1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
SUBROUTINE CHESCAL( UPLO, M, N, IOFFD, ALPHA, A, LDA )
*
* -- PBLAS auxiliary routine (version 2.0) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* April 1, 1998
*
* .. Scalar Arguments ..
CHARACTER*1 UPLO
INTEGER IOFFD, LDA, M, N
REAL ALPHA
* ..
* .. Array Arguments ..
COMPLEX A( LDA, * )
* ..
*
* Purpose
* =======
*
* CHESCAL scales a two-dimensional array A by the real scalar alpha.
* The diagonal entries specified by IOFFD of A are supposed to be real.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* On entry, UPLO specifies which trapezoidal part of the ar-
* ray A is to be scaled as follows:
* = 'L' or 'l': the lower trapezoid of A is scaled,
* = 'U' or 'u': the upper trapezoid of A is scaled,
* = 'D' or 'd': diagonal specified by IOFFD is scaled,
* Otherwise: all of the array A is scaled.
*
* M (input) INTEGER
* On entry, M specifies the number of rows of the array A. M
* must be at least zero.
*
* N (input) INTEGER
* On entry, N specifies the number of columns of the array A.
* N must be at least zero.
*
* IOFFD (input) INTEGER
* On entry, IOFFD specifies the position of the offdiagonal de-
* limiting the upper and lower trapezoidal part of A as follows
* (see the notes below):
*
* IOFFD = 0 specifies the main diagonal A( i, i ),
* with i = 1 ... MIN( M, N ),
* IOFFD > 0 specifies the subdiagonal A( i+IOFFD, i ),
* with i = 1 ... MIN( M-IOFFD, N ),
* IOFFD < 0 specifies the superdiagonal A( i, i-IOFFD ),
* with i = 1 ... MIN( M, N+IOFFD ).
*
* ALPHA (input) REAL
* On entry, ALPHA specifies the scalar alpha, i.e., the value
* by which the diagonal and offdiagonal entries of the array A
* as specified by UPLO and IOFFD are scaled.
*
* A (input/output) COMPLEX array
* On entry, A is an array of dimension (LDA,N). Before entry
* with UPLO = 'U' or 'u', the leading m by n part of the array
* A must contain the upper trapezoidal part of the Hermitian
* matrix to be scaled as specified by IOFFD, and the strictly
* lower trapezoidal part of A is not referenced. When UPLO is
* 'L' or 'l', the leading m by n part of the array A must con-
* tain the lower trapezoidal part of the Hermitian matrix to be
* scaled as specified by IOFFD, and the strictly upper trape-
* zoidal part of A is not referenced. On exit, the entries of
* the trapezoid part of A determined by UPLO and IOFFD are sca-
* led.
*
* LDA (input) INTEGER
* On entry, LDA specifies the leading dimension of the array A.
* LDA must be at least max( 1, M ).
*
* Notes
* =====
* N N
* ---------------------------- -----------
* | d | | |
* M | d 'U' | | 'U' |
* | 'L' 'D' | |d |
* | d | M | d |
* ---------------------------- | 'D' |
* | d |
* IOFFD < 0 | 'L' d |
* | d|
* N | |
* ----------- -----------
* | d 'U'|
* | d | IOFFD > 0
* M | 'D' |
* | d| N
* | 'L' | ----------------------------
* | | | 'U' |
* | | |d |
* | | | 'D' |
* | | | d |
* | | |'L' d |
* ----------- ----------------------------
*
* -- Written on April 1, 1998 by
* Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
*
* =====================================================================
*
* .. Parameters ..
REAL RONE, RZERO
PARAMETER ( RONE = 1.0E+0, RZERO = 0.0E+0 )
COMPLEX ZERO
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
INTEGER J, JTMP, MN
* ..
* .. External Subroutines ..
EXTERNAL CSSCAL, CTZPAD
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. Intrinsic Functions ..
INTRINSIC CMPLX, MAX, MIN, REAL
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( M.LE.0 .OR. N.LE.0 )
$ RETURN
*
* Start the operations
*
IF( ALPHA.EQ.RONE ) THEN
*
* Zeros the imaginary part of the diagonals
*
IF( LSAME( UPLO, 'L' ).OR.LSAME( UPLO, 'U' ).OR.
$ LSAME( UPLO, 'D' ) ) THEN
DO 10 J = MAX( 0, -IOFFD ) + 1, MIN( M - IOFFD, N )
JTMP = J + IOFFD
A( JTMP, J ) = CMPLX( REAL( A( JTMP, J ) ), RZERO )
10 CONTINUE
END IF
RETURN
ELSE IF( ALPHA.EQ.RZERO ) THEN
CALL CTZPAD( UPLO, 'N', M, N, IOFFD, ZERO, ZERO, A, LDA )
RETURN
END IF
*
IF( LSAME( UPLO, 'L' ) ) THEN
*
* Scales the lower triangular part of the array by ALPHA.
*
MN = MAX( 0, -IOFFD )
DO 20 J = 1, MIN( MN, N )
CALL CSSCAL( M, ALPHA, A( 1, J ), 1 )
20 CONTINUE
DO 30 J = MN + 1, MIN( M - IOFFD, N )
JTMP = J + IOFFD
A( JTMP, J ) = CMPLX( ALPHA * REAL( A( JTMP, J ) ), RZERO )
IF( M.GT.JTMP )
$ CALL CSSCAL( M-JTMP, ALPHA, A( JTMP + 1, J ), 1 )
30 CONTINUE
*
ELSE IF( LSAME( UPLO, 'U' ) ) THEN
*
* Scales the upper triangular part of the array by ALPHA.
*
MN = MIN( M - IOFFD, N )
DO 40 J = MAX( 0, -IOFFD ) + 1, MN
JTMP = J + IOFFD
CALL CSSCAL( JTMP - 1, ALPHA, A( 1, J ), 1 )
A( JTMP, J ) = CMPLX( ALPHA * REAL( A( JTMP, J ) ), RZERO )
40 CONTINUE
DO 50 J = MAX( 0, MN ) + 1, N
CALL CSSCAL( M, ALPHA, A( 1, J ), 1 )
50 CONTINUE
*
ELSE IF( LSAME( UPLO, 'D' ) ) THEN
*
* Scales the diagonal entries by ALPHA.
*
DO 60 J = MAX( 0, -IOFFD ) + 1, MIN( M - IOFFD, N )
JTMP = J + IOFFD
A( JTMP, J ) = CMPLX( ALPHA * REAL( A( JTMP, J ) ), RZERO )
60 CONTINUE
*
ELSE
*
* Scales the entire array by ALPHA.
*
DO 70 J = 1, N
CALL CSSCAL( M, ALPHA, A( 1, J ), 1 )
70 CONTINUE
*
END IF
*
RETURN
*
* End of CHESCAL
*
END
|