| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 
 |       SUBROUTINE PZLATRD( UPLO, N, NB, A, IA, JA, DESCA, D, E, TAU, W,
     $                    IW, JW, DESCW, WORK )
*
*  -- ScaLAPACK auxiliary routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 1, 1997
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            IA, IW, JA, JW, N, NB
*     ..
*     .. Array Arguments ..
      INTEGER            DESCA( * ), DESCW( * )
      DOUBLE PRECISION   D( * ), E( * )
      COMPLEX*16         A( * ), TAU( * ), W( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  PZLATRD reduces NB rows and columns of a complex Hermitian
*  distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1) to complex
*  tridiagonal form by an unitary similarity transformation
*  Q' * sub( A ) * Q, and returns the matrices V and W which are
*  needed to apply the transformation to the unreduced part of sub( A ).
*
*  If UPLO = 'U', PZLATRD reduces the last NB rows and columns of a
*  matrix, of which the upper triangle is supplied;
*  if UPLO = 'L', PZLATRD reduces the first NB rows and columns of a
*  matrix, of which the lower triangle is supplied.
*
*  This is an auxiliary routine called by PZHETRD.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  UPLO    (global input) CHARACTER
*          Specifies whether the upper or lower triangular part of the
*          Hermitian matrix sub( A ) is stored:
*          = 'U': Upper triangular
*          = 'L': Lower triangular
*
*  N       (global input) INTEGER
*          The number of rows and columns to be operated on, i.e. the
*          order of the distributed submatrix sub( A ). N >= 0.
*
*  NB      (global input) INTEGER
*          The number of rows and columns to be reduced.
*
*  A       (local input/local output) COMPLEX*16 pointer into the
*          local memory to an array of dimension (LLD_A,LOCc(JA+N-1)).
*          On entry, this array contains the local pieces of the
*          Hermitian distributed matrix sub( A ).  If UPLO = 'U', the
*          leading N-by-N upper triangular part of sub( A ) contains
*          the upper triangular part of the matrix, and its strictly
*          lower triangular part is not referenced. If UPLO = 'L', the
*          leading N-by-N lower triangular part of sub( A ) contains the
*          lower triangular part of the matrix, and its strictly upper
*          triangular part is not referenced.
*          On exit, if UPLO = 'U', the last NB columns have been reduced
*          to tridiagonal form, with the diagonal elements overwriting
*          the diagonal elements of sub( A ); the elements above the
*          diagonal with the array TAU, represent the unitary matrix Q
*          as a product of elementary reflectors. If UPLO = 'L', the
*          first NB columns have been reduced to tridiagonal form, with
*          the diagonal elements overwriting the diagonal elements of
*          sub( A ); the elements below the diagonal with the array TAU,
*          represent the unitary matrix Q as a product of elementary
*          reflectors; See Further Details.
*
*  IA      (global input) INTEGER
*          The row index in the global array A indicating the first
*          row of sub( A ).
*
*  JA      (global input) INTEGER
*          The column index in the global array A indicating the
*          first column of sub( A ).
*
*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix A.
*
*  D       (local output) DOUBLE PRECISION array, dimension LOCc(JA+N-1)
*          The diagonal elements of the tridiagonal matrix T:
*          D(i) = A(i,i). D is tied to the distributed matrix A.
*
*  E       (local output) DOUBLE PRECISION array, dimension LOCc(JA+N-1)
*          if UPLO = 'U', LOCc(JA+N-2) otherwise. The off-diagonal
*          elements of the tridiagonal matrix T: E(i) = A(i,i+1) if
*          UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. E is tied to the
*          distributed matrix A.
*
*  TAU     (local output) COMPLEX*16, array, dimension
*          LOCc(JA+N-1). This array contains the scalar factors TAU of
*          the elementary reflectors. TAU is tied to the distributed
*          matrix A.
*
*  W       (local output) COMPLEX*16 pointer into the local memory
*          to an array of dimension (LLD_W,NB_W), This array contains
*          the local pieces of the N-by-NB_W matrix W required to
*          update the unreduced part of sub( A ).
*
*  IW      (global input) INTEGER
*          The row index in the global array W indicating the first
*          row of sub( W ).
*
*  JW      (global input) INTEGER
*          The column index in the global array W indicating the
*          first column of sub( W ).
*
*  DESCW   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix W.
*
*  WORK    (local workspace) COMPLEX*16 array, dimension (NB_A)
*
*  Further Details
*  ===============
*
*  If UPLO = 'U', the matrix Q is represented as a product of elementary
*  reflectors
*
*     Q = H(n) H(n-1) . . . H(n-nb+1).
