1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
SUBROUTINE SAGEMV( TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y,
$ INCY )
*
* -- PBLAS auxiliary routine (version 2.0) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* April 1, 1998
*
* .. Scalar Arguments ..
CHARACTER*1 TRANS
INTEGER INCX, INCY, LDA, M, N
REAL ALPHA, BETA
* ..
* .. Array Arguments ..
REAL A( LDA, * ), X( * ), Y( * )
* ..
*
* Purpose
* =======
*
* SAGEMV performs one of the matrix-vector operations
*
* y := abs( alpha )*abs( A )*abs( x )+ abs( beta*y ),
*
* or
*
* y := abs( alpha )*abs( A' )*abs( x ) + abs( beta*y ),
*
* where alpha and beta are real scalars, y is a real vector, x is a
* vector and A is an m by n matrix.
*
* Arguments
* =========
*
* TRANS (input) CHARACTER*1
* On entry, TRANS specifies the operation to be performed as
* follows:
*
* TRANS = 'N' or 'n':
* y := abs( alpha )*abs( A )*abs( x )+ abs( beta*y )
*
* TRANS = 'T' or 't':
* y := abs( alpha )*abs( A' )*abs( x ) + abs( beta*y )
*
* TRANS = 'C' or 'c':
* y := abs( alpha )*abs( A' )*abs( x ) + abs( beta*y )
*
* M (input) INTEGER
* On entry, M specifies the number of rows of the matrix A. M
* must be at least zero.
*
* N (input) INTEGER
* On entry, N specifies the number of columns of the matrix A.
* N must be at least zero.
*
* ALPHA (input) REAL
* On entry, ALPHA specifies the real scalar alpha.
*
* A (input) REAL array of dimension ( LDA, n ).
* On entry, A is an array of dimension ( LDA, N ). The leading
* m by n part of the array A must contain the matrix of coef-
* ficients.
*
* LDA (input) INTEGER
* On entry, LDA specifies the leading dimension of the array A.
* LDA must be at least max( 1, M ).
*
* X (input) REAL array of dimension at least
* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' and at
* least ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. Before entry,
* the incremented array X must contain the vector x.
*
* INCX (input) INTEGER
* On entry, INCX specifies the increment for the elements of X.
* INCX must not be zero.
*
* BETA (input) REAL
* On entry, BETA specifies the real scalar beta. When BETA is
* supplied as zero then Y need not be set on input.
*
* Y (input/output) REAL array of dimension at least
* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' and at
* least ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. Before entry
* with BETA non-zero, the incremented array Y must contain the
* vector y. On exit, the incremented array Y is overwritten by
* the updated vector y.
*
* INCY (input) INTEGER
* On entry, INCY specifies the increment for the elements of Y.
* INCY must not be zero.
*
* -- Written on April 1, 1998 by
* Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY, LENX, LENY
REAL ABSX, TALPHA, TEMP
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
IF( .NOT.LSAME( TRANS, 'N' ) .AND.
$ .NOT.LSAME( TRANS, 'T' ) .AND.
$ .NOT.LSAME( TRANS, 'C' ) ) THEN
INFO = 1
ELSE IF( M.LT.0 ) THEN
INFO = 2
ELSE IF( N.LT.0 ) THEN
INFO = 3
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = 6
ELSE IF( INCX.EQ.0 ) THEN
INFO = 8
ELSE IF( INCY.EQ.0 ) THEN
INFO = 11
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SAGEMV', INFO )
RETURN
END IF
*
* Quick return if possible.
*
IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
$ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
$ RETURN
*
* Set LENX and LENY, the lengths of the vectors x and y, and set
* up the start points in X and Y.
*
IF( LSAME( TRANS, 'N' ) ) THEN
LENX = N
LENY = M
ELSE
LENX = M
LENY = N
END IF
IF( INCX.GT.0 ) THEN
KX = 1
ELSE
KX = 1 - ( LENX - 1 )*INCX
END IF
IF( INCY.GT.0 ) THEN
KY = 1
ELSE
KY = 1 - ( LENY - 1 )*INCY
END IF
*
* Start the operations. In this version the elements of A are
* accessed sequentially with one pass through A.
*
* First form y := abs( beta*y ).
*
IF( INCY.EQ.1 ) THEN
IF( BETA.EQ.ZERO ) THEN
DO 10, I = 1, LENY
Y( I ) = ZERO
10 CONTINUE
ELSE IF( BETA.EQ.ONE ) THEN
DO 20, I = 1, LENY
Y( I ) = ABS( Y( I ) )
20 CONTINUE
ELSE
DO 30, I = 1, LENY
Y( I ) = ABS( BETA * Y( I ) )
30 CONTINUE
END IF
ELSE
IY = KY
IF( BETA.EQ.ZERO ) THEN
DO 40, I = 1, LENY
Y( IY ) = ZERO
IY = IY + INCY
40 CONTINUE
ELSE IF( BETA.EQ.ONE ) THEN
DO 50, I = 1, LENY
Y( IY ) = ABS( Y( IY ) )
IY = IY + INCY
50 CONTINUE
ELSE
DO 60, I = 1, LENY
Y( IY ) = ABS( BETA * Y( IY ) )
IY = IY + INCY
60 CONTINUE
END IF
END IF
*
IF( ALPHA.EQ.ZERO )
$ RETURN
*
TALPHA = ABS( ALPHA )
*
IF( LSAME( TRANS, 'N' ) ) THEN
*
* Form y := abs( alpha ) * abs( A ) * abs( x ) + y.
*
JX = KX
IF( INCY.EQ.1 ) THEN
DO 80, J = 1, N
ABSX = ABS( X( JX ) )
IF( ABSX.NE.ZERO ) THEN
TEMP = TALPHA * ABSX
DO 70, I = 1, M
Y( I ) = Y( I ) + TEMP * ABS( A( I, J ) )
70 CONTINUE
END IF
JX = JX + INCX
80 CONTINUE
ELSE
DO 100, J = 1, N
ABSX = ABS( X( JX ) )
IF( ABSX.NE.ZERO ) THEN
TEMP = TALPHA * ABSX
IY = KY
DO 90, I = 1, M
Y( IY ) = Y( IY ) + TEMP * ABS( A( I, J ) )
IY = IY + INCY
90 CONTINUE
END IF
JX = JX + INCX
100 CONTINUE
END IF
*
ELSE
*
* Form y := abs( alpha ) * abs( A' ) * abs( x ) + y.
*
JY = KY
IF( INCX.EQ.1 ) THEN
DO 120, J = 1, N
TEMP = ZERO
DO 110, I = 1, M
TEMP = TEMP + ABS( A( I, J ) * X( I ) )
110 CONTINUE
Y( JY ) = Y( JY ) + TALPHA * TEMP
JY = JY + INCY
120 CONTINUE
ELSE
DO 140, J = 1, N
TEMP = ZERO
IX = KX
DO 130, I = 1, M
TEMP = TEMP + ABS( A( I, J ) * X( IX ) )
IX = IX + INCX
130 CONTINUE
Y( JY ) = Y( JY ) + TALPHA * TEMP
JY = JY + INCY
140 CONTINUE
END IF
END IF
*
RETURN
*
* End of SAGEMV
*
END
|