1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
|
/* ---------------------------------------------------------------------
*
* -- PBLAS routine (version 2.0) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* April 1, 1998
*
* ---------------------------------------------------------------------
*/
/*
* Include files
*/
#include "pblas.h"
#include "PBpblas.h"
#include "PBtools.h"
#include "PBblacs.h"
#include "PBblas.h"
#ifdef __STDC__
void pssymm_( F_CHAR_T SIDE, F_CHAR_T UPLO, Int * M, Int * N,
float * ALPHA,
float * A, Int * IA, Int * JA, Int * DESCA,
float * B, Int * IB, Int * JB, Int * DESCB,
float * BETA,
float * C, Int * IC, Int * JC, Int * DESCC )
#else
void pssymm_( SIDE, UPLO, M, N, ALPHA, A, IA, JA, DESCA,
B, IB, JB, DESCB, BETA, C, IC, JC, DESCC )
/*
* .. Scalar Arguments ..
*/
F_CHAR_T SIDE, UPLO;
Int * IA, * IB, * IC, * JA, * JB, * JC, * M, * N;
float * ALPHA, * BETA;
/*
* .. Array Arguments ..
*/
Int * DESCA, * DESCB, * DESCC;
float * A, * B, * C;
#endif
{
/*
* Purpose
* =======
*
* PSSYMM performs one of the matrix-matrix operations
*
* sub( C ) := alpha*sub( A )*sub( B ) + beta*sub( C ),
*
* or
*
* sub( C ) := alpha*sub( B )*sub( A ) + beta*sub( C ),
*
* where
*
* sub( C ) denotes C(IC:IC+M-1,JC:JC+N-1),
*
* sub( A ) denotes A(IA:IA+M-1,JA:JA+M-1) if SIDE = 'L',
* A(IA:IA+N-1,JA:JA+N-1) if SIDE = 'R', and,
*
* sub( B ) denotes B(IB:IB+M-1,JB:JB+N-1).
*
* Alpha and beta are scalars, sub( A ) is a symmetric submatrix and
* sub( B ) and sub( C ) are m by n submatrices.
*
* Notes
* =====
*
* A description vector is associated with each 2D block-cyclicly dis-
* tributed matrix. This vector stores the information required to
* establish the mapping between a matrix entry and its corresponding
* process and memory location.
*
* In the following comments, the character _ should be read as
* "of the distributed matrix". Let A be a generic term for any 2D
* block cyclicly distributed matrix. Its description vector is DESC_A:
*
* NOTATION STORED IN EXPLANATION
* ---------------- --------------- ------------------------------------
* DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type.
* CTXT_A (global) DESCA[ CTXT_ ] The BLACS context handle, indicating
* the NPROW x NPCOL BLACS process grid
* A is distributed over. The context
* itself is global, but the handle
* (the integer value) may vary.
* M_A (global) DESCA[ M_ ] The number of rows in the distribu-
* ted matrix A, M_A >= 0.
* N_A (global) DESCA[ N_ ] The number of columns in the distri-
* buted matrix A, N_A >= 0.
* IMB_A (global) DESCA[ IMB_ ] The number of rows of the upper left
* block of the matrix A, IMB_A > 0.
* INB_A (global) DESCA[ INB_ ] The number of columns of the upper
* left block of the matrix A,
* INB_A > 0.
* MB_A (global) DESCA[ MB_ ] The blocking factor used to distri-
* bute the last M_A-IMB_A rows of A,
* MB_A > 0.
* NB_A (global) DESCA[ NB_ ] The blocking factor used to distri-
* bute the last N_A-INB_A columns of
* A, NB_A > 0.
* RSRC_A (global) DESCA[ RSRC_ ] The process row over which the first
* row of the matrix A is distributed,
* NPROW > RSRC_A >= 0.
* CSRC_A (global) DESCA[ CSRC_ ] The process column over which the
* first column of A is distributed.
* NPCOL > CSRC_A >= 0.
* LLD_A (local) DESCA[ LLD_ ] The leading dimension of the local
* array storing the local blocks of
* the distributed matrix A,
* IF( Lc( 1, N_A ) > 0 )
* LLD_A >= MAX( 1, Lr( 1, M_A ) )
* ELSE
* LLD_A >= 1.
*
* Let K be the number of rows of a matrix A starting at the global in-
* dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
* that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
* receive if these K rows were distributed over NPROW processes. If K
* is the number of columns of a matrix A starting at the global index
* JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co-
* lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if
* these K columns were distributed over NPCOL processes.
*
* The values of Lr() and Lc() may be determined via a call to the func-
* tion PB_Cnumroc:
* Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
* Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
*
* Arguments
* =========
*
* SIDE (global input) CHARACTER*1
* On entry, SIDE specifies whether the symmetric submatrix
* sub( A ) appears on the left or right in the operation as
* follows:
*
* SIDE = 'L' or 'l'
* sub( C ) := alpha*sub( A )*sub( B ) + beta*sub( C ),
*
* SIDE = 'R' or 'r'
* sub( C ) := alpha*sub( B )*sub( A ) + beta*sub( C ).
*
* UPLO (global input) CHARACTER*1
* On entry, UPLO specifies whether the local pieces of
* the array A containing the upper or lower triangular part
* of the symmetric submatrix sub( A ) are to be referenced as
* follows:
*
* UPLO = 'U' or 'u' Only the local pieces corresponding to
* the upper triangular part of the
* symmetric submatrix sub( A ) are to be
* referenced,
*
* UPLO = 'L' or 'l' Only the local pieces corresponding to
* the lower triangular part of the
* symmetric submatrix sub( A ) are to be
* referenced.
*
* M (global input) INTEGER
* On entry, M specifies the number of rows of the submatrix
* sub( C ). M must be at least zero.
*
* N (global input) INTEGER
* On entry, N specifies the number of columns of the submatrix
* sub( C ). N must be at least zero.
*
* ALPHA (global input) REAL
* On entry, ALPHA specifies the scalar alpha. When ALPHA is
* supplied as zero then the local entries of the arrays A and
* B corresponding to the entries of the submatrices sub( A )
* and sub( B ) respectively need not be set on input.
*
* A (local input) REAL array
* On entry, A is an array of dimension (LLD_A, Ka), where Ka is
* at least Lc( 1, JA+M-1 ) when SIDE = 'L' or 'l' and is at
* at least Lc( 1, JA+N-1 ) otherwise. Before entry, this array
* contains the local entries of the matrix A.
* Before entry with SIDE = 'L' or 'l', this array contains
* the local entries corresponding to the entries of the m by m
* symmetric submatrix sub( A ), such that when UPLO = 'U' or
* 'u', this array contains the local entries of the upper tri-
* angular part of the symmetric submatrix sub( A ), and the
* local entries of the strictly lower triangular of sub( A )
* are not referenced, and when UPLO = 'L' or 'l', this array
* contains the local entries of the lower triangular part of
* the symmetric submatrix sub( A ), and the local entries of
* the strictly upper triangular of sub( A ) are not referenced.
* Before entry with SIDE = 'R' or 'r', this array contains
* the local entries corresponding to the entries of the n by n
* symmetric submatrix sub( A ), such that when UPLO = 'U' or
* 'u', this array contains the local entries of the upper tri-
* angular part of the symmetric submatrix sub( A ), and the
* local entries of the strictly lower triangular of sub( A )
* are not referenced, and when UPLO = 'L' or 'l', this array
* contains the local entries of the lower triangular part of
* the symmetric submatrix sub( A ), and the local entries of
* the strictly upper triangular of sub( A ) are not referenced.
*
* IA (global input) INTEGER
* On entry, IA specifies A's global row index, which points to
* the beginning of the submatrix sub( A ).
*
* JA (global input) INTEGER
* On entry, JA specifies A's global column index, which points
* to the beginning of the submatrix sub( A ).
*
* DESCA (global and local input) INTEGER array
* On entry, DESCA is an integer array of dimension DLEN_. This
* is the array descriptor for the matrix A.
*
* B (local input) REAL array
* On entry, B is an array of dimension (LLD_B, Kb), where Kb is
* at least Lc( 1, JB+N-1 ). Before entry, this array contains
* the local entries of the matrix B.
*
* IB (global input) INTEGER
* On entry, IB specifies B's global row index, which points to
* the beginning of the submatrix sub( B ).
*
* JB (global input) INTEGER
* On entry, JB specifies B's global column index, which points
* to the beginning of the submatrix sub( B ).
*
* DESCB (global and local input) INTEGER array
* On entry, DESCB is an integer array of dimension DLEN_. This
* is the array descriptor for the matrix B.
*
* BETA (global input) REAL
* On entry, BETA specifies the scalar beta. When BETA is
* supplied as zero then the local entries of the array C
* corresponding to the entries of the submatrix sub( C ) need
* not be set on input.
*
* C (local input/local output) REAL array
* On entry, C is an array of dimension (LLD_C, Kc), where Kc is
* at least Lc( 1, JC+N-1 ). Before entry, this array contains
* the local entries of the matrix C.
* On exit, the entries of this array corresponding to the local
* entries of the submatrix sub( C ) are overwritten by the
* local entries of the m by n updated submatrix.
*
* IC (global input) INTEGER
* On entry, IC specifies C's global row index, which points to
* the beginning of the submatrix sub( C ).
*
* JC (global input) INTEGER
* On entry, JC specifies C's global column index, which points
* to the beginning of the submatrix sub( C ).
*
* DESCC (global and local input) INTEGER array
* On entry, DESCC is an integer array of dimension DLEN_. This
* is the array descriptor for the matrix C.
*
* -- Written on April 1, 1998 by
* Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
*
* ---------------------------------------------------------------------
*/
/*
* .. Local Scalars ..
*/
char DirAB, SideOp, UploA, cbtop, cbtopsave, cctop, cctopsave,
rbtop, rbtopsave, rctop, rctopsave;
Int Ai, Aj, Bi, Bj, ChooseABC, Ci, Cj, ForceTop, ctxt, info,
lside, mycol, myrow, nb, npcol, nprow, upper;
double ABCest, BCest, tmp1, tmp2, tmp3, tmp4;
PBTYP_T * type;
/*
* .. Local Arrays ..
*/
Int Ad[DLEN_], Bd[DLEN_], Cd[DLEN_];
/* ..
* .. Executable Statements ..
*
*/
lside = ( ( SideOp = Mupcase( F2C_CHAR( SIDE )[0] ) ) == CLEFT );
upper = ( ( UploA = Mupcase( F2C_CHAR( UPLO )[0] ) ) == CUPPER );
PB_CargFtoC( *IA, *JA, DESCA, &Ai, &Aj, Ad );
PB_CargFtoC( *IB, *JB, DESCB, &Bi, &Bj, Bd );
PB_CargFtoC( *IC, *JC, DESCC, &Ci, &Cj, Cd );
#ifndef NO_ARGCHK
/*
* Test the input parameters
*/
Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
if( !( info = ( ( nprow == -1 ) ? -( 901 + CTXT_ ) : 0 ) ) )
{
if( ( !lside ) && ( SideOp != CRIGHT ) )
{
PB_Cwarn( ctxt, __LINE__, "PSSYMM", "Illegal SIDE = %c\n", SideOp );
info = -1;
}
else if( ( !upper ) && ( UploA != CLOWER ) )
{
PB_Cwarn( ctxt, __LINE__, "PSSYMM", "Illegal UPLO = %c\n", UploA );
info = -2;
}
if( lside )
{
PB_Cchkmat( ctxt, "PSSYMM", "A", *M, 3, *M, 3, Ai, Aj, Ad, 9,
&info );
PB_Cchkmat( ctxt, "PSSYMM", "B", *M, 3, *N, 4, Bi, Bj, Bd, 13,
&info );
}
else
{
PB_Cchkmat( ctxt, "PSSYMM", "A", *N, 4, *N, 4, Ai, Aj, Ad, 9,
&info );
PB_Cchkmat( ctxt, "PSSYMM", "B", *M, 3, *N, 4, Bi, Bj, Bd, 13,
&info );
}
PB_Cchkmat( ctxt, "PSSYMM", "C", *M, 3, *N, 4, Ci, Cj, Cd, 18,
&info );
}
if( info ) { PB_Cabort( ctxt, "PSSYMM", info ); return; }
#endif
/*
* Quick return if possible
*/
if( ( *M == 0 ) || ( *N == 0 ) ||
( ( ALPHA[REAL_PART] == ZERO ) && ( BETA[REAL_PART] == ONE ) ) )
return;
/*
* Get type structure
*/
type = PB_Cstypeset();
/*
* If alpha is zero, sub( C ) := beta * sub( C ).
*/
if( ALPHA[REAL_PART] == ZERO )
{
if( BETA[REAL_PART] == ZERO )
{
PB_Cplapad( type, ALL, NOCONJG, *M, *N, type->zero, type->zero,
((char * ) C), Ci, Cj, Cd );
}
else if( !( BETA[REAL_PART] == ONE ) )
{
PB_Cplascal( type, ALL, NOCONJG, *M, *N, ((char *) BETA), ((char *) C),
Ci, Cj, Cd );
}
return;
}
/*
* Start the operations
*/
#ifdef NO_ARGCHK
Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
#endif
/*
* Algorithm selection is based on approximation of the communication volume
* for distributed and aligned operands.
*
* ABCest: operands sub( A ), sub( B ) and sub( C ) are communicated (N >> M)
* BCest : Both operands sub( B ) and sub( C ) are communicated (M >> N)
*/
if( lside )
{
tmp1 = DNROC( *M, Ad[MB_], nprow ); tmp2 = DNROC( *N, Bd[NB_], npcol );
ABCest = (double)(*M) *
( ( ( ( Ad[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : tmp1 / TWO ) +
( ( ( Bd[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO :
tmp2 + tmp2 * CBRATIO ) );
tmp1 = DNROC( *M, Ad[MB_], nprow ); tmp2 = DNROC( *M, Ad[NB_], npcol );
tmp3 = DNROC( *M, Bd[MB_], nprow ); tmp4 = DNROC( *M, Cd[MB_], nprow );
BCest = (double)(*N) *
( CBRATIO * ( npcol == 1 ? ZERO : tmp1 ) +
( nprow == 1 ? ZERO : tmp2 ) + MAX( tmp2, tmp3 ) +
( ( ( Bd[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : tmp1 ) +
CBRATIO * ( nprow == 1 ? ZERO : tmp2 ) + MAX( tmp2, tmp4 ) );
}
else
{
tmp1 = DNROC( *N, Ad[NB_], npcol ); tmp2 = DNROC( *M, Bd[MB_], nprow );
ABCest = (double)(*N) *
( ( ( ( Ad[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : tmp1 / TWO ) +
( ( ( Bd[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO :
tmp2 + tmp2 * CBRATIO ) );
tmp1 = DNROC( *N, Ad[MB_], nprow ); tmp2 = DNROC( *N, Ad[NB_], npcol );
tmp3 = DNROC( *N, Bd[NB_], npcol ); tmp4 = DNROC( *N, Cd[NB_], npcol );
BCest = (double)(*M) *
( ( npcol == 1 ? ZERO : tmp1 ) + MAX( tmp1, tmp3 ) +
CBRATIO * ( nprow == 1 ? ZERO : tmp2 ) +
( ( ( Bd[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : tmp2 ) +
CBRATIO * ( npcol == 1 ? ZERO : tmp1 ) + MAX( tmp1, tmp4 ) );
}
/*
* Shift a little the cross-over point between both algorithms.
*/
ChooseABC = ( ( 1.5 * ABCest ) <= BCest );
/*
* BLACS topologies are enforced iff M and N are strictly greater than the
* logical block size returned by pilaenv_. Otherwise, it is assumed that the
* routine calling this routine has already selected an adequate topology.
*/
nb = pilaenv_( &ctxt, C2F_CHAR( &type->type ) );
ForceTop = ( ( *M > nb ) && ( *N > nb ) );
rbtop = *PB_Ctop( &ctxt, BCAST, ROW, TOP_GET );
rctop = *PB_Ctop( &ctxt, COMBINE, ROW, TOP_GET );
cbtop = *PB_Ctop( &ctxt, BCAST, COLUMN, TOP_GET );
cctop = *PB_Ctop( &ctxt, COMBINE, COLUMN, TOP_GET );
if( ChooseABC )
{
if( ForceTop )
{
rbtopsave = rbtop; rctopsave = rctop;
cbtopsave = cbtop; cctopsave = cctop;
if( lside )
{
/*
* No clear winner for the ring topologies, so that if a ring topology is
* already selected, keep it.
*/
if( ( rbtop != CTOP_DRING ) && ( rbtop != CTOP_IRING ) &&
( rbtop != CTOP_SRING ) )
rbtop = *PB_Ctop( &ctxt, BCAST, ROW, TOP_IRING );
if( ( ( cbtop != CTOP_DRING ) && ( cbtop != CTOP_IRING ) &&
( cbtop != CTOP_SRING ) ) || ( cbtop != cctop ) )
{
cbtop = *PB_Ctop( &ctxt, BCAST, COLUMN, TOP_IRING );
cctop = *PB_Ctop( &ctxt, COMBINE, COLUMN, TOP_IRING );
/*
* Remove the next 2 lines when the BLACS combine operations support ring
* topologies
*/
rctop = *PB_Ctop( &ctxt, COMBINE, ROW, TOP_DEFAULT );
cctop = *PB_Ctop( &ctxt, COMBINE, COLUMN, TOP_DEFAULT );
}
}
else
{
/*
* No clear winner for the ring topologies, so that if a ring topology is
* already selected, keep it.
*/
if( ( cbtop != CTOP_DRING ) && ( cbtop != CTOP_IRING ) &&
( cbtop != CTOP_SRING ) )
cbtop = *PB_Ctop( &ctxt, BCAST, COLUMN, TOP_IRING );
if( ( ( rbtop != CTOP_DRING ) && ( rbtop != CTOP_IRING ) &&
( rbtop != CTOP_SRING ) ) || ( rbtop != rctop ) )
{
rbtop = *PB_Ctop( &ctxt, BCAST, ROW, TOP_IRING );
rctop = *PB_Ctop( &ctxt, COMBINE, ROW, TOP_IRING );
/*
* Remove the next 2 lines when the BLACS combine operations support ring
* topologies
*/
rctop = *PB_Ctop( &ctxt, COMBINE, ROW, TOP_DEFAULT );
cctop = *PB_Ctop( &ctxt, COMBINE, COLUMN, TOP_DEFAULT );
}
}
}
if( lside )
DirAB = ( rbtop == CTOP_DRING ? CBACKWARD : CFORWARD );
else
DirAB = ( cbtop == CTOP_DRING ? CBACKWARD : CFORWARD );
PB_CpsymmAB( type, &DirAB, NOCONJG, &SideOp, &UploA, *M, *N,
((char *)ALPHA), ((char *)A), Ai, Aj, Ad, ((char *)B), Bi,
Bj, Bd, ((char *)BETA), ((char *)C), Ci, Cj, Cd );
}
else
{
if( ForceTop )
{
rbtopsave = rbtop; rctopsave = rctop;
cbtopsave = cbtop; cctopsave = cctop;
if( lside )
{
/*
* No clear winner for the ring topologies, so that if a ring topology is
* already selected, keep it.
*/
if( ( ( rbtop != CTOP_DRING ) && ( rbtop != CTOP_IRING ) &&
( rbtop != CTOP_SRING ) ) || ( rbtop != rctop ) )
{
rbtop = *PB_Ctop( &ctxt, BCAST, ROW, TOP_IRING );
rctop = *PB_Ctop( &ctxt, COMBINE, ROW, TOP_IRING );
/*
* Remove the next 2 lines when the BLACS combine operations support ring
* topologies
*/
rctop = *PB_Ctop( &ctxt, COMBINE, ROW, TOP_DEFAULT );
cctop = *PB_Ctop( &ctxt, COMBINE, COLUMN, TOP_DEFAULT );
}
cbtop = *PB_Ctop( &ctxt, BCAST, COLUMN, TOP_DEFAULT );
cctop = *PB_Ctop( &ctxt, COMBINE, COLUMN, TOP_DEFAULT );
}
else
{
/*
* No clear winner for the ring topologies, so that if a ring topology is
* already selected, keep it.
*/
if( ( ( cbtop != CTOP_DRING ) && ( cbtop != CTOP_IRING ) &&
( cbtop != CTOP_SRING ) ) || ( cbtop != cctop ) )
{
cbtop = *PB_Ctop( &ctxt, BCAST, COLUMN, TOP_IRING );
cctop = *PB_Ctop( &ctxt, COMBINE, COLUMN, TOP_IRING );
/*
* Remove the next 2 lines when the BLACS combine operations support ring
* topologies
*/
rctop = *PB_Ctop( &ctxt, COMBINE, ROW, TOP_DEFAULT );
cctop = *PB_Ctop( &ctxt, COMBINE, COLUMN, TOP_DEFAULT );
}
rbtop = *PB_Ctop( &ctxt, BCAST, ROW, TOP_DEFAULT );
rctop = *PB_Ctop( &ctxt, COMBINE, ROW, TOP_DEFAULT );
}
}
if( lside )
DirAB = ( ( rbtop == CTOP_DRING || rctop == CTOP_DRING ) ?
CBACKWARD : CFORWARD );
else
DirAB = ( ( cbtop == CTOP_DRING || cctop == CTOP_DRING ) ?
CBACKWARD : CFORWARD );
PB_CpsymmBC( type, &DirAB, NOCONJG, &SideOp, &UploA, *M, *N,
((char *)ALPHA), ((char *)A), Ai, Aj, Ad, ((char *)B), Bi,
Bj, Bd, ((char *)BETA), ((char *)C), Ci, Cj, Cd );
}
/*
* Restore the BLACS topologies when necessary.
*/
if( ForceTop )
{
rbtopsave = *PB_Ctop( &ctxt, BCAST, ROW, &rbtopsave );
rctopsave = *PB_Ctop( &ctxt, COMBINE, ROW, &rctopsave );
cbtopsave = *PB_Ctop( &ctxt, BCAST, COLUMN, &cbtopsave );
cctopsave = *PB_Ctop( &ctxt, COMBINE, COLUMN, &cctopsave );
}
/*
* End of PSSYMM
*/
}
|