*
*  Each H(i) has the form
*
*     H(i) = I - tau * v * v'
*
*  where tau is a complex scalar, and v is a complex vector with
*  v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in
*  A(ia:ia+i-2,ja+i), and tau in TAU(ja+i-1).
*
*  If UPLO = 'L', the matrix Q is represented as a product of elementary
*  reflectors
*
*     Q = H(1) H(2) . . . H(nb).
*
*  Each H(i) has the form
*
*     H(i) = I - tau * v * v'
*
*  where tau is a complex scalar, and v is a complex vector with
*  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in
*  A(ia+i+1:ia+n-1,ja+i-1), and tau in TAU(ja+i-1).
*
*  The elements of the vectors v together form the N-by-NB matrix V
*  which is needed, with W, to apply the transformation to the unreduced
*  part of the matrix, using a Hermitian rank-2k update of the form:
*  sub( A ) := sub( A ) - V*W' - W*V'.
*
*  The contents of A on exit are illustrated by the following examples
*  with n = 5 and nb = 2:
*
*  if UPLO = 'U':                       if UPLO = 'L':
*
*    (  a   a   a   v4  v5 )              (  d                  )
*    (      a   a   v4  v5 )              (  1   d              )
*    (          a   1   v5 )              (  v1  1   a          )
*    (              d   1  )              (  v1  v2  a   a      )
*    (                  d  )              (  v1  v2  a   a   a  )
*
*  where d denotes a diagonal element of the reduced matrix, a denotes
*  an element of the original matrix that is unchanged, and vi denotes
*  an element of the vector defining H(i).
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      COMPLEX*16         HALF, ONE, ZERO
      PARAMETER          ( HALF = ( 0.5D+0, 0.0D+0 ),
     $                   ONE = ( 1.0D+0, 0.0D+0 ),
     $                   ZERO = ( 0.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, IACOL, IAROW, ICTXT, II, J, JJ, JP, JWK, K,
     $                   KW, MYCOL, MYROW, NPCOL, NPROW, NQ
      COMPLEX*16         AII, ALPHA, BETA
*     ..
*     .. Local Arrays ..
      INTEGER            DESCD( DLEN_ ), DESCE( DLEN_ ), DESCWK( DLEN_ )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, DESCSET, DGEBR2D, DGEBS2D,
     $                   INFOG2L, PDELSET, PZAXPY, PZDOTC,
     $                   PZELGET, PZELSET, PZGEMV, PZHEMV,
     $                   PZLACGV, PZLARFG, PZSCAL
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            NUMROC
      EXTERNAL           LSAME, NUMROC
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, DCMPLX, MIN
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( N.LE.0 )
     $   RETURN
*
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
      NQ = MAX( 1, NUMROC( JA+N-1, DESCA( NB_ ), MYCOL, DESCA( CSRC_ ),
     $          NPCOL ) )
      CALL DESCSET( DESCD, 1, JA+N-1, 1, DESCA( NB_ ), MYROW,
     $              DESCA( CSRC_ ), DESCA( CTXT_ ), 1 )
      AII = ZERO
      BETA = ZERO
*
      IF( LSAME( UPLO, 'U' ) ) THEN
*
         CALL INFOG2L( N+IA-NB, N+JA-NB, DESCA, NPROW, NPCOL, MYROW,
     $                 MYCOL, II, JJ, IAROW, IACOL )
         CALL DESCSET( DESCWK, 1, DESCW( NB_ ), 1, DESCW( NB_ ), IAROW,
     $                 IACOL, ICTXT, 1 )
         CALL DESCSET( DESCE, 1, JA+N-1, 1, DESCA( NB_ ), MYROW,
     $                 DESCA( CSRC_ ), DESCA( CTXT_ ), 1 )
*
*        Reduce last NB columns of upper triangle
*
         DO 10 J = JA+N-1, JA+N-NB, -1
