File: ctzcnjg.f

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (255 lines) | stat: -rw-r--r-- 8,702 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
      SUBROUTINE CTZCNJG( UPLO, M, N, IOFFD, ALPHA, A, LDA )
*
*  -- PBLAS auxiliary routine (version 2.0) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     April 1, 1998
*
*     .. Scalar Arguments ..
      CHARACTER*1        UPLO
      INTEGER            IOFFD, LDA, M, N
      COMPLEX            ALPHA
*     ..
*     .. Array Arguments ..
      COMPLEX            A( LDA, * )
*     ..
*
*  Purpose
*  =======
*
*  CTZCNJG  conjugates  a  two-dimensional array A and then scales it by
*  the scalar alpha.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          On entry,  UPLO  specifies  which trapezoidal part of the ar-
*          ray A is to be conjugated and scaled as follows:
*             = 'L' or 'l':          the lower trapezoid of A is scaled,
*             = 'U' or 'u':          the upper trapezoid of A is scaled,
*             = 'D' or 'd':       diagonal specified by IOFFD is scaled,
*             Otherwise:                   all of the array A is scaled.
*
*  M       (input) INTEGER
*          On entry,  M  specifies the number of rows of the array A.  M
*          must be at least zero.
*
*  N       (input) INTEGER
*          On entry,  N  specifies the number of columns of the array A.
*          N must be at least zero.
*
*  IOFFD   (input) INTEGER
*          On entry, IOFFD specifies the position of the offdiagonal de-
*          limiting the upper and lower trapezoidal part of A as follows
*          (see the notes below):
*
*             IOFFD = 0  specifies the main diagonal A( i, i ),
*                        with i = 1 ... MIN( M, N ),
*             IOFFD > 0  specifies the subdiagonal   A( i+IOFFD, i ),
*                        with i = 1 ... MIN( M-IOFFD, N ),
*             IOFFD < 0  specifies the superdiagonal A( i, i-IOFFD ),
*                        with i = 1 ... MIN( M, N+IOFFD ).
*
*  ALPHA   (input) COMPLEX
*          On entry,  ALPHA  specifies the scalar alpha, i.e., the value
*          by which the diagonal and offdiagonal entries of the array  A
*          as specified by UPLO and IOFFD are scaled.
*
*  A       (input/output) COMPLEX array
*          On entry, A is an array of dimension  (LDA,N).  Before  entry
*          with  UPLO = 'U' or 'u', the leading m by n part of the array
*          A must contain the upper trapezoidal  part  of the matrix  as
*          specified by  IOFFD to be scaled, and the strictly lower tra-
*          pezoidal part of A is not referenced; When UPLO = 'L' or 'l',
*          the leading m by n part of the array A must contain the lower
*          trapezoidal  part  of  the matrix as specified by IOFFD to be
*          scaled,  and  the strictly upper trapezoidal part of A is not
*          referenced. On exit, the entries of the  trapezoid part of  A
*          determined by UPLO and IOFFD are conjugated and scaled.
*
*  LDA     (input) INTEGER
*          On entry, LDA specifies the leading dimension of the array A.
*          LDA must be at least max( 1, M ).
*
*  Notes
*  =====
*                           N                                    N
*             ----------------------------                  -----------
*            |       d                    |                |           |
*          M |         d        'U'       |                |      'U'  |
*            |  'L'     'D'               |                |d          |
*            |             d              |              M |  d        |
*             ----------------------------                 |   'D'     |
*                                                          |      d    |
*               IOFFD < 0                                  | 'L'    d  |
*                                                          |          d|
*                  N                                       |           |
*             -----------                                   -----------
*            |    d   'U'|
*            |      d    |                                   IOFFD > 0
*          M |       'D' |
*            |          d|                              N
*            |  'L'      |                 ----------------------------
*            |           |                |          'U'               |
*            |           |                |d                           |
*            |           |                | 'D'                        |
*            |           |                |    d                       |
*            |           |                |'L'   d                     |
*             -----------                  ----------------------------
*
*  -- Written on April 1, 1998 by
*     Antoine Petitet, University  of  Tennessee, Knoxville 37996, USA.
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            ONE, ZERO
      PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ),
     $                   ZERO = ( 0.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J, JTMP, MN
*     ..
*     .. External Subroutines ..
