File: pdtrsm_.c

package info (click to toggle)
scalapack 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 37,012 kB
  • sloc: fortran: 339,113; ansic: 74,517; makefile: 1,494; sh: 34
file content (560 lines) | stat: -rw-r--r-- 21,749 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
/* ---------------------------------------------------------------------
*
*  -- PBLAS routine (version 2.0) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     April 1, 1998
*
*  ---------------------------------------------------------------------
*/
/*
*  Include files
*/
#include "pblas.h"
#include "PBpblas.h"
#include "PBtools.h"
#include "PBblacs.h"
#include "PBblas.h"

#ifdef __STDC__
void pdtrsm_( F_CHAR_T SIDE, F_CHAR_T UPLO, F_CHAR_T TRANS, F_CHAR_T DIAG,
              Int * M, Int * N, double * ALPHA,
              double * A, Int * IA, Int * JA, Int * DESCA,
              double * B, Int * IB, Int * JB, Int * DESCB )
#else
void pdtrsm_( SIDE, UPLO, TRANS, DIAG, M, N, ALPHA,
              A, IA, JA, DESCA, B, IB, JB, DESCB )
/*
*  .. Scalar Arguments ..
*/
   F_CHAR_T       DIAG, SIDE, TRANS, UPLO;
   Int            * IA, * IB, * JA, * JB, * M, * N;
   double         * ALPHA;
/*
*  .. Array Arguments ..
*/
   Int            * DESCA, * DESCB;
   double         * A, * B;
#endif
{
/*
*  Purpose
*  =======
*
*  PDTRSM  solves one of the matrix equations
*
*     op( sub( A ) )*X = alpha*sub( B ),   or
*
*     X*op( sub( A ) ) = alpha*sub( B ),
*
*  where
*
*     sub( A ) denotes A(IA:IA+M-1,JA:JA+M-1)  if SIDE = 'L',
*                      A(IA:IA+N-1,JA:JA+N-1)  if SIDE = 'R', and,
*
*     sub( B ) denotes B(IB:IB+M-1,JB:JB+N-1).
*
*  Alpha is a scalar, X and sub( B ) are m by n submatrices, sub( A ) is
*  a unit, or non-unit, upper or lower  triangular submatrix and op( Y )
*  is one of
*
*     op( Y ) = Y   or   op( Y ) = Y'.
*
*  The submatrix X is overwritten on sub( B ).
*
*  Notes
*  =====
*
*  A description  vector  is associated with each 2D block-cyclicly dis-
*  tributed matrix.  This  vector  stores  the  information  required to
*  establish the  mapping  between a  matrix entry and its corresponding
*  process and memory location.
*
*  In  the  following  comments,   the character _  should  be  read  as
*  "of  the  distributed  matrix".  Let  A  be a generic term for any 2D
*  block cyclicly distributed matrix.  Its description vector is DESC_A:
*
*  NOTATION         STORED IN       EXPLANATION
*  ---------------- --------------- ------------------------------------
*  DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type.
*  CTXT_A  (global) DESCA[ CTXT_  ] The BLACS context handle, indicating
*                                   the NPROW x NPCOL BLACS process grid
*                                   A  is  distributed over. The context
*                                   itself  is  global,  but  the handle
*                                   (the integer value) may vary.
*  M_A     (global) DESCA[ M_     ] The  number of rows in the distribu-
*                                   ted matrix A, M_A >= 0.
*  N_A     (global) DESCA[ N_     ] The number of columns in the distri-
*                                   buted matrix A, N_A >= 0.
*  IMB_A   (global) DESCA[ IMB_   ] The number of rows of the upper left
*                                   block of the matrix A, IMB_A > 0.
*  INB_A   (global) DESCA[ INB_   ] The  number  of columns of the upper
*                                   left   block   of   the  matrix   A,
*                                   INB_A > 0.
*  MB_A    (global) DESCA[ MB_    ] The blocking factor used to  distri-
*                                   bute the last  M_A-IMB_A  rows of A,
*                                   MB_A > 0.
*  NB_A    (global) DESCA[ NB_    ] The blocking factor used to  distri-
*                                   bute the last  N_A-INB_A  columns of
*                                   A, NB_A > 0.
*  RSRC_A  (global) DESCA[ RSRC_  ] The process row over which the first
*                                   row of the matrix  A is distributed,
*                                   NPROW > RSRC_A >= 0.
*  CSRC_A  (global) DESCA[ CSRC_  ] The  process column  over  which the
*                                   first column of  A  is  distributed.
*                                   NPCOL > CSRC_A >= 0.
