1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
SUBROUTINE CTZPAD( UPLO, HERM, M, N, IOFFD, ALPHA, BETA, A, LDA )
*
* -- PBLAS auxiliary routine (version 2.0) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* April 1, 1998
*
* .. Scalar Arguments ..
CHARACTER*1 HERM, UPLO
INTEGER IOFFD, LDA, M, N
COMPLEX ALPHA, BETA
* ..
* .. Array Arguments ..
COMPLEX A( LDA, * )
* ..
*
* Purpose
* =======
*
* CTZPAD initializes a two-dimensional array A to beta on the diagonal
* specified by IOFFD or zeros the imaginary part of those diagonals and
* set the offdiagonals to alpha.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* On entry, UPLO specifies which trapezoidal part of the ar-
* ray A is to be set as follows:
* = 'L' or 'l': Lower triangular part is set; the strictly
* upper triangular part of A is not changed,
* = 'D' or 'd': diagonal specified by IOFFD is set; the
* rest of the array A is unchanged,
* = 'U' or 'u': Upper triangular part is set; the strictly
* lower triangular part of A is not changed,
* Otherwise: All of the array A is set.
*
* HERM (input) CHARACTER*1
* On entry, HERM specifies what should be done to the diagonals
* as follows. When UPLO is 'L', 'l', 'D', 'd', 'U' or 'u' and
* HERM is 'Z' or 'z', the imaginary part of the diagonals is
* set to zero. Otherwise, the diagonals are set to beta.
*
* M (input) INTEGER
* On entry, M specifies the number of rows of the array A. M
* must be at least zero.
*
* N (input) INTEGER
* On entry, N specifies the number of columns of the array A.
* N must be at least zero.
*
* IOFFD (input) INTEGER
* On entry, IOFFD specifies the position of the offdiagonal de-
* limiting the upper and lower trapezoidal part of A as follows
* (see the notes below):
*
* IOFFD = 0 specifies the main diagonal A( i, i ),
* with i = 1 ... MIN( M, N ),
* IOFFD > 0 specifies the subdiagonal A( i+IOFFD, i ),
* with i = 1 ... MIN( M-IOFFD, N ),
* IOFFD < 0 specifies the superdiagonal A( i, i-IOFFD ),
* with i = 1 ... MIN( M, N+IOFFD ).
*
* ALPHA (input) COMPLEX
* On entry, ALPHA specifies the scalar alpha, i.e., the value
* to which the offdiagonal entries of the array A determined by
* UPLO and IOFFD are set.
*
* BETA (input) COMPLEX
* On entry, BETA specifies the scalar beta, i.e., the value to
* which the diagonal entries specified by IOFFD of the array A
* are set. BETA is not referenced when UPLO is 'L', 'l', 'U' or
* 'u' and HERM is 'Z'.
*
* A (input/output) COMPLEX array
* On entry, A is an array of dimension (LDA,N). Before entry
* with UPLO = 'U', the leading m by n part of the array A must
* contain the upper trapezoidal part of the matrix to be set as
* specified by IOFFD, and the strictly lower trapezoidal part
* of A is not referenced; When UPLO = 'L', the leading m by n
* part of the array A must contain the lower trapezoidal part
* of the matrix to be set as specified by IOFFD, and the
* strictly upper trapezoidal part of A is not referenced. On
* exit, the entries of the trapezoid part of A determined by
* UPLO, HERM and IOFFD are set.
*
* LDA (input) INTEGER
* On entry, LDA specifies the leading dimension of the array A.
* LDA must be at least max( 1, M ).
*
* Notes
* =====
* N N
* ---------------------------- -----------
* | d | | |
* M | d 'U' | | 'U' |
* | 'L' 'D' | |d |
* | d | M | d |
* ---------------------------- | 'D' |
* | d |
* IOFFD < 0 | 'L' d |
* | d|
* N | |
* ----------- -----------
* | d 'U'|
* | d | IOFFD > 0
* M | 'D' |
* | d| N
* | 'L' | ----------------------------
* | | | 'U' |
* | | |d |
* | | | 'D' |
* | | | d |
* | | |'L' d |
* ----------- ----------------------------
*
* -- Written on April 1, 1998 by
* Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
*
* =====================================================================
*
* .. Parameters ..