            I = IA + J - JA
            K = J - JA + 1
            KW = MOD( K-1, DESCA( MB_ ) ) + 1
*
*           Update A(IA:I,I)
*
            CALL PZELGET( 'E', ' ', AII, A, I, J, DESCA )
            CALL PZELSET( A, I, J, DESCA, DCMPLX( DBLE( AII ) ) )
            CALL PZLACGV( N-K, W, IW+K-1, JW+KW, DESCW, DESCW( M_ ) )
            CALL PZGEMV( 'No transpose', K, N-K, -ONE, A, IA, J+1,
     $                   DESCA, W, IW+K-1, JW+KW, DESCW, DESCW( M_ ),
     $                   ONE, A, IA, J, DESCA, 1 )
            CALL PZLACGV( N-K, W, IW+K-1, JW+KW, DESCW, DESCW( M_ ) )
            CALL PZLACGV( N-K, A, I, J+1, DESCA, DESCA( M_ ) )
            CALL PZGEMV( 'No transpose', K, N-K, -ONE, W, IW, JW+KW,
     $                   DESCW, A, I, J+1, DESCA, DESCA( M_ ), ONE, A,
     $                   IA, J, DESCA, 1 )
            CALL PZLACGV( N-K, A, I, J+1, DESCA, DESCA( M_ ) )
            CALL PZELGET( 'E', ' ', AII, A, I, J, DESCA )
            CALL PZELSET( A, I, J, DESCA, DCMPLX( DBLE( AII ) ) )
            IF( N-K.GT.0 )
     $         CALL PZELSET( A, I, J+1, DESCA, DCMPLX( E( JP ) ) )
*
*           Generate elementary reflector H(i) to annihilate
*           A(IA:I-2,I)
*
            JP = MIN( JJ+KW-1, NQ )
            CALL PZLARFG( K-1, BETA, I-1, J, A, IA, J, DESCA, 1,
     $                    TAU )
            CALL PDELSET( E, 1, J, DESCE, DBLE( BETA ) )
            CALL PZELSET( A, I-1, J, DESCA, ONE )
*
*           Compute W(IW:IW+K-2,JW+KW-1)
*
            CALL PZHEMV( 'Upper', K-1, ONE, A, IA, JA, DESCA, A, IA, J,
     $                   DESCA, 1, ZERO, W, IW, JW+KW-1, DESCW, 1 )
*
            JWK = MOD( K-1, DESCWK( NB_ ) ) + 2
            CALL PZGEMV( 'Conjugate transpose', K-1, N-K, ONE, W, IW,
     $                   JW+KW, DESCW, A, IA, J, DESCA, 1, ZERO, WORK,
     $                   1, JWK, DESCWK, DESCWK( M_ ) )
            CALL PZGEMV( 'No transpose', K-1, N-K, -ONE, A, IA, J+1,
     $                   DESCA, WORK, 1, JWK, DESCWK, DESCWK( M_ ), ONE,
     $                   W, IW, JW+KW-1, DESCW, 1 )
            CALL PZGEMV( 'Conjugate transpose', K-1, N-K, ONE, A, IA,
     $                   J+1, DESCA, A, IA, J, DESCA, 1, ZERO, WORK, 1,
     $                   JWK, DESCWK, DESCWK( M_ ) )
            CALL PZGEMV( 'No transpose', K-1, N-K, -ONE, W, IW, JW+KW,
     $                   DESCW, WORK, 1, JWK, DESCWK, DESCWK( M_ ), ONE,
     $                   W, IW, JW+KW-1, DESCW, 1 )
            CALL PZSCAL( K-1, TAU( JP ), W, IW, JW+KW-1, DESCW, 1 )
*
            CALL PZDOTC( K-1, ALPHA, W, IW, JW+KW-1, DESCW, 1, A, IA, J,
     $                   DESCA, 1 )
            IF( MYCOL.EQ.IACOL )
     $         ALPHA = -HALF*TAU( JP )*ALPHA
            CALL PZAXPY( K-1, ALPHA, A, IA, J, DESCA, 1, W, IW, JW+KW-1,
     $                   DESCW, 1 )
            CALL PZELGET( 'E', ' ', BETA, A, I, J, DESCA )
            CALL PDELSET( D, 1, J, DESCD, DBLE( BETA ) )
*
   10    CONTINUE
*
      ELSE
*
         CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL, II,
     $                 JJ, IAROW, IACOL )
         CALL DESCSET( DESCWK, 1, DESCW( NB_ ), 1, DESCW( NB_ ), IAROW,
     $                 IACOL, ICTXT, 1 )
         CALL DESCSET( DESCE, 1, JA+N-2, 1, DESCA( NB_ ), MYROW,
     $                 DESCA( CSRC_ ), DESCA( CTXT_ ), 1 )
*
*        Reduce first NB columns of lower triangle
*
         DO 20 J = JA, JA+NB-1
            I = IA + J - JA
            K = J - JA + 1
*
*           Update A(J:JA+N-1,J)
*
            CALL PZELGET( 'E', ' ', AII, A, I, J, DESCA )
            CALL PZELSET( A, I, J, DESCA, DCMPLX( DBLE( AII ) ) )
            CALL PZLACGV( K-1, W, IW+K-1, JW, DESCW, DESCW( M_ ) )
            CALL PZGEMV( 'No transpose', N-K+1, K-1, -ONE, A, I, JA,
     $                   DESCA, W, IW+K-1, JW, DESCW, DESCW( M_ ), ONE,
     $                   A, I, J, DESCA, 1 )
            CALL PZLACGV( K-1, W, IW+K-1, JW, DESCW, DESCW( M_ ) )
            CALL PZLACGV( K-1, A, I, JA, DESCA, DESCA( M_ ) )
            CALL PZGEMV( 'No transpose', N-K+1, K-1, -ONE, W, IW+K-1,
     $                   JW, DESCW, A, I, JA, DESCA, DESCA( M_ ), ONE,
     $                   A, I, J, DESCA, 1 )
            CALL PZLACGV( K-1, A, I, JA, DESCA, DESCA( M_ ) )
            CALL PZELGET( 'E', ' ', AII, A, I, J, DESCA )
            CALL PZELSET( A, I, J, DESCA, DCMPLX( DBLE( AII ) ) )
            IF( K.GT.1 )
     $         CALL PZELSET( A, I, J-1, DESCA, DCMPLX( E( JP ) ) )
*
*
*           Generate elementary reflector H(i) to annihilate
*           A(I+2:IA+N-1,I)
*
            JP = MIN( JJ+K-1, NQ )
            CALL PZLARFG( N-K, BETA, I+1, J, A, I+2, J, DESCA, 1,
     $                    TAU )
            CALL PDELSET( E, 1, J, DESCE, DBLE( BETA ) )
            CALL PZELSET( A, I+1, J, DESCA, ONE )
*
*           Compute W(IW+K:IW+N-1,JW+K-1)
*
            CALL PZHEMV( 'Lower', N-K, ONE, A, I+1, J+1, DESCA, A, I+1,
     $                   J, DESCA, 1, ZERO, W, IW+K, JW+K-1, DESCW, 1 )
*
            CALL PZGEMV( 'Conjugate Transpose', N-K, K-1, ONE, W, IW+K,
     $                   JW, DESCW, A, I+1, J, DESCA, 1, ZERO, WORK, 1,
     $                   1, DESCWK, DESCWK( M_ ) )
            CALL PZGEMV( 'No transpose', N-K, K-1, -ONE, A, I+1, JA,
     $                  DESCA, WORK, 1, 1, DESCWK, DESCWK( M_ ), ONE, W,
     $                  IW+K, JW+K-1, DESCW, 1 )
            CALL PZGEMV( 'Conjugate transpose', N-K, K-1, ONE, A, I+1,
     $                  JA, DESCA, A, I+1, J, DESCA, 1, ZERO, WORK, 1,
     $                  1, DESCWK, DESCWK( M_ ) )
            CALL PZGEMV( 'No transpose', N-K, K-1, -ONE, W, IW+K, JW,
     $                  DESCW, WORK, 1, 1, DESCWK, DESCWK( M_ ), ONE, W,
     $                  IW+K, JW+K-1, DESCW, 1 )
            CALL PZSCAL( N-K, TAU( JP ), W, IW+K, JW+K-1, DESCW, 1 )
            CALL PZDOTC( N-K, ALPHA, W, IW+K, JW+K-1, DESCW, 1, A, I+1,
     $                   J, DESCA, 1 )
            IF( MYCOL.EQ.IACOL )
     $         ALPHA = -HALF*TAU( JP )*ALPHA
            CALL PZAXPY( N-K, ALPHA, A, I+1, J, DESCA, 1, W, IW+K,
     $                   JW+K-1, DESCW, 1 )
            CALL PZELGET( 'E', ' ', BETA, A, I, J, DESCA )
            CALL PDELSET( D, 1, J, DESCD, DBLE( BETA ) )
*
   20    CONTINUE
*
      END IF
*
*     Broadcast columnwise the diagonal elements into D.
*
      IF( MYCOL.EQ.IACOL ) THEN
         IF( MYROW.EQ.IAROW ) THEN
            CALL DGEBS2D( ICTXT, 'Columnwise', ' ', 1, NB, D( JJ ), 1 )
         ELSE
            CALL DGEBR2D( ICTXT, 'Columnwise', ' ', 1, NB, D( JJ ), 1,
     $                    IAROW, MYCOL )
         END IF
      END IF
*
      RETURN
*
*     End of PZLATRD
*
      END
 |