*  LLD_A   (local)  DESCA[ LLD_   ] The  leading dimension  of the local
*                                   array  storing  the  local blocks of
*                                   the distributed matrix A,
*                                   IF( Lc( 1, N_A ) > 0 )
*                                      LLD_A >= MAX( 1, Lr( 1, M_A ) )
*                                   ELSE
*                                      LLD_A >= 1.
*
*  Let K be the number of  rows of a matrix A starting at the global in-
*  dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
*  that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
*  receive if these K rows were distributed over NPROW processes.  If  K
*  is the number of columns of a matrix  A  starting at the global index
*  JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number  of co-
*  lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would  receive if
*  these K columns were distributed over NPCOL processes.
*
*  The values of Lr() and Lc() may be determined via a call to the func-
*  tion PB_Cnumroc:
*  Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
*  Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
*
*  Arguments
*  =========
*
*  SIDE    (global input) CHARACTER*1
*          On entry,  SIDE  specifies  whether op( sub( A ) ) appears on
*          the left or right of X as follows:
*
*             SIDE = 'L' or 'l'   op( sub( A ) )*X = alpha*sub( B ),
*
*             SIDE = 'R' or 'r'   X*op( sub( A ) ) = alpha*sub( B ).
*
*  UPLO    (global input) CHARACTER*1
*          On entry,  UPLO  specifies whether the submatrix  sub( A ) is
*          an upper or lower triangular submatrix as follows:
*
*             UPLO = 'U' or 'u'   sub( A ) is an upper triangular
*                                 submatrix,
*
*             UPLO = 'L' or 'l'   sub( A ) is a  lower triangular
*                                 submatrix.
*
*  TRANSA  (global input) CHARACTER*1
*          On entry,  TRANSA  specifies the form of op( sub( A ) ) to be
*          used in the matrix multiplication as follows:
*
*             TRANSA = 'N' or 'n'   op( sub( A ) ) = sub( A ),
*
*             TRANSA = 'T' or 't'   op( sub( A ) ) = sub( A )',
*
*             TRANSA = 'C' or 'c'   op( sub( A ) ) = sub( A )'.
*
*  DIAG    (global input) CHARACTER*1
*          On entry,  DIAG  specifies  whether or not  sub( A )  is unit
*          triangular as follows:
*
*             DIAG = 'U' or 'u'  sub( A )  is  assumed to be unit trian-
*                                gular,
*
*             DIAG = 'N' or 'n'  sub( A ) is not assumed to be unit tri-
*                                angular.
*
*  M       (global input) INTEGER
*          On entry,  M  specifies the number of rows of  the  submatrix
*          sub( B ). M  must be at least zero.
*
*  N       (global input) INTEGER
*          On entry, N  specifies the number of columns of the submatrix
*          sub( B ). N  must be at least zero.
*
*  ALPHA   (global input) DOUBLE PRECISION
*          On entry, ALPHA specifies the scalar alpha.   When  ALPHA  is
*          supplied  as  zero  then  the  local entries of  the array  B
*          corresponding to the entries of the submatrix  sub( B )  need
*          not be set on input.
*
*  A       (local input) DOUBLE PRECISION array
*          On entry, A is an array of dimension (LLD_A, Ka), where Ka is
*          at least Lc( 1, JA+M-1 ) when  SIDE = 'L' or 'l'   and  is at
*          least Lc( 1, JA+N-1 ) otherwise.  Before  entry,  this  array
*          contains the local entries of the matrix A.
*          Before entry with  UPLO = 'U' or 'u', this array contains the
*          local entries corresponding to  the entries of the upper tri-
*          angular submatrix  sub( A ), and the local entries correspon-
*          ding to the entries of the strictly lower triangular part  of
*          the submatrix  sub( A )  are not referenced.
*          Before entry with  UPLO = 'L' or 'l', this array contains the
*          local entries corresponding to  the entries of the lower tri-
*          angular submatrix  sub( A ), and the local entries correspon-
*          ding to the entries of the strictly upper triangular part  of
*          the submatrix  sub( A )  are not referenced.