REAL RZERO
PARAMETER ( RZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, J, JTMP, MN
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. Intrinsic Functions ..
INTRINSIC CMPLX, MAX, MIN, REAL
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( M.LE.0 .OR. N.LE.0 )
$ RETURN
*
* Start the operations
*
IF( LSAME( UPLO, 'L' ) ) THEN
*
* Set the diagonal to BETA or zero the imaginary part of the
* diagonals and set the strictly lower triangular part of the
* array to ALPHA.
*
MN = MAX( 0, -IOFFD )
DO 20 J = 1, MIN( MN, N )
DO 10 I = 1, M
A( I, J ) = ALPHA
10 CONTINUE
20 CONTINUE
*
IF( LSAME( HERM, 'Z' ) ) THEN
DO 40 J = MN + 1, MIN( M - IOFFD, N )
JTMP = J + IOFFD
A( JTMP, J ) = CMPLX( REAL( A( JTMP, J ) ), RZERO )
DO 30 I = JTMP + 1, M
A( I, J ) = ALPHA
30 CONTINUE
40 CONTINUE
ELSE
DO 60 J = MN + 1, MIN( M - IOFFD, N )
JTMP = J + IOFFD
A( JTMP, J ) = BETA
DO 50 I = JTMP + 1, M
A( I, J ) = ALPHA
50 CONTINUE
60 CONTINUE
END IF
*
ELSE IF( LSAME( UPLO, 'U' ) ) THEN
*
* Set the diagonal to BETA or zero the imaginary part of the
* diagonals and set the strictly upper triangular part of the
* array to ALPHA.
*
MN = MIN( M - IOFFD, N )
IF( LSAME( HERM, 'Z' ) ) THEN
DO 80 J = MAX( 0, -IOFFD ) + 1, MN
JTMP = J + IOFFD
DO 70 I = 1, JTMP - 1
A( I, J ) = ALPHA
70 CONTINUE
A( JTMP, J ) = CMPLX( REAL( A( JTMP, J ) ), RZERO )
80 CONTINUE
ELSE
DO 100 J = MAX( 0, -IOFFD ) + 1, MN
JTMP = J + IOFFD
DO 90 I = 1, JTMP - 1
A( I, J ) = ALPHA
90 CONTINUE
A( JTMP, J ) = BETA
100 CONTINUE
END IF
DO 120 J = MAX( 0, MN ) + 1, N
DO 110 I = 1, M
A( I, J ) = ALPHA
110 CONTINUE
120 CONTINUE
*
ELSE IF( LSAME( UPLO, 'D' ) ) THEN
*
* Set the diagonal to BETA or zero the imaginary part of the
* diagonals.
*
IF( LSAME( HERM, 'Z' ) ) THEN
IF( ( IOFFD.LT.M ).AND.( IOFFD.GT.-N ) ) THEN
DO 130 J = MAX( 0, -IOFFD ) + 1, MIN( M - IOFFD, N )
JTMP = J + IOFFD
A( JTMP, J ) = CMPLX( REAL( A( JTMP, J ) ), RZERO )
130 CONTINUE
END IF
ELSE
IF( ( IOFFD.LT.M ).AND.( IOFFD.GT.-N ) ) THEN
DO 140 J = MAX( 0, -IOFFD ) + 1, MIN( M - IOFFD, N )
A( J + IOFFD, J ) = BETA
140 CONTINUE
END IF
END IF
*
ELSE
*
* Set the diagonals to BETA and the offdiagonals to ALPHA.
*
DO 160 J = 1, N
DO 150 I = 1, M
A( I, J ) = ALPHA
150 CONTINUE
160 CONTINUE
IF( ALPHA.NE.BETA .AND. IOFFD.LT.M .AND. IOFFD.GT.-N ) THEN
DO 170 J = MAX( 0, -IOFFD ) + 1, MIN( M - IOFFD, N )
A( J + IOFFD, J ) = BETA
170 CONTINUE
END IF
*
END IF
*
RETURN
*
* End of CTZPAD
*
END
|