1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
SUBROUTINE CTZCNJG( UPLO, M, N, IOFFD, ALPHA, A, LDA )
*
* -- PBLAS auxiliary routine (version 2.0) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* April 1, 1998
*
* .. Scalar Arguments ..
CHARACTER*1 UPLO
INTEGER IOFFD, LDA, M, N
COMPLEX ALPHA
* ..
* .. Array Arguments ..
COMPLEX A( LDA, * )
* ..
*
* Purpose
* =======
*
* CTZCNJG conjugates a two-dimensional array A and then scales it by
* the scalar alpha.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* On entry, UPLO specifies which trapezoidal part of the ar-
* ray A is to be conjugated and scaled as follows:
* = 'L' or 'l': the lower trapezoid of A is scaled,
* = 'U' or 'u': the upper trapezoid of A is scaled,
* = 'D' or 'd': diagonal specified by IOFFD is scaled,
* Otherwise: all of the array A is scaled.
*
* M (input) INTEGER
* On entry, M specifies the number of rows of the array A. M
* must be at least zero.
*
* N (input) INTEGER
* On entry, N specifies the number of columns of the array A.
* N must be at least zero.
*
* IOFFD (input) INTEGER
* On entry, IOFFD specifies the position of the offdiagonal de-
* limiting the upper and lower trapezoidal part of A as follows
* (see the notes below):
*
* IOFFD = 0 specifies the main diagonal A( i, i ),
* with i = 1 ... MIN( M, N ),
* IOFFD > 0 specifies the subdiagonal A( i+IOFFD, i ),
* with i = 1 ... MIN( M-IOFFD, N ),
* IOFFD < 0 specifies the superdiagonal A( i, i-IOFFD ),
* with i = 1 ... MIN( M, N+IOFFD ).
*
* ALPHA (input) COMPLEX
* On entry, ALPHA specifies the scalar alpha, i.e., the value
* by which the diagonal and offdiagonal entries of the array A
* as specified by UPLO and IOFFD are scaled.
*
* A (input/output) COMPLEX array
* On entry, A is an array of dimension (LDA,N). Before entry
* with UPLO = 'U' or 'u', the leading m by n part of the array
* A must contain the upper trapezoidal part of the matrix as
* specified by IOFFD to be scaled, and the strictly lower tra-
* pezoidal part of A is not referenced; When UPLO = 'L' or 'l',
* the leading m by n part of the array A must contain the lower
* trapezoidal part of the matrix as specified by IOFFD to be
* scaled, and the strictly upper trapezoidal part of A is not
* referenced. On exit, the entries of the trapezoid part of A
* determined by UPLO and IOFFD are conjugated and scaled.
*
* LDA (input) INTEGER
* On entry, LDA specifies the leading dimension of the array A.
* LDA must be at least max( 1, M ).
*
* Notes
* =====
* N N
* ---------------------------- -----------
* | d | | |
* M | d 'U' | | 'U' |
* | 'L' 'D' | |d |
* | d | M | d |
* ---------------------------- | 'D' |
* | d |
* IOFFD < 0 | 'L' d |
* | d|
* N | |
* ----------- -----------
* | d 'U'|
* | d | IOFFD > 0
* M | 'D' |
* | d| N
* | 'L' | ----------------------------
* | | | 'U' |
* | | |d |
* | | | 'D' |
* | | | d |
* | | |'L' d |
* ----------- ----------------------------
*
* -- Written on April 1, 1998 by
* Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ONE, ZERO
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ),
$ ZERO = ( 0.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, J, JTMP, MN
* ..
* .. External Subroutines ..
EXTERNAL CTZPAD
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG, MAX, MIN
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( ( M.LE.0 ).OR.( N.LE.0 ) )
$ RETURN
*
* Start the operations
*
IF( ALPHA.EQ.ZERO ) THEN
*
CALL CTZPAD( UPLO, 'N', M, N, IOFFD, ZERO, ZERO, A, LDA )
*
ELSE IF( ALPHA.EQ.ONE ) THEN
*
IF( LSAME( UPLO, 'L' ) ) THEN
*
MN = MAX( 0, -IOFFD )
DO 20 J = 1, MIN( MN, N )
DO 10 I = 1, M
A( I, J ) = CONJG( A( I, J ) )
10 CONTINUE
20 CONTINUE
*
DO 40 J = MN + 1, MIN( M - IOFFD, N )
DO 30 I = J + IOFFD, M
A( I, J ) = CONJG( A( I, J ) )
30 CONTINUE
40 CONTINUE
*
ELSE IF( LSAME( UPLO, 'U' ) ) THEN
*
* Scales the upper triangular part of the array by ALPHA.
*
MN = MIN( M - IOFFD, N )
DO 60 J = MAX( 0, -IOFFD ) + 1, MN
DO 50 I = 1, J + IOFFD
A( I, J ) = CONJG( A( I, J ) )
50 CONTINUE
60 CONTINUE
*
DO 80 J = MAX( 0, MN ) + 1, N
DO 70 I = 1, M
A( I, J ) = CONJG( A( I, J ) )
70 CONTINUE
80 CONTINUE
*
ELSE IF( LSAME( UPLO, 'D' ) ) THEN
*
* Scales the diagonal entries by ALPHA.
*
DO 90 J = MAX( 0, -IOFFD ) + 1, MIN( M - IOFFD, N )
JTMP = J + IOFFD
A( JTMP, J ) = CONJG( A( JTMP, J ) )
90 CONTINUE
*
ELSE
*
* Scales the entire array by ALPHA.
*
DO 110 J = 1, N
DO 100 I = 1, M
A( I, J ) = CONJG( A( I, J ) )
100 CONTINUE
110 CONTINUE
*
END IF
*
ELSE
*
IF( LSAME( UPLO, 'L' ) ) THEN
*
* Scales the lower triangular part of the array by ALPHA.
*
MN = MAX( 0, -IOFFD )
DO 130 J = 1, MIN( MN, N )
DO 120 I = 1, M
A( I, J ) = ALPHA * CONJG( A( I, J ) )
120 CONTINUE
130 CONTINUE
*
DO 150 J = MN + 1, MIN( M - IOFFD, N )
DO 140 I = J + IOFFD, M
A( I, J ) = ALPHA * CONJG( A( I, J ) )
140 CONTINUE
150 CONTINUE
*
ELSE IF( LSAME( UPLO, 'U' ) ) THEN
*
* Scales the upper triangular part of the array by ALPHA.
*
MN = MIN( M - IOFFD, N )
DO 170 J = MAX( 0, -IOFFD ) + 1, MN
DO 160 I = 1, J + IOFFD
A( I, J ) = ALPHA * CONJG( A( I, J ) )
160 CONTINUE
170 CONTINUE
*
DO 190 J = MAX( 0, MN ) + 1, N
DO 180 I = 1, M
A( I, J ) = ALPHA * CONJG( A( I, J ) )
180 CONTINUE
190 CONTINUE
*
ELSE IF( LSAME( UPLO, 'D' ) ) THEN
*
* Scales the diagonal entries by ALPHA.
*
DO 200 J = MAX( 0, -IOFFD ) + 1, MIN( M - IOFFD, N )
JTMP = J + IOFFD
A( JTMP, J ) = ALPHA * CONJG( A( JTMP, J ) )
200 CONTINUE
*
ELSE
*
* Scales the entire array by ALPHA.
*
DO 220 J = 1, N
DO 210 I = 1, M
A( I, J ) = ALPHA * CONJG( A( I, J ) )
210 CONTINUE
220 CONTINUE
*
END IF
*
END IF
*
RETURN
*
* End of CTZCNJG
*
END
|