN, NRHS, CONE,
     $                  AF(BBPTR+BW*LDBB), LDBB, WORK(NB+BWU+1), LDW)
                ENDIF
*
             ENDIF
*
             NPACT = (NPACT + 1)/2
             NPSTR = NPSTR * 2
             GOTO 200
*
         ENDIF
*
  300 CONTINUE
*
*
**************************************
*     BACKSOLVE
********************************************************************
*       PHASE 2: Global computation phase -- Solve U*Y = X
********************************************************************
*
      IF (NPCOL.EQ.1) THEN
*
*        In this case the loop over the levels will not be
*        performed.
*        In fact, the backsolve portion was done in the call to
*          CGETRS in the frontsolve.
*
      ENDIF
*
*     Compute variable needed to reverse loop structure in
*        reduced system.
*
      RECOVERY_VAL = NPACT*NPSTR - NPCOL
*
*     Loop over levels
*      Terminal values of NPACT and NPSTR from frontsolve are used
*
 2200 IF( NPACT .GE. NPCOL ) GOTO 2300
*
         NPSTR = NPSTR/2
*
         NPACT = NPACT*2
*
*        Have to adjust npact for non-power-of-2
*
         NPACT = NPACT-MOD( (RECOVERY_VAL/NPSTR), 2 )
*
*        Find size of submatrix in this proc at this level
*
         IF( MYCOL/NPSTR .LT. NPACT-1 ) THEN
            BN = BW
         ELSE
            BN = MIN(BW, NUMROC(N, NB, NPCOL-1, 0, NPCOL) )
         ENDIF
*
*        If this processor is even in this level...
*
         IF( MOD( MYCOL, 2*NPSTR ) .EQ. 0 ) THEN
*
            NEICOL = MYCOL+NPSTR
*
            IF( NEICOL/NPSTR .LE. NPACT-1 ) THEN
*
               IF( NEICOL/NPSTR .LT. NPACT-1 ) THEN
                  BMN = BW
                  BNN = BW
               ELSE
                  BMN = MIN(BW,NUMROC(N, NB, NEICOL, 0, NPCOL))+BWU
                  BNN = MIN(BW, NUMROC(N, NB, NEICOL, 0, NPCOL) )
               ENDIF
*
               IF( NPACT .GT. 2 ) THEN
*
                  CALL CGESD2D( ICTXT, 2*BW, NRHS, WORK( LN+1 ),
     $                  LDW, 0, NEICOL )
*
                  CALL CGERV2D( ICTXT, BW, NRHS, WORK( LN+1 ),
     $                  LDW, 0, NEICOL )
*
               ELSE
*
                  CALL CGERV2D( ICTXT, BW, NRHS, WORK( LN+1 ),
     $                  LDW, 0, NEICOL )
*
               ENDIF
*
            ENDIF
*
         ELSE
*           This processor is odd on this level
*
            NEICOL = MYCOL - NPSTR
*
            IF (NEICOL .EQ. 0) THEN
               BMN = BW - BWU
            ELSE
               BMN = BW
            ENDIF
*
            IF( NEICOL .LT. NPCOL-1 ) THEN
               BNN = BW
            ELSE
               BNN = MIN(BW, NUMROC(N, NB, NEICOL, 0, NPCOL) )
            ENDIF
*
            IF( NPACT .GT. 2 ) THEN
*
*              Move RHS to make room for received solutions
*
               CALL CLAMOV( 'G', BW, NRHS, WORK(NB+BWU+1),
     $               LDW, WORK(NB+BWU+BW+1), LDW )
*
               CALL CGERV2D( ICTXT, 2*BW, NRHS, WORK( LN+1 ),
     $                  LDW, 0, NEICOL )
*
               CALL CGEMM( 'N', 'N', BW, NRHS, BN,
     $                -CONE, AF(BBPTR), LDBB,
     $                WORK(LN+1), LDW,
     $                CONE, WORK(NB+BWU+BW+1), LDW )
*
*
               IF( MYCOL .GT. NPSTR ) THEN
*
                  CALL CGEMM( 'N', 'N', BW, NRHS, BW,
     $                -CONE, AF(BBPTR+2*BW*LDBB), LDBB,
     $                WORK(LN+BW+1), LDW,