*          Note  that  when DIAG = 'U' or 'u', the local entries corres-
*          ponding to the  diagonal elements  of the submatrix  sub( A )
*          are not referenced either, but are assumed to be unity.
*
*  IA      (global input) INTEGER
*          On entry, IA  specifies A's global row index, which points to
*          the beginning of the submatrix sub( A ).
*
*  JA      (global input) INTEGER
*          On entry, JA  specifies A's global column index, which points
*          to the beginning of the submatrix sub( A ).
*
*  DESCA   (global and local input) INTEGER array
*          On entry, DESCA  is an integer array of dimension DLEN_. This
*          is the array descriptor for the matrix A.
*
*  B       (local input/local output) DOUBLE PRECISION array
*          On entry, B is an array of dimension (LLD_B, Kb), where Kb is
*          at least Lc( 1, JB+N-1 ).  Before  entry, this array contains
*          the local entries of the matrix  B.
*          On exit, the local entries of this array corresponding to the
*          to  the entries of the submatrix sub( B ) are  overwritten by
*          the local entries of the m by n  solution submatrix.
*
*  IB      (global input) INTEGER
*          On entry, IB  specifies B's global row index, which points to
*          the beginning of the submatrix sub( B ).
*
*  JB      (global input) INTEGER
*          On entry, JB  specifies B's global column index, which points
*          to the beginning of the submatrix sub( B ).
*
*  DESCB   (global and local input) INTEGER array
*          On entry, DESCB  is an integer array of dimension DLEN_. This
*          is the array descriptor for the matrix B.
*
*  -- Written on April 1, 1998 by
*     Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
*
*  ---------------------------------------------------------------------
*/
/*
*  .. Local Scalars ..
*/
   char           DiagA, DirB, OpC, OpR, SideOp, TopC, TopR, TranOp, UploA,
                  Var, ctop, ctopsave, rtop, rtopsave;
   Int            Ai, Aj, Bi, Bj, ChooseAB, ForceTop, ctxt, info, itmp, lside,
                  mycol, myrow, nb, notran, nounit, npcol, nprow, upper;
   double         ABestL, ABestR, Best, tmp1, tmp2, tmp3, tmp4;
   PBTYP_T        * type;
/*
*  .. Local Arrays ..
*/
   Int            Ad[DLEN_], Bd[DLEN_];
/* ..
*  .. Executable Statements ..
*
*/
   lside  = ( ( SideOp = Mupcase( F2C_CHAR( SIDE  )[0] ) ) ==   CLEFT );
   upper  = ( ( UploA  = Mupcase( F2C_CHAR( UPLO  )[0] ) ) ==  CUPPER );
   notran = ( ( TranOp = Mupcase( F2C_CHAR( TRANS )[0] ) ) == CNOTRAN );
   nounit = ( ( DiagA  = Mupcase( F2C_CHAR( DIAG  )[0] ) ) == CNOUNIT );
   PB_CargFtoC( *IA, *JA, DESCA, &Ai, &Aj, Ad );
   PB_CargFtoC( *IB, *JB, DESCB, &Bi, &Bj, Bd );
#ifndef NO_ARGCHK
/*
*  Test the input parameters
*/
   Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
   if( !( info = ( ( nprow == -1 ) ? -( 1101 + CTXT_ ) : 0 ) ) )
   {
      if( ( !lside ) && ( SideOp != CRIGHT ) )
      {
         PB_Cwarn( ctxt, __LINE__, "PDTRSM", "Illegal SIDE = %c\n", SideOp );
         info = -1;
      }
      else if( ( !upper ) && ( UploA != CLOWER ) )
      {
         PB_Cwarn( ctxt, __LINE__, "PDTRSM", "Illegal UPLO = %c\n", UploA );
         info = -2;
      }
      else if( ( !notran ) && ( TranOp != CTRAN ) && ( TranOp != CCOTRAN ) )
      {
         PB_Cwarn( ctxt, __LINE__, "PDTRSM", "Illegal TRANS = %c\n", TranOp );
         info = -3;
      }
      else if( ( !nounit ) && ( DiagA != CUNIT ) )
      {
         PB_Cwarn( ctxt, __LINE__, "PDTRSM", "Illegal DIAG = %c\n", DiagA );
         info = -4;
      }
      if( lside )
         PB_Cchkmat( ctxt, "PDTRSM", "A", *M, 5, *M, 5, Ai, Aj, Ad, 11,
                     &info );
      else
         PB_Cchkmat( ctxt, "PDTRSM", "A", *N, 6, *N, 6, Ai, Aj, Ad, 11,
                     &info );
      PB_Cchkmat(    ctxt, "PDTRSM", "B", *M, 5, *N, 6, Bi, Bj, Bd, 15,
                     &info );
   }
   if( info ) { PB_Cabort( ctxt, "PDTRSM", info ); return; }
#endif
/*
*  Quick return if possible
*/
   if( *M == 0 || *N == 0 ) return;
/*
*  Get type structure
*/
   type = PB_Cdtypeset();
/*
*  And when alpha is zero
*/
   if( ALPHA[REAL_PART] == ZERO )
   {
      PB_Cplapad( type, ALL, NOCONJG, *M, *N, type->zero, type->zero,
                  ((char *) B), Bi, Bj, Bd );