      EXTERNAL           CTZPAD
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CONJG, MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( ( M.LE.0 ).OR.( N.LE.0 ) )
     $   RETURN
*
*     Start the operations
*
      IF( ALPHA.EQ.ZERO ) THEN
*
         CALL CTZPAD( UPLO, 'N', M, N, IOFFD, ZERO, ZERO, A, LDA )
*
      ELSE IF( ALPHA.EQ.ONE ) THEN
*
         IF( LSAME( UPLO, 'L' ) ) THEN
*
            MN = MAX( 0, -IOFFD )
            DO 20 J = 1, MIN( MN, N )
               DO 10 I = 1, M
                  A( I, J ) = CONJG( A( I, J ) )
   10          CONTINUE
   20       CONTINUE
*
            DO 40 J = MN + 1, MIN( M - IOFFD, N )
               DO 30 I = J + IOFFD, M
                  A( I, J ) = CONJG( A( I, J ) )
   30          CONTINUE
   40       CONTINUE
*
         ELSE IF( LSAME( UPLO, 'U' ) ) THEN
*
*           Scales the upper triangular part of the array by ALPHA.
*
            MN = MIN( M - IOFFD, N )
            DO 60 J = MAX( 0, -IOFFD ) + 1, MN
               DO 50 I = 1, J + IOFFD
                  A( I, J ) = CONJG( A( I, J ) )
   50          CONTINUE
   60       CONTINUE
*
            DO 80 J = MAX( 0, MN ) + 1, N
               DO 70 I = 1, M
                  A( I, J ) = CONJG( A( I, J ) )
   70          CONTINUE
   80       CONTINUE
*
         ELSE IF( LSAME( UPLO, 'D' ) ) THEN
*
*           Scales the diagonal entries by ALPHA.
*
            DO 90 J = MAX( 0, -IOFFD ) + 1, MIN( M - IOFFD, N )
               JTMP = J + IOFFD
               A( JTMP, J ) = CONJG( A( JTMP, J ) )
   90       CONTINUE
*
         ELSE
*
*           Scales the entire array by ALPHA.
*
            DO 110 J = 1, N
               DO 100 I = 1, M
                  A( I, J ) = CONJG( A( I, J ) )
  100          CONTINUE
  110       CONTINUE
*
         END IF
*
      ELSE
*
         IF( LSAME( UPLO, 'L' ) ) THEN
*
*           Scales the lower triangular part of the array by ALPHA.
*
            MN = MAX( 0, -IOFFD )
            DO 130 J = 1, MIN( MN, N )
               DO 120 I = 1, M
                  A( I, J ) = ALPHA * CONJG( A( I, J ) )
  120          CONTINUE
  130       CONTINUE
*
            DO 150 J = MN + 1, MIN( M - IOFFD, N )
               DO 140 I = J + IOFFD, M
                  A( I, J ) = ALPHA * CONJG( A( I, J ) )
  140          CONTINUE
  150       CONTINUE
*
         ELSE IF( LSAME( UPLO, 'U' ) ) THEN
*
*           Scales the upper triangular part of the array by ALPHA.
*
            MN = MIN( M - IOFFD, N )
            DO 170 J = MAX( 0, -IOFFD ) + 1, MN
               DO 160 I = 1, J + IOFFD
                  A( I, J ) = ALPHA * CONJG( A( I, J ) )
  160          CONTINUE
  170       CONTINUE
*
            DO 190 J = MAX( 0, MN ) + 1, N
               DO 180 I = 1, M
                  A( I, J ) = ALPHA * CONJG( A( I, J ) )
  180          CONTINUE
  190       CONTINUE
*
         ELSE IF( LSAME( UPLO, 'D' ) ) THEN
*
*           Scales the diagonal entries by ALPHA.
*
            DO 200 J = MAX( 0, -IOFFD ) + 1, MIN( M - IOFFD, N )
               JTMP = J + IOFFD
               A( JTMP, J ) = ALPHA * CONJG( A( JTMP, J ) )
  200       CONTINUE
*
         ELSE
*
*           Scales the entire array by ALPHA.
*
            DO 220 J = 1, N
               DO 210 I = 1, M
                  A( I, J ) = ALPHA * CONJG( A( I, J ) )
  210          CONTINUE
  220       CONTINUE
*
         END IF
*
      END IF
*
      RETURN
*
*     End of CTZCNJG
*
      END