     $                CONE, WORK(NB+BWU+BW+1), LDW )
*
               ENDIF
*
               CALL CTRSM('L','U','N','N', BW, NRHS, CONE,
     $                AF(BBPTR+BW*LDBB), LDBB, WORK(NB+BWU+BW+1), LDW)
*
*              Send new solution to neighbor
*
               CALL CGESD2D( ICTXT, BW, NRHS,
     $                WORK( NB+BWU+BW+1 ), LDW, 0, NEICOL )
*
*              Copy new solution into expected place
*
               CALL CLAMOV( 'G', BW, NRHS, WORK(NB+BWU+1+BW),
     $               LDW, WORK(LN+BW+1), LDW )
*
            ELSE
*
*              Solve with local diagonal block
*
               CALL CTRSM( 'L','U','N','N', BN+BNN, NRHS, CONE,
     $                  AF(BBPTR+BW*LDBB), LDBB, WORK(NB+BWU+1), LDW)
*
*              Send new solution to neighbor
*
               CALL CGESD2D( ICTXT, BW, NRHS,
     $                WORK(NB+BWU+1), LDW, 0, NEICOL )
*
*              Shift solutions into expected positions
*
               CALL CLAMOV( 'G', BNN+BN-BW, NRHS, WORK(NB+BWU+1+BW),
     $               LDW, WORK(LN+1), LDW )
*
*
               IF( (NB+BWU+1) .NE. (LN+1+BW) ) THEN
*
*                 Copy one row at a time since spaces may overlap
*
                  DO 1064 J=1, BW
                     CALL CCOPY( NRHS, WORK(NB+BWU+J), LDW,
     $                                      WORK(LN+BW+J), LDW )
 1064             CONTINUE
*
               ENDIF
*
            ENDIF
*
         ENDIF
*
      GOTO 2200
*
 2300 CONTINUE
*     End of loop over levels
*
********************************************************************
*       PHASE 1: (Almost) Local computation phase -- Solve U*Y = X
********************************************************************
*
*     Reset BM to value it had before reduced system frontsolve...
*
      IF (MYCOL .NE. NPCOL-1) THEN
         BM = BW - LBWU
      ELSE
         BM = MIN(BW,ODD_SIZE) + BWU
      ENDIF
*
*     First metastep is to account for the fillin blocks AF
*
      IF( MYCOL .LT. NPCOL-1 ) THEN
*
         CALL CGESD2D( ICTXT, BW, NRHS, WORK( NB-BW+1 ),
     $                  LDW, 0, MYCOL+1 )
*
      ENDIF
*
      IF( MYCOL .GT. 0 ) THEN
*
         CALL CGERV2D( ICTXT, BW, NRHS, WORK( NB+BWU+1 ),
     $                  LDW, 0, MYCOL-1 )
*
*        Modify local right hand sides with received rhs's
*
         CALL CGEMM( 'N', 'N', LM-BM, NRHS, BW, -CONE,
     $           AF( 1 ), LM, WORK( NB+BWU+1 ), LDW, CONE,
     $           WORK( 1 ), LDW )
*
      ENDIF
*
      DO 2021 J = LN, 1, -1
*
         LMJ = MIN( BW, ODD_SIZE-1 )
*
         LPTR = BW-1+J*LLDA+APTR
*
*        In the following, the TRANS=T option is used to reverse
*           the order of multiplication, not as a true transpose
*
         CALL CGEMV( 'T', LMJ, NRHS, -CONE, WORK( J+1), LDW,
     $           A( LPTR ), LLDA-1, CONE, WORK( J ), LDW )
*
*        Divide by diagonal element
*
         CALL CSCAL( NRHS, CONE/A( LPTR-LLDA+1 ),
     $               WORK( J ), LDW )
 2021 CONTINUE
*
*
*
      CALL CLAMOV( 'G', ODD_SIZE, NRHS, WORK( 1 ), LDW,
     $             B( 1 ), LLDB )
*
*     Free BLACS space used to hold standard-form grid.
*
      ICTXT = ICTXT_SAVE
      IF( ICTXT .NE. ICTXT_NEW ) THEN
         CALL BLACS_GRIDEXIT( ICTXT_NEW )
      ENDIF
*
 1234 CONTINUE
*
*     Restore saved input parameters
*
      NP = NP_SAVE
*
*     Output worksize
*
      WORK( 1 ) = WORK_SIZE_MIN
*
      RETURN
*
*     End of PCGBTRS
*
      END
 |