      return;
   }
/*
*  Start the operations
*/
#ifdef NO_ARGCHK
   Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
#endif
/*
*  Algorithm selection is based on approximation of the communication volume
*  for distributed and aligned operands.
*/
   nb = pilaenv_( &ctxt, C2F_CHAR( &type->type ) );
/*
*  ABestR, ABestL : both operands sub( A ) and sub( B ) are communicated
*                   ( N >> M when SIDE is left and M >> N otherwise )
*  Best           : only sub( B ) is communicated
*                   ( M >> N when SIDE is left and N >> M otherwise )
*/
   if( lside )
   {
      if( notran )
      {
         tmp1 = DNROC( *M, Ad[MB_], nprow ); tmp4 = DNROC( *N, Bd[NB_], npcol );
         ABestR = (double)(*M) *
           ( ( ( ( Ad[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : tmp1 / TWO ) +
             ( ( ( Bd[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : tmp4 ) );
         itmp = MIN( Ad[MB_], Ad[NB_] );
         Best = (double)(*N) *
          ( (double)(CEIL( *M, itmp )) * (double)(itmp) *
            ( ( ( Ad[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : ONE ) +
            ( ( ( Ad[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : ONE ) );
         ChooseAB = ( ABestR <= ( 2.0 * Best ) );
      }
      else
      {
         tmp1 = DNROC( *M, Ad[MB_], nprow ); tmp2 = DNROC( *M, Ad[NB_], npcol );
         tmp4 = DNROC( *N, Bd[NB_], npcol );
         ABestL = (double)(*M) *
           ( ( ( ( Ad[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : tmp1 / TWO ) +
             CBRATIO *
             ( ( ( Bd[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : tmp4 ) );
         ABestR = (double)(*M) *
           ( ( ( ( Ad[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : tmp1 / TWO ) +
             ( ( ( Bd[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : tmp4       ) +
             MAX( tmp2, tmp1 ) / TWO );
         itmp = MIN( Ad[MB_], Ad[NB_] );
         tmp2 = DNROC( *M, Ad[NB_], npcol ); tmp3 = DNROC( *M, Bd[MB_], nprow );
         Best = (double)(*N) *
          ( (double)(CEIL( *M, itmp )) * (double)(itmp) *
            ( ( ( ( Ad[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : ONE ) +
              ( ( ( Ad[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : ONE ) ) +
            MAX( tmp2, tmp3 ) );
         ChooseAB = ( ( ABestL <= ( 2.0 * Best ) ) ||
                      ( ABestR <= ( 2.0 * Best ) ) );
      }
   }
   else
   {
      if( notran )
      {
         tmp2 = DNROC( *N, Ad[NB_], npcol ); tmp3 = DNROC( *M, Bd[MB_], nprow );
         ABestR = (double)(*N) *
           ( ( ( ( Ad[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : tmp2 / TWO ) +
             ( ( ( Bd[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : tmp3 ) );
         itmp = MIN( Ad[MB_], Ad[NB_] );
         Best = (double)(*M) *
          ( (double)(CEIL( *N, itmp )) * (double)(itmp) *
            ( ( ( Ad[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : ONE ) +
            ( ( ( Ad[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : ONE ) );
         ChooseAB = ( ABestR <= ( 2.0 * Best ) );
      }
      else
      {
         tmp1 = DNROC( *N, Ad[MB_], nprow ); tmp2 = DNROC( *N, Ad[NB_], npcol );
         tmp3 = DNROC( *M, Bd[MB_], nprow );
         ABestL = (double)(*N) *
           ( ( ( ( Ad[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : tmp2 / TWO ) +
             CBRATIO *
             ( ( ( Bd[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : tmp3 ) );
         ABestR = (double)(*N) *
           ( ( ( ( Ad[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : tmp2 / TWO ) +
             ( ( ( Bd[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : tmp3       ) +
             MAX( tmp2, tmp1 ) / TWO );
         itmp = MIN( Ad[MB_], Ad[NB_] );
         tmp1 = DNROC( *N, Ad[MB_], nprow ); tmp4 = DNROC( *N, Bd[NB_], npcol );
         Best = (double)(*M) *
          ( (double)(CEIL( *N, itmp )) * (double)(itmp) *
            ( ( ( ( Ad[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : ONE ) +
              ( ( ( Ad[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : ONE ) ) +
            MAX( tmp1, tmp4 ) );
         ChooseAB = ( ( ABestL <= ( 2.0 * Best ) ) ||
                      ( ABestR <= ( 2.0 * Best ) ) );
      }
   }

