File: cagemv.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (285 lines) | stat: -rw-r--r-- 8,326 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
      SUBROUTINE CAGEMV( TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y,
     $                   INCY )
*
*  -- PBLAS auxiliary routine (version 2.0) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     April 1, 1998
*
*     .. Scalar Arguments ..
      CHARACTER*1        TRANS
      INTEGER            INCX, INCY, LDA, M, N
      REAL               ALPHA, BETA
*     ..
*     .. Array Arguments ..
      REAL               Y( * )
      COMPLEX            A( LDA, * ), X( * )
*     ..
*
*  Purpose
*  =======
*
*  CAGEMV performs one of the matrix-vector operations
*
*     y := abs( alpha )*abs( A )*abs( x )+ abs( beta*y ),
*
*     or
*
*     y := abs( alpha )*abs( A' )*abs( x ) + abs( beta*y ),
*
*     or
*
*     y := abs( alpha )*abs( conjg( A' ) )*abs( x ) + abs( beta*y ),
*
*  where  alpha  and  beta  are real scalars, y is a real vector, x is a
*  vector and A is an m by n matrix.
*
*  Arguments
*  =========
*
*  TRANS   (input) CHARACTER*1
*          On entry,  TRANS  specifies the  operation to be performed as
*          follows:
*
*             TRANS = 'N' or 'n':
*                y := abs( alpha )*abs( A )*abs( x )+ abs( beta*y )
*
*             TRANS = 'T' or 't':
*                y := abs( alpha )*abs( A' )*abs( x ) + abs( beta*y )
*
*             TRANS = 'C' or 'c':
*                y := abs( alpha )*abs( conjg( A' ) )*abs( x ) +
*                     abs( beta*y )
*
*  M       (input) INTEGER
*          On entry, M  specifies the number of rows of the matrix  A. M
*          must be at least zero.
*
*  N       (input) INTEGER
*          On entry, N  specifies the number of columns of the matrix A.
*          N must be at least zero.
*
*  ALPHA   (input) REAL
*          On entry, ALPHA specifies the real scalar alpha.
*
*  A       (input) COMPLEX array of dimension ( LDA, n ).
*          On entry, A  is an array of dimension ( LDA, N ). The leading
*          m by n part of the array  A  must contain the matrix of coef-
*          ficients.
*
*  LDA     (input) INTEGER
*          On entry, LDA specifies the leading dimension of the array A.
*          LDA must be at least max( 1, M ).
*
*  X       (input) COMPLEX array of dimension at least
*          ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' and  at
*          least ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.  Before entry,
*          the incremented array X must contain the vector x.
*
*  INCX    (input) INTEGER
*          On entry, INCX specifies the increment for the elements of X.
*          INCX must not be zero.
*
*  BETA    (input) REAL
*          On entry,  BETA  specifies the real scalar beta. When BETA is
*          supplied as zero then Y need not be set on input.
*
*  Y       (input/output) REAL array of dimension at least
*          ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' and  at
*          least ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.  Before  entry
*          with BETA non-zero, the incremented array  Y must contain the
*          vector y. On exit, the incremented array  Y is overwritten by
*          the updated vector y.
*
*  INCY    (input) INTEGER
*          On entry, INCY specifies the increment for the elements of Y.
*          INCY must not be zero.
*
*  -- Written on April 1, 1998 by
*     Antoine Petitet, University  of  Tennessee, Knoxville 37996, USA.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, INFO, IX, IY, J, JX, JY, KX, KY, LENX, LENY
      REAL               ABSX, TALPHA, TEMP
      COMPLEX            ZDUM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, AIMAG, MAX, REAL
*     ..
*     .. Statement Functions ..
      REAL               CABS1
      CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      IF( .NOT.LSAME( TRANS, 'N' ) .AND.
     $    .NOT.LSAME( TRANS, 'T' ) .AND.
     $    .NOT.LSAME( TRANS, 'C' ) ) THEN
         INFO = 1
      ELSE IF( M.LT.0 ) THEN
         INFO = 2
      ELSE IF( N.LT.0 ) THEN
         INFO = 3
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = 6
      ELSE IF( INCX.EQ.0 ) THEN
         INFO = 8
      ELSE IF( INCY.EQ.0 ) THEN
         INFO = 11
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CAGEMV', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
     $    ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
     $   RETURN
*
*     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
*     up the start points in  X  and  Y.
*
      IF( LSAME( TRANS, 'N' ) ) THEN
         LENX = N
         LENY = M
      ELSE
         LENX = M
         LENY = N
      END IF
      IF( INCX.GT.0 ) THEN
         KX = 1
      ELSE
         KX = 1 - ( LENX - 1 )*INCX
      END IF
      IF( INCY.GT.0 ) THEN
         KY = 1
      ELSE
         KY = 1 - ( LENY - 1 )*INCY
      END IF
*
*     Start the operations. In this version the elements of A are
*     accessed sequentially with one pass through A.
*
*     First form  y := abs( beta*y ).
*
      IF( INCY.EQ.1 ) THEN
         IF( BETA.EQ.ZERO ) THEN
            DO 10, I = 1, LENY
               Y( I ) = ZERO
   10       CONTINUE
         ELSE IF( BETA.EQ.ONE ) THEN
            DO 20, I = 1, LENY
               Y( I ) = ABS( Y( I ) )
   20       CONTINUE
         ELSE
            DO 30, I = 1, LENY
               Y( I ) = ABS( BETA * Y( I ) )
   30       CONTINUE
         END IF
      ELSE
         IY = KY
         IF( BETA.EQ.ZERO ) THEN
            DO 40, I = 1, LENY
               Y( IY ) = ZERO
               IY      = IY + INCY
   40       CONTINUE
         ELSE IF( BETA.EQ.ONE ) THEN
            DO 50, I = 1, LENY
               Y( IY ) = ABS( Y( IY ) )
               IY      = IY + INCY
   50       CONTINUE
         ELSE
            DO 60, I = 1, LENY
               Y( IY ) = ABS( BETA * Y( IY ) )
               IY      = IY + INCY
   60       CONTINUE
         END IF
      END IF
*
      IF( ALPHA.EQ.ZERO )
     $   RETURN
*
      TALPHA = ABS( ALPHA )
*
      IF( LSAME( TRANS, 'N' ) ) THEN
*
*        Form  y := abs( alpha ) * abs( A ) * abs( x ) + y.
*
         JX = KX
         IF( INCY.EQ.1 ) THEN
            DO 80, J = 1, N
               ABSX = CABS1( X( JX ) )
               IF( ABSX.NE.ZERO ) THEN
                  TEMP = TALPHA * ABSX
                  DO 70, I = 1, M
                     Y( I ) = Y( I ) + TEMP * CABS1( A( I, J ) )
   70             CONTINUE
               END IF
               JX = JX + INCX
   80       CONTINUE
         ELSE
            DO 100, J = 1, N
               ABSX = CABS1( X( JX ) )
               IF( ABSX.NE.ZERO ) THEN
                  TEMP = TALPHA * ABSX
                  IY   = KY
                  DO 90, I = 1, M
                     Y( IY ) = Y( IY ) + TEMP * CABS1( A( I, J ) )
                     IY      = IY      + INCY
   90             CONTINUE
               END IF
               JX = JX + INCX
  100       CONTINUE
         END IF
*
      ELSE
*
*        Form  y := abs( alpha ) * abs( A' ) * abs( x ) + y.
*
         JY = KY
         IF( INCX.EQ.1 ) THEN
            DO 120, J = 1, N
               TEMP = ZERO
               DO 110, I = 1, M
                  TEMP = TEMP + CABS1( A( I, J ) ) * CABS1( X( I ) )
  110          CONTINUE
               Y( JY ) = Y( JY ) + TALPHA * TEMP
               JY      = JY      + INCY
  120       CONTINUE
         ELSE
            DO 140, J = 1, N
               TEMP = ZERO
               IX   = KX
               DO 130, I = 1, M
                  TEMP = TEMP + CABS1( A( I, J ) ) * CABS1( X( IX ) )
                  IX   = IX   + INCX
  130          CONTINUE
               Y( JY ) = Y( JY ) + TALPHA * TEMP
               JY      = JY      + INCY
  140       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of CAGEMV
*
      END