1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
SUBROUTINE CASYMV( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y,
$ INCY )
*
* -- PBLAS auxiliary routine (version 2.0) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* April 1, 1998
*
* .. Scalar Arguments ..
CHARACTER*1 UPLO
INTEGER INCX, INCY, LDA, N
REAL ALPHA, BETA
* ..
* .. Array Arguments ..
REAL Y( * )
COMPLEX A( LDA, * ), X( * )
* ..
*
* Purpose
* =======
*
* CASYMV performs the following matrix-vector operation
*
* y := abs( alpha )*abs( A )*abs( x )+ abs( beta*y ),
*
* where alpha and beta are real scalars, y is a real vector, x is a
* vector and A is an n by n symmetric matrix.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* On entry, UPLO specifies whether the upper or lower triangu-
* lar part of the array A is to be referenced as follows:
*
* UPLO = 'U' or 'u' Only the upper triangular part of A is
* to be referenced.
* UPLO = 'L' or 'l' Only the lower triangular part of A is
* to be referenced.
*
* N (input) INTEGER
* On entry, N specifies the order of the matrix A. N must be at
* least zero.
*
* ALPHA (input) REAL
* On entry, ALPHA specifies the real scalar alpha.
*
* A (input) COMPLEX array
* On entry, A is an array of dimension (LDA,N). Before entry
* with UPLO = 'U' or 'u', the leading n by n part of the array
* A must contain the upper triangular part of the symmetric ma-
* trix and the strictly lower triangular part of A is not refe-
* renced. When UPLO = 'L' or 'l', the leading n by n part of
* the array A must contain the lower triangular part of the
* symmetric matrix and the strictly upper trapezoidal part of A
* is not referenced.
*
* LDA (input) INTEGER
* On entry, LDA specifies the leading dimension of the array A.
* LDA must be at least max( 1, N ).
*
* X (input) COMPLEX array of dimension at least
* ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented
* array X must contain the vector x.
*
* INCX (input) INTEGER
* On entry, INCX specifies the increment for the elements of X.
* INCX must not be zero.
*
* BETA (input) REAL
* On entry, BETA specifies the real scalar beta. When BETA is
* supplied as zero then Y need not be set on input.
*
* Y (input/output) REAL array of dimension at least
* ( 1 + ( n - 1 )*abs( INCY ) ). Before entry with BETA non-
* zero, the incremented array Y must contain the vector y. On
* exit, the incremented array Y is overwritten by the updated
* vector y.
*
* INCY (input) INTEGER
* On entry, INCY specifies the increment for the elements of Y.
* INCY must not be zero.
*
* -- Written on April 1, 1998 by
* Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY
REAL TALPHA, TEMP0, TEMP1, TEMP2
COMPLEX ZDUM
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, AIMAG, MAX, REAL
* ..
* .. Statement Functions ..
REAL CABS1
CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
IF ( .NOT.LSAME( UPLO, 'U' ).AND.
$ .NOT.LSAME( UPLO, 'L' ) )THEN
INFO = 1
ELSE IF( N.LT.0 )THEN
INFO = 2
ELSE IF( LDA.LT.MAX( 1, N ) )THEN
INFO = 5
ELSE IF( INCX.EQ.0 )THEN
INFO = 7
ELSE IF( INCY.EQ.0 )THEN
INFO = 10
END IF
IF( INFO.NE.0 )THEN
CALL XERBLA( 'CASYMV', INFO )
RETURN
END IF
*
* Quick return if possible.
*
IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
$ RETURN
*
* Set up the start points in X and Y.
*
IF( INCX.GT.0 ) THEN
KX = 1
ELSE
KX = 1 - ( N - 1 ) * INCX
END IF
IF( INCY.GT.0 )THEN
KY = 1
ELSE
KY = 1 - ( N - 1 ) * INCY
END IF
*
* Start the operations. In this version the elements of A are
* accessed sequentially with one pass through the triangular part
* of A.
*
* First form y := abs( beta * y ).
*
IF( BETA.NE.ONE ) THEN
IF( INCY.EQ.1 ) THEN
IF( BETA.EQ.ZERO ) THEN
DO 10, I = 1, N
Y( I ) = ZERO
10 CONTINUE
ELSE
DO 20, I = 1, N
Y( I ) = ABS( BETA * Y( I ) )
20 CONTINUE
END IF
ELSE
IY = KY
IF( BETA.EQ.ZERO ) THEN
DO 30, I = 1, N
Y( IY ) = ZERO
IY = IY + INCY
30 CONTINUE
ELSE
DO 40, I = 1, N
Y( IY ) = ABS( BETA * Y( IY ) )
IY = IY + INCY
40 CONTINUE
END IF
END IF
END IF
*
IF( ALPHA.EQ.ZERO )
$ RETURN
*
TALPHA = ABS( ALPHA )
*
IF( LSAME( UPLO, 'U' ) ) THEN
*
* Form y when A is stored in upper triangle.
*
IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) ) THEN
DO 60, J = 1, N
TEMP1 = TALPHA * CABS1( X( J ) )
TEMP2 = ZERO
DO 50, I = 1, J - 1
TEMP0 = CABS1( A( I, J ) )
Y( I ) = Y( I ) + TEMP1 * TEMP0
TEMP2 = TEMP2 + TEMP0 * CABS1( X( I ) )
50 CONTINUE
Y( J ) = Y( J ) + TEMP1 * CABS1( A( J, J ) ) +
$ ALPHA * TEMP2
*
60 CONTINUE
*
ELSE
*
JX = KX
JY = KY
*
DO 80, J = 1, N
TEMP1 = TALPHA * CABS1( X( JX ) )
TEMP2 = ZERO
IX = KX
IY = KY
*
DO 70, I = 1, J - 1
TEMP0 = CABS1( A( I, J ) )
Y( IY ) = Y( IY ) + TEMP1 * TEMP0
TEMP2 = TEMP2 + TEMP0 * CABS1( X( IX ) )
IX = IX + INCX
IY = IY + INCY
70 CONTINUE
Y( JY ) = Y( JY ) + TEMP1 * CABS1( A( J, J ) ) +
$ ALPHA * TEMP2
JX = JX + INCX
JY = JY + INCY
*
80 CONTINUE
*
END IF
*
ELSE
*
* Form y when A is stored in lower triangle.
*
IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) ) THEN
*
DO 100, J = 1, N
*
TEMP1 = TALPHA * CABS1( X( J ) )
TEMP2 = ZERO
Y( J ) = Y( J ) + TEMP1 * CABS1( A( J, J ) )
*
DO 90, I = J + 1, N
TEMP0 = CABS1( A( I, J ) )
Y( I ) = Y( I ) + TEMP1 * TEMP0
TEMP2 = TEMP2 + TEMP0 * CABS1( X( I ) )
*
90 CONTINUE
*
Y( J ) = Y( J ) + ALPHA * TEMP2
*
100 CONTINUE
*
ELSE
*
JX = KX
JY = KY
*
DO 120, J = 1, N
TEMP1 = TALPHA * CABS1( X( JX ) )
TEMP2 = ZERO
Y( JY ) = Y( JY ) + TEMP1 * CABS1( A( J, J ) )
IX = JX
IY = JY
*
DO 110, I = J + 1, N
*
IX = IX + INCX
IY = IY + INCY
TEMP0 = CABS1( A( I, J ) )
Y( IY ) = Y( IY ) + TEMP1 * TEMP0
TEMP2 = TEMP2 + TEMP0 * CABS1( X( IX ) )
*
110 CONTINUE
*
Y( JY ) = Y( JY ) + ALPHA * TEMP2
JX = JX + INCX
JY = JY + INCY
*
120 CONTINUE
*
END IF
*
END IF
*
RETURN
*
* End of CASYMV
*
END
|