/*
* Var can remain uninitialized but is nevertheless used in PB_CptrsmAB.c
*  provide a default here. TODO: does this make sense ?
*==19891==    at 0x44F81B: PB_CptrsmAB (PB_CptrsmAB.c:538)
*==19891==    by 0x427BE7: pdtrsm_ (pdtrsm_.c:488)
*==19891==    by 0x405E46: MAIN_ (pdblas3tim.f:727)
*/
   Var = CRIGHT;

   if( ChooseAB )
   {
/*
*  BLACS topologies are enforced iff M and N are strictly greater than the
*  logical block size returned by pilaenv_. Otherwise, it is assumed that the
*  routine calling this routine has already selected an adequate topology.
*/
      ForceTop = ( ( *M > nb ) && ( *N > nb ) );

      if( ForceTop )
      {
         if( lside )
         {
            if( notran )
            {
               OpR = CBCAST; OpC = CBCAST; Var = CRIGHT;
               if( upper ) { TopR = TopC = CTOP_DRING; }
               else        { TopR = TopC = CTOP_IRING; }
            }
            else
            {
               if( ABestL <= ABestR )
               {
                  OpR = CBCAST; OpC = CCOMBINE; Var = CLEFT;
                  if( upper ) { TopR = TopC = CTOP_IRING; }
                  else        { TopR = TopC = CTOP_DRING; }
               }
               else
               {
                  OpR = CBCAST; OpC = CBCAST;  Var = CRIGHT;
                  if( upper ) { TopR = TopC = CTOP_IRING; }
                  else        { TopR = TopC = CTOP_DRING; }
               }
            }
         }
         else
         {
            if( notran )
            {
               OpR = CBCAST; OpC = CBCAST; Var = CRIGHT;
               if( upper ) { TopR = TopC = CTOP_IRING; }
               else        { TopR = TopC = CTOP_DRING; }
            }
            else
            {
               if( ABestL <= ABestR )
               {
                  OpR = CCOMBINE; OpC = CBCAST; Var = CLEFT;
                  if( upper ) { TopR = TopC = CTOP_DRING; }
                  else        { TopR = TopC = CTOP_IRING; }
               }
               else
               {
                  OpR = CBCAST; OpC = CBCAST;  Var = CRIGHT;
                  if( upper ) { TopR = TopC = CTOP_DRING; }
                  else        { TopR = TopC = CTOP_IRING; }
               }
            }
         }

         rtop = *PB_Ctop( &ctxt, &OpR, ROW,    TOP_GET );
         ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_GET );

         if( ( rtopsave = rtop ) != TopR )
            rtop = *PB_Ctop( &ctxt, &OpR, ROW,    &TopR );
         if( ( ctopsave = ctop ) != TopC )
            ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, &TopC );
/*
*  Remove the next 4 lines when the BLACS combine operations support ring
*  topologies
*/
         if( OpR == CCOMBINE )
            rtop = *PB_Ctop( &ctxt, &OpR, ROW,    TOP_DEFAULT );
         if( OpC == CCOMBINE )
            ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_DEFAULT );
      }

      PB_CptrsmAB( type, &Var, &SideOp, &UploA, ( notran ? NOTRAN : TRAN ),
                   &DiagA, *M, *N, ((char *)ALPHA), ((char *)A), Ai, Aj, Ad,
                   ((char *)B), Bi, Bj, Bd );
/*
*  Restore the BLACS topologies when necessary.
*/
      if( ForceTop )
      {
         rtopsave = *PB_Ctop( &ctxt, &OpR, ROW,    &rtopsave );
         ctopsave = *PB_Ctop( &ctxt, &OpC, COLUMN, &ctopsave );
      }
   }
   else
   {
/*
*  BLACS topologies are always enforced.
*/
      if( ( lside && notran ) || ( !lside && !notran ) )
      {
         OpR = CCOMBINE; OpC = CBCAST;
         if( upper ) { TopR = TopC = CTOP_DRING; }
         else        { TopR = TopC = CTOP_IRING; }
/*
*  Remove the next line when the BLACS combine operations support ring
*  topologies
*/
         TopR = CTOP_DEFAULT;
      }
      else
      {
         OpR = CBCAST; OpC = CCOMBINE;
         if( upper ) { TopR = TopC = CTOP_IRING; }
         else        { TopR = TopC = CTOP_DRING; }
/*
*  Remove the next line when the BLACS combine operations support ring
*  topologies
*/
         TopC = CTOP_DEFAULT;
      }

      rtop = *PB_Ctop( &ctxt, &OpR, ROW,    TOP_GET );
      ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_GET );

      if( ( rtopsave = rtop ) != TopR )
         rtop = *PB_Ctop( &ctxt, &OpR, ROW,    &TopR );
      if( ( ctopsave = ctop ) != TopC )
         ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, &TopC );

      if( lside ) DirB = ( rtop == CTOP_DRING ? CBACKWARD : CFORWARD );
      else        DirB = ( ctop == CTOP_DRING ? CBACKWARD : CFORWARD );

      PB_CptrsmB( type, &DirB, &SideOp, &UploA, ( notran ? NOTRAN : TRAN ),
                  &DiagA, *M, *N, ((char *)ALPHA), ((char *)A), Ai, Aj, Ad,
                  ((char *)B), Bi, Bj, Bd );
/*
*  Restore the BLACS topologies.
*/
      rtopsave = *PB_Ctop( &ctxt, &OpR, ROW,    &rtopsave );
      ctopsave = *PB_Ctop( &ctxt, &OpC, COLUMN, &ctopsave );
   }
/*
*  End of PDTRSM